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We introduce a technique based on the spatial localization of electron and phonon Wannier functions to
perform first-principles calculations of the electron-phonon interaction with an ultradense sampling of the
Brillouin zone. After developing the basic theory, we describe the practical implementation within a density-
functional framework. The proposed method is illustrated by considering a virtual crystal model of boron-
doped diamond. For this test case, we first discuss the spatial localization of the electron-phonon matrix
element in the Wannier representation. Then, we assess the accuracy of the Wannier-Fourier interpolation in
momentum space. Finally, we study the convergence of the electron-phonon self-energies with the sampling of
the Brillouin zone by calculating the electron and phonon linewidths, the Eliashberg spectral function, and the
mass enhancement parameter of B-doped diamond. We show that more than 105 points in the irreducible
wedge of the Brillouin zone are needed to achieve convergence.

DOI: 10.1103/PhysRevB.76.165108 PACS number�s�: 63.20.Kr, 71.15.�m, 74.70.�b

I. INTRODUCTION

The electron-phonon �e-ph� interaction manifests itself in
a wide range of phenomena, including the electrical resistiv-
ity, superconductivity,1 the Kohn effect,2 the Peierls
instability,3 and polaronic transport in organic materials.4 In
recent years, considerable attention has been drawn to the
e-ph problem by photoemission experiments which revealed
sharp signatures of this interaction in the quasiparticle spec-
tra of high-temperature cuprate superconductors.5,6 In addi-
tion, recently, the effect of the e-ph interaction in nanoscale
electron transport has attracted considerable interest since
there is evidence that phonon-limited carrier lifetimes might
hinder the ballistic operation of carbon-based field-effect
devices.7

The e-ph interaction has been the subject of theoretical
investigations since the early attempts to explain the tem-
perature dependence of the electrical resistivity of metals.8

Following the pioneering investigations of Fröhlich,9

Holstein,10 Bardeen and Pines,11 and later the BCS theory of
superconductivity,1 the e-ph interaction has become the pro-
totypical example of a fermion-boson interaction and is now
used as a standard benchmark for field-theoretical Green’s
functions methods.12–15 Despite the continued interest in the
e-ph problem, the computational methods developed so far,
ranging from frozen-phonon approaches16–18 to first-
principles linear-response techniques,19–22 still remain un-
practical. As a consequence, many important aspects, such as
the effects of anisotropy within the Eliashberg theory,23,24 the
validity of the Migdal theorem in the normal state,25 and the
range of validity of the Migdal-Eliashberg theory in the su-
perconducting state,26 remain only partially explored. In
some cases, such as the Holstein polaron problem,15 a first-
principles approach has not even been attempted to the au-
thors’ knowledge. The present situation is equally unsatisfac-
tory from the point of view of applications, since current
calculations are still limited to simple systems with a few
atoms per unit cell, and only very few attempts have been
made to address complex systems such as carbon

nanostructures,27 doped superconductors,28 or metallic
nanowires.29

This situation is partly due to the significant computa-
tional burden of an e-ph calculation, which often requires a
very accurate description of electron and phonon scattering
processes in the proximity of the Fermi surface.30,31

Motivated by these considerations, we have developed a
technique which makes use of Wannier functions to dramati-
cally reduce the computational cost of an e-ph calculation.
The basic idea is to exploit the localization of both electronic
and lattice Wannier functions in order to compute only a
limited set of electronic and vibrational states and e-ph ma-
trix elements from first principles, and then using these re-
sults to obtain the corresponding quantities for arbitrary elec-
tron and phonon wave vectors by a generalized Fourier
interpolation. In this way, it becomes possible to sample ac-
curately the Brillouin zone at the computational cost of a
standard phonon dispersion calculation.32 Besides the signifi-
cant computational advantage, the Wannier representation
proves to be an ideal analytical tool for studying the e-ph
interaction in terms of simplified tight-binding models �for
the electrons� and force-constant models �for the phonons�
while preserving the accuracy of a full first-principles calcu-
lation.

In order to illustrate our method, we present an applica-
tion to boron-doped diamond. Superconductivity above liq-
uid He temperature has recently been observed in B-doped
diamond,33 and investigations are ongoing to explore the
possibility of increasing Tc beyond 10 K by tuning sample
preparation and doping treatments.34 Previous theoretical
works showed that superconductivity in diamond is crucially
linked to the presence of the B atoms.28,35 Boron provides
both the hole carriers participating in the supercurrent and
the localized vibrations of the BC4 tetrahedra responsible for
the pairing field. To keep the focus on the methodology, in
the present work, we prefer to adopt a simplified point of
view, and we describe B-doped diamond by a virtual crystal
model.36,37

The present paper is organized as follows. In Sec. II, we
review the current techniques to compute the electron and
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phonon self-energies arising from the e-ph interaction. In
Sec. III, we introduce the electron and phonon Wannier func-
tions and derive the e-ph matrix element in the Wannier rep-
resentation. Section IV describes the generalized Wannier-
Fourier interpolation of the e-ph matrix element and its
practical implementation within a density-functional frame-
work. In Sec. VI, we illustrate the theory by calculating the
electron and phonon linewidths, the Eliashberg function, and
the electron-phonon mass enhancement parameter of boron-
doped diamond.

The present work extends and improves upon the method
proposed in Ref. 35. In particular, in the present work, the
electron and phonon coordinates are treated on the same
footing, leading to a joint electron-phonon Wannier represen-
tation and a simultaneous electron-phonon Fourier interpola-
tion. In the Appendix, we establish the connection with the
procedure outlined in Ref. 35, and we discuss the relative
merits of the two strategies.

II. ELECTRON-PHONON INTERACTION

The formalism for addressing the e-ph interaction has
been set by the seminal contributions of Fröhlich,9 Bardeen
and Pines,11 and Engelsberg and Schrieffer.38 The e-ph
Hamiltonian derived in these studies is conveniently dealt
with by standard Green’s functions techniques.1,14 The inter-
acting electron and phonon propagators are, in principle,
fully determined through Dyson’s equation once the corre-
sponding electron ��� and phonon ��� self-energy operators
associated with the mutual interactions are known. Instead of
reviewing the possible approximations to the self-energy op-
erators, we focus here on the simplest one, which consists in
replacing the dressed e-ph vertex � by its bare counterpart g
�Fig. 1�.1 This approximation is connected with the Born-
Oppenheimer adiabatic theorem and is generally referred to
as the Migdal approximation.25,26 In this work, we replace
the dressed electron Green’s function by the corresponding
free propagator, thereby avoiding complications associated
with self-consistency. On the other hand, the fully renormal-
ized phonon frequencies, as obtained from density-functional
calculations, will be adopted in the phonon propagator. This
is generally considered to be a sensible approximation.14

The electron and phonon self-energies arising from the
e-ph interaction �Fig. 1� read12

� = i� d2

�2��4 �g�1,2��2D�1 − 2�G0�2� , �1�

� = − 2i� d1

�2��4 �g�1,2��2G0�1�G0�2� , �2�

where G0 and D are the bare electron and the dressed phonon
Green’s functions, respectively, 1= �k ,�� the quadrimomen-
tum in compressed notation �k being the wave vector and �
the energy�, and g�1,2� the electron-phonon matrix
element.39 Equations �1� and �2� were originally derived for
the electron gas and need to be rewritten within the reduced-
zone scheme for a practical calculation.

We make the following approximations: �i� we neglect the
changes in the electronic wave functions and phonon
eigendisplacements arising from the e-ph interaction,40 �ii�
we take the expectation value of the self-energy operators on
the noninteracting electron and phonon states, and �iii� we
restrict our discussion to the imaginary parts of the electron
���� and phonon ���� self-energies, i.e., we only consider
the corresponding linewidths. These simplifications are in-
tended to illustrate our methodology by focusing on a few
specific cases. The inclusion of the off-diagonal corrections
and the calculation of the corresponding real self-energies
are both feasible and will be the subject of a future
communication.41 By expressing the free propagators in
terms of the noninteracting electronic energy �nk �with n the
band index and k the momentum� and vibrational frequency
�q� �with � the branch index and q the momentum�, Eqs. �1�
and �2� can be integrated analytically to yield12

�nk� = ��
m�
�

BZ

dq

	BZ
�gmn,�

SE �k,q��2


��nq� + fmk+q����nk − �q� − �mk+q�

+ �nq� + 1 − fmk+q����nk + �q� − �mk+q�� , �3�

�q�� = 2��
mn
�

BZ

dk

	BZ
�gmn,�

SE �k,q��2


�fnk − fmk+q����q� + �nk − �mk+q� , �4�

where fnk and nq� are the Fermi-Dirac and Bose-Einstein
occupations, respectively, the factor of 2 accounts for the
spin degeneracy, and the integrations extend over the Bril-
louin zone. The e-ph matrix element �vertex� gmn,�

SE �k ,q� ap-
pearing in Eqs. �3� and �4� is given by

gmn,�
SE �k,q� = � �

2m0�q�
	1/2

gmn,��k,q� , �5�

where m0 is a convenient reference mass, and

gmn,��k,q� = 
mk + q��q�V�nk� . �6�

We adopt the superscript “SE” to distinguish between the
matrix element appearing in the self-energy expressions �gSE,
with the dimensions of an energy� and the one used in the
Bloch to Wannier transformation �g, with dimensions of an
energy divided by a length, cf. Sec. III�. In Eq. �6�, �nk� and

FIG. 1. �Color online� First-order e-ph diagrams considered in
this work �red�. Left: the self-energy of a phonon with momentum q
�black wiggly line� is given by the Fermion loop containing two
electron lines �red lines� connected by the bare e-ph vertices �red
disks� �Refs. 1 and 12�. Right: the self-energy of an electron with
momentum k �black straight line� is given by the loop with one
electron line �straight� and one phonon line �wiggly�, connected by
the bare e-ph vertices. Equations �1� and �2� were obtained from
these diagrams.
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�mk+q� indicate Bloch eigenstates, while the operator �q�V
is the derivative of the self-consistent potential with respect
to a collective ionic displacement corresponding to a phonon
with branch index � and momentum q �cf. Sec. III�.42

Within the isotropic approximation to Eliashberg theory,26

the phonon linewidths �Eq. �4�� constitute a key ingredient
for calculating the Eliashberg function 2F and the associ-
ated mass enhancement parameter � �Ref. 43�:

2F��� = −
1

�NF
�

�
�

BZ

dq

	BZ

�q��

�q�

��� − �q�� , �7�

� = 2�
0

�

d��−12F��� , �8�

NF being the density of electronic states at the Fermi level.
The mass enhancement parameter � is also referred to as the
electron-phonon coupling strength and is widely used to es-
timate the transition temperature of conventional supercon-
ductors by means of the semiempirical McMillan formula.44

Inspection of Eq. �4� reveals that the calculation of the
phonon linewidths requires a summation over electronic
transitions where both the initial state �nk� and the final state
�mk+q� are pinned close to the Fermi level by the selection
rule �mk+q=�nk+�q�. As a consequence, the calculation of
vibrational linewidths requires a determination of the initial
and final electronic states, the phonon states of interest, and
the associated e-ph matrix elements with fine energy and
momentum resolutions. Whereas total-energy calculations
for metals usually require at most a few tens of k points in
the irreducible wedge of the Brillouin zone, in the present
case, a much denser sampling is required to achieve numeri-
cal convergence, even up to several millions of k
points.30,45,46

Similar considerations apply to the calculations of the
electron self-energy �Eq. �3��, to the Eliashberg function �Eq.
�7��, and to the mass enhancement parameter �Eq. �8��. In
particular, the difficulty in the determination of the mass en-
hancement parameter translates into a large uncertainty in the
calculated superconducting transition temperature through
the McMillan equation.35 Even within more sophisticated ap-
proaches where superconducting properties are determined
directly from first principles,47 the practical implementations
suffer from a strong sensitivity to the sampling of e-ph scat-
tering processes near the Fermi surface.31 In the following
sections, we describe how it is possible to circumvent such
difficulties by reformulating the e-ph vertex in the Wannier
representation.

III. ELECTRON-PHONON VERTEX IN THE WANNIER
REPRESENTATION

In this section, we introduce the Wannier representation of
the e-ph vertex. We first describe the electronic Wannier
functions and the phonon perturbation potential in the Wan-
nier representation. Then, we derive the relation between the
e-ph matrix elements in the Wannier representation and those
in the Bloch representation.

A. Electronic Wannier functions

Wannier functions were first introduced to study the exci-
tonic levels of polar insulators using a localized
representation.48 In the most general case, the relation be-
tween the Bloch functions �nk�r�= 
r �nk� and the Wannier
functions wm�r−Re�= 
r �mRe� is given by a Fourier trans-
form in the momentum �k� and lattice vector �Re� variables,
generalized to include band mixing:49

�mRe� = �
nk

e−ik·ReUnm,k�nk� . �9�

Whenever the mixing matrix Unm,k is unitary, the Wannier
states turn out to be orthonormal: 
m�Re� �mRe�
=��Re ,Re����m ,m��. The inverse relation of Eq. �9� is ob-
tained by a standard inverse Fourier transform:

�nk� =
1

Ne
�
mRe

eik·ReUmn,k
† �mRe� . �10�

We consider here a periodic lattice which is a supercell of the
primitive cell of the crystal. Accordingly, we use discrete
summations in Eqs. �9� and �10� instead of integrals over
continuous variables. The expressions we derive are there-
fore ready to be implemented in existing computational
schemes. In going from Eq. �9� to Eq. �10�, we used the
relation �k exp�i�k−k�� ·Re�=Ne��k ,k��, where Ne is the
number of unit cells in the supercell, corresponding to the
number of k points included in the calculation.

The usefulness of the Wannier representation relies on the
spatial localization of the electronic states. Equation �9� in-
dicates a large freedom associated with the transformation
from Bloch to Wannier functions, since one has to choose
both the manifold of the initial Bloch states and the unitary
rotation associated with such a manifold. When the system
under consideration presents a composite set of bands iso-
lated from other bands by finite energy gaps, the choice of
the Bloch manifold is natural and it remains to choose the
unitary transform Unm,k. The most convenient choice for the
purposes of the present work is the one leading to maximally
localized Wannier functions.49 In this case, the unitary trans-
form is determined by requiring that the resulting Wannier
functions minimize the Berry-phase spatial spread operator
defined within the framework of the modern theory of
polarization.49–51 Wannier functions determined according to
this procedure exhibit exponential localization.52

In the case of metals, the relevant bands do not usually
constitute a composite manifold, and the previous procedure
cannot be applied directly. Nonetheless, a disentanglement
strategy, which allows the extraction of an optimally con-
nected subspace from an initial entangled manifold, has al-
ready been introduced and demonstrated for simple metals.53

This procedure consists at projecting the electronic Hamil-
tonian onto an appropriate subspace to treat a metallic sys-
tem in effectively the same way as a hole-doped insulator.
This technique is currently in use for transport problems.54

B. Phonon perturbation in the Wannier representation

The potential V�r� appearing in the e-ph matrix element
�Eq. �6�� includes both the ionic contribution and the elec-
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tronic self-consistent field. Within linear-response theory,
this potential can be formally obtained by screening the bare
ionic potentials V�

ion�r� with the electronic dielectric function
taken in the static limit ��r ,r�� �Ref. 42�:

V�r;���p� =� dr��−1�r,r�� �
�,Rp

V�
ion�r� − ��p� . �11�

In Eq. �11�, the sum extends over all the unit cells of the
crystal centered at the lattice vectors Rp and over all the
atoms � located at the sites �� within each unit cell. The
absolute coordinate of each ion is ��p�Rp+��. ���p indi-
cates all the ionic coordinates in the crystal. In a pseudopo-
tential calculation, the core electrons are assumed to follow
rigidly the corresponding ions, and the potentials V�

ion�r� in
Eq. �11� need to be replaced by the ionic pseudopotentials.
The extension of the formalism to nonlocal pseudopotentials
does not pose any problem provided that the nonlocality is
short ranged. The variation �q�V�r� of the self-consistent po-
tential with respect to a collective ionic displacement ���p

q�

corresponding to a phonon with momentum q and branch
index � is obtained from

�q�V�r� =
�

��
V�r;���p + ����p

q�� . �12�

Denoting the vibrational eigenmodes by 
��p �q��=eiq·Rpeq�
� ,

with eq�
� cell periodic and normalized, and the ionic masses

by m�, we can express the displacements in Eq. �12� as
follows:42

���p
q� = Re��m0

m�
	1/2

eq�
� eiq·Rp� . �13�

Before transforming the phonon perturbation �q�V�r� �Eq.
�12�� in the Wannier representation, it is instructive to rewrite
the vibrational eigenmodes in a form similar to Eq. �10�:


��p�q�� = �
��Rp�

eiq·Rp�eq��
� ����p − ���p�� . �14�

By comparing Eqs. �14� and �10�, we realize that �i� the
maximally localized Wannier functions for vibrational modes
�lattice Wannier functions� correspond to the displacement of
individual ions ����p−���p�� and �ii� the cell-periodic part of
the vibrational eigenmode eq�

� for the phonons plays a role
analogous to that of the unitary transformation Umn,k for the
electrons. This aspect was first pointed out in a study of
lattice Wannier functions for the linear harmonic chain55 and
subsequently verified by explicitly constructing maximally
localized phonon Wannier functions in a three-dimensional
system.56 The fact that extreme localization is achievable in
the case of lattice vibrations relates to the discrete number of
degrees of freedom associated with the classical ions.

By combining Eqs. �11�–�13�, we can express the varia-
tion of the self-consistent potential �q�V�r� in terms of the
contributions arising from each individual ion:

�q�V�r� = Re� �
�,Rp

eiq·Rp�m0

m�
	1/2

eq�
� · ��,Rp

V�r�� , �15�

where the real-valued vector field

��,Rp
V�r� = ���p

V�r;����p�� �16�

represents the gradient of the self-consistent potential with
respect to the displacement of the ion � in the unit cell Rp.
Following the preceding discussion about Eq. �14�, it is natu-
ral to call ��,Rp

V�r� the phonon perturbation in the Wannier
representation. For practical purposes, it is convenient to in-
troduce the displacement field uq�

� = �m0 /m��1/2eq�
� and to re-

define �q�V�r� as the complex scalar field:

�q�V�r� = �
�,Rp

eiq·Rpuq�
� · ��,Rp

V�r� , �17�

keeping in mind that the real-valued field in the right-hand
side of Eq. �12� is obtained through 1

2 ��q�V�r�+�−q�V�r��.57

By inverting Eq. �17�, we obtain

��,Rp
V�r� =

1

Np
�
q�

e−iq·Rp�uq�
� �−1�q�V�r� , �18�

with Np being the number of unit cells in the periodic super-
cell considered for the lattice dynamics. In principle, Np can
differ from the corresponding number of unit cells Ne for the
electrons in Eq. �10�.

For our purposes, it is crucial that the phonon perturbation
�Eq. �18�� be localized in real space. From a qualitative point
of view, ��,Rp

V�r� represents the potential associated with a
screened dipole. In a metallic system, and within a simple
Thomas-Fermi approximation, a potential of this kind would
decay with the distance r as �r ·���p�r−2 exp�−r /�TF�, with
�TF being the Thomas-Fermi screening length. In an insulat-
ing system, the incomplete screening makes the screened di-
pole decay at large distances as ZBr−2, with ZB being the
Born dynamical charge associated with the displaced ion.
Whenever the dynamical charges are nonvanishing �as is the
case in polar insulators�, the long-range component of the
perturbation needs to be treated separately.

A quantitative assessment of the spatial localization of
��,Rp

V�r� can be formulated by making connection with the
spatial decay of the interatomic force constants
C���p ,���p��=���p

F����p��, with F����p�� the Hellmann-
Feynman force acting on the ion �� in the unit cell Rp�. To
this end, we temporarily ignore the exchange-correlation
contribution vxc to the self-consistent potential V�r� and con-
sider the electrostatic component including the Hartree and
the ionic term: Ves�r�=VHa�r�+Vion�r�=V�r�−vxc�r�. By
evaluating ��,Rp

Ves�r� at r=���p�, we obtain the change of
the potential experienced by the atom at ���p� due to a dis-
placement of the atom at ��p. The gradient of this quantity
with respect to ���p� is by definition the force acting on the
ion located at ���p� �cf. Eqs. �8� and �13� of Ref. 32�. As a
consequence, the following relation holds between the pho-
non perturbation in the Wannier representation and the ma-
trix of the interatomic force constants:
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�r���,Rp
Ves�r��r=���p�

= Z��C���p,���p�� , �19�

with Z�� being the electric charge of the ionic species ��. If
the system under consideration can be described by the local-
density approximation to density-functional theory, the
exchange-correlation contribution to the self-consistent po-
tential is short ranged, and ��,Rp

V�r� decays within the same
distance as ��,Rp

Ves�r�. Hence, by Eq. �19�, the phonon per-
turbation in the Wannier representation will exhibit a spatial
localization similar to the interatomic force constants.

The spatial decay of the force constants has been thor-
oughly discussed elsewhere,32,58 and we summarize here
only the aspects which are relevant to the present work. In
metals, the electrostatic interactions are efficiently screened
within a few bond lengths; therefore, the force constants are
short ranged. In some cases, the topology of the Fermi sur-
face gives rise to Kohn anomalies, which correspond to long-
ranged force constants propagating along the wave vector
associated with the anomaly. In such cases, the spatial decay
of C���p ,���p�� will depend on the strength of the anomaly
and must be analyzed carefully before proceeding with the
methods described in Sec. IV. The possibility of long-ranged
interatomic force constants related to Friedel oscillations has
also been pointed out in Ref. 58. However, to the authors’
knowledge, no first-principles investigations report long-
ranged force constants associated with this effect. In polar
insulators, the Born dynamical charges are nonvanishing,
and the force constants are long ranged due to their dipolar
interactions.59 In such cases, the procedure described in this
work can still be applied by separating the short-range ana-
lytical part of the dynamical matrix from the long-range
nonanalytic term.58

C. Electron-phonon matrix element

In order to obtain the e-ph vertex in the joint electron-
phonon Wannier representation, we combine Eqs. �6�, �10�,
and �17�. After rearranging the terms, we find


mk + q��q�V�nk�

=
1

Ne
2 �

m�n��

�
ReRe�Rp

ei�k·�Re−Re��+q·�Rp−Re���uq�
�

· Umm�,k+q
m�Re����,Rp
V�n�Re�Un�n,k

† . �20�

Now, we exploit the translational invariance of the “three-
point” matrix element:


m�Re����,Rp
V�n�Re� = 
m�0e���,Rp−Re�

V�n�Re − Re�� ,

�21�

which is obtained by writing the integral over the infinite
crystal and performing a change of variables. In Eq. �21�,
�m�0e� is a Wannier function centered in the unit cell at the
origin of the reference frame. By substituting Eq. �21� into
Eq. �20� and changing the variables Re−Re� into Re and
Rp−Re� into Rp we find

g�k,q� =
1

Ne
�

Re,Rp

ei�k·Re+q·Rp�Uk+qg�Re,Rp�Uk
†uq, �22�

having introduced the e-ph vertex in the Wannier representa-
tion:

gmn,��Re,Rp� = 
m0e���,Rp
V�nRe� . �23�

In Eq. �22�, we omitted band and branch indices for clarity,
keeping in mind that the electronic matrices Uk and Uk+q act
on the band indices of g�Re ,Rp� and the phonon matrix uq
acts on the corresponding branch index. We notice that the
“band” and “branch” indices do not have any special mean-
ing in the Wannier representation: In the electron case, they
label different Wannier functions belonging to the same unit
cell, and in the phonon case, they label a particular atom in
the unit cell as well as the Cartesian direction of the corre-
sponding displacement. In order to express the e-ph matrix
element in the Wannier representation in terms of the corre-
sponding Bloch vertex, we invert Eq. �23�:

g�Re,Rp� =
1

Np
�
k,q

e−i�k·Re+q·Rp�Uk+q
† g�k,q�Ukuq

−1. �24�

The striking feature of the Wannier vertex �Eq. �24�� is the
localization in both the electron and phonon variables. As
illustrated in Fig. 2, 
m0e���,Rp

V�nRe� vanishes whenever Re

or Rp corresponds to a unit cell sufficiently distant from the
origin of the reference frame. As a consequence, in order to
accurately describe the e-ph interaction in a given system, we
only need to know a small number of matrix elements in the
Wannier representation. This elementary observation consti-
tutes the core of this study.

The relevant range of Re and Rp in Eq. �22� depends on
the localization of the electronic Wannier functions and of
the phonon perturbations in the Wannier representation. In-
spection of Eq. �23� indicates that the spatial decay of the
matrix elements is bound by the limiting cases gmn,��Re ,0p�
and gmn,��0e ,Rp�. In the first case, the vertex corresponds to
the overlap between wm

� �r����
V�r� and wn�r−Re�. When the

phonon perturbation is sufficiently localized, the matrix ele-

FIG. 2. �Color online� Simplified scheme of the electron and
phonon Wannier functions entering the three-point e-ph matrix ele-
ment �Eq. �23��. The square lattice indicates the unit cells of the
crystal, the red lines the electron Wannier functions �0e� and �Re�,
and the blue line the phonon perturbation in the Wannier represen-
tation �Rp

V. Whenever two of these functions are centered on dis-
tant unit cells, the e-ph matrix element in the Wannier representa-
tion 
0e��Rp

V�Re� vanishes.
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ment is found to scale as gmn,��Re ,0p��wn�Re�. Therefore,
in this case, the spatial decay is dictated by the localization
of the electronic Wannier functions. In the second case, the
matrix element corresponds to the overlap between
wm

� �r�wn�r� and the phonon perturbation ���
V�r−Rp� �as-

suming for simplicity local pseudopotentials�. For suffi-
ciently localized electronic Wannier functions, the matrix el-
ement is found to scale as gmn,��0e ,Rp���V�Rp�, indicating
that the spatial decay of the e-ph vertex is determined in this
case by the localization of the phonon perturbation. More
generally, the slowest decay among these two limiting cases
sets the size of the real-space supercell or the k-point sam-
pling to be considered.

Equations �22� and �24� provide a compact and elegant
transformation between the e-ph matrix element in the Bloch
and the Wannier representations. Interestingly, Eq. �22� is
reminiscent of the expressions used in tight-binding calcula-
tions to model the e-ph interaction.60 We notice, however,
that our expressions �Eqs. �22� and �24�� provide a fully first-
principles description of the e-ph interaction. This observa-
tion suggests a systematic approach to determine tight-
binding parameters for the e-ph interaction by first
performing ab initio calculations in the Bloch representation
and then determining the e-ph vertex in the Wannier repre-
sentation through Eq. �24�. An accurate tight-binding param-
etrization of the e-ph interaction would prove useful in the
study of large-scale systems or systems with disorder.35

IV. WANNIER-FOURIER INTERPOLATION

In this section, we describe how to exploit the spatial
localization in the Wannier representation to calculate the
quantities required in the self-energies �Eqs. �3� and �4�� by a
generalized Wannier-Fourier interpolation. We first discuss
the transformation of the electron eigenstates and eigenval-
ues, the vibrational modes and frequencies, as well as the
e-ph matrix elements from a coarse Brillouin-zone grid
�k ,q� to the Wannier representation �Re ,Rp� in the corre-
sponding real-space supercell. Then, we describe the reverse
process from the Wannier representation to the Bloch repre-
sentation at a new set of electron and phonon momenta
�k� ,q��.

A. Bloch to Wannier transform

1. Electrons

We calculate the one-particle electronic eigenstates �nk�r�
and eigenvalues �nk by adopting standard density-functional
techniques.61–63 The matrix elements of the single-particle

Kohn-Sham Hamiltonian Ĥel in the Bloch representation are

Hmn,k
el = 
mk�Ĥel�nk� = �mn�nk. �25�

In Eq. �25�, the k vectors correspond to a uniform grid of
size N1

e 
N2
e 
N3

e centered at the � point �we assume a three-
dimensional system here; the extension to systems with re-
duced dimensionality is obvious�. The uniform and unshifted
grid is required to perform the Fourier transform �Eq. �9��.
The eigenstates �nk� and eigenvalues �nk are used to deter-

mine the unitary matrix Uk for the transformation to maxi-
mally localized Wannier functions. This step involves the
calculation of the matrix elements of the periodic position
operator49 and is performed using the method of Refs. 49 and
64.

Once the unitary matrix Uk has been determined, we cal-
culate the electronic Hamiltonian in the Wannier representa-
tion by combining Eqs. �9� and �25�:

HRe,Re�
el = 
Re�Ĥel�Re�� = �

k
e−ik·�Re�−Re�Uk

†Hk
elUk, �26�

where band indices are omitted for clarity. By construction,
the Hamiltonian in the Wannier representation HRe,Re�

el decays

with the distance �Re−Re��. The length scale for the spatial
decay is determined by the localization of the electronic
Wannier functions.

2. Phonons

We calculate vibrational eigenmodes e�
��q� and eigenfre-

quencies �q� through density-functional perturbation
theory.32 This operation is performed for all the q vectors
belonging to a uniform grid of size N1

p
N2
p
N3

p centered at
the � point �in Sec. V D, we describe how to restrict the q
points to the irreducible wedge of the Brillouin zone�. The
use of a uniform and unshifted grid is needed for the Fourier
transform in Eq. �18�, similarly to the electronic case �cf.
Sec. IV A 1�. The dynamical matrix in the Bloch representa-
tion for phonons is, by definition,

Dq,��
ph = 
q��D̂ph�q�� = ����q�

2 . �27�

Using Eq. �27� and the completeness relation ��p���p�
��p�
=1, we obtain the dynamical matrix in the phonon Wannier
representation:


���p��D̂
ph���p� = �

q,��

e−iq·�Rp�−Rp�eq��Dq,��
ph eq�

† . �28�

If we collect the atom label � and the Cartesian direction 
of �� into a composite index �=�, the vibrational eigen-
modes can be expressed in terms of the square matrices
�eq���. Accordingly, Eq. �28� can be rewritten in a compact
fashion which highlights the analogy with Eq. �26�:

DRp,Rp�
ph = 
Rp�D̂ph�Rp�� = �

q
e−iq·�Rp�−Rp�eqDq

pheq
† . �29�

In order to make connection with the standard terminology,
we observe that the left-hand side of Eq. �28� is related to the
matrix of the interatomic force constants by58


���p��D̂
ph���p� = �m�m���

−1/2C���p,���p�� . �30�

So far, the formalism for the lattice dynamics has been
described in complete analogy with the electronic case.
There is, however, an important difference between these

cases when it comes to the spatial decay of the operators Ĥel

and D̂ph. On the one hand, the Kohn-Sham one-particle
Hamiltonian is local in real space �the nonlocality eventually
arising from the pseudopotentials being short ranged�; there-
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fore, the spatial decay of HRe,Re�
el is dictated by the overlap of

the Wannier functions at Re and Re�. On the other hand, while
the phonon Wannier functions are always infinitely localized

by construction �cf. Sec. III B�, the operator D̂ph is nonlocal
in real space, as it is clear from Eq. �30�. As a consequence,
the localization of DRp,Rp�

ph does not relate to the overlap of

lattice Wannier functions, but instead to the effectiveness of
the dielectric screening in the material, as discussed in rela-
tion to Eq. �19�.

3. Electron-phonon matrix elements

The e-ph matrix elements are computed after the elec-
tronic eigenstates and eigenvalues and the phonon eigen-
modes and eigenfrequencies have been determined. We cal-
culate the matrix elements gmn,��k ,q� in the Bloch
representation �Eq. �6�� using the variation of the self-
consistent potential �q�V determined by density-functional
perturbation theory.32 The k and q points belong to the uni-
form unshifted Brillouin-zone grids with N1

e 
N2
e 
N3

e and
N1

p
N2
p
N3

p points, respectively.
The computation of the dynamical matrix is the most ex-

pensive step in the procedure; therefore, it is convenient to
restrict the set of q points to the irreducible wedge of the
Brillouin zone. The remaining points and the associated
eigenmodes, eigenfrequencies, and perturbations can be gen-
erated by exploiting the crystal symmetries �cf. Sec. V D�.
The electronic eigenstates are computed on the full uniform
grid, i.e., no symmetry reduction is applied in the electronic
case. This choice is motivated by the observation that even if
the k vector in the e-ph matrix elements is restricted to the
irreducible wedge, the k+q vector spans the whole Brillouin
zone since q belongs to a uniform grid.

Once the e-ph matrix elements are calculated in the Bloch
representation, we use Eq. �24� to transform them into the
Wannier representation. The required transformation matri-
ces Uk and uq are already available from the previous steps
�Secs. IV A 1 and IV A 2�. Whenever the k and q grids are
commensurate, the electronic transformation matrices Uk+q
are conveniently obtained by mapping the k+q points into
the original grid of points k. When k+q falls outside the
uniform N1

e 
N2
e 
N3

e grid, we use parallel transport and set
Uk+q=Uk+q+G, where G is the reciprocal lattice vector which
folds k+q back in the original k grid. It is worth stressing
that this procedure requires only one single minimization of
the spread functional to determine maximally localized Wan-
nier functions. The choice of commensurate k and q grids
does not represent a limitation, since the two grids are al-
ready assumed to be uniform and unshifted. One possible
exception is discussed in Sec. V A.

B. Wannier to Bloch transform

1. Electrons

We wish to calculate electronic eigenstates �nk�� and ei-
genvalues �nk� for a set of wave vectors k� on a significantly
finer grid than the original one with N1

e 
N2
e 
N3

e points.
According to the application at hand, we could adopt a uni-

form grid, a grid extending over the irreducible wedge of the
Brillouin zone, or a path along relevant high-symmetry lines.
In the transformation from the Wannier to the Bloch repre-
sentation, a uniform and unshifted grid is no longer required
�cf. Sec. IV A 1�.

By combining Eqs. �10�, �25�, and �26�, we obtain

Hk�
el = Uk�� 1

Ne
�
Re

eik�·ReH0e,Re

el 	Uk�
† , �31�

where we have omitted band indices for clarity. In Eq. �31�,
the sum extends over the unit cells Re belonging to the
Wigner-Seitz supercell corresponding to N1

e 
N2
e 
N3

e repli-
cas of the primitive cell. For Re outside this Wigner-Seitz
volume, we assume that the matrix elements of the Hamil-
tonian H0e,Re

el are negligibly small. The quality of the final
results strictly relies on this assumption, which must be veri-
fied numerically before proceeding with the calculations.

In Eq. �31�, the only known quantity is contained within
the brackets. We do not know at this stage the transformation
matrices Uk� for the new points k�, nor we can determine
maximally localized Wannier functions through the method
of Ref. 49 since the Bloch eigenvalues and eigenstates at k�
are unknown as well. However, we do know that, by con-
struction, the Hamiltonian Hk� on the left-hand side of Eq.
�31� is diagonal in the band indices �cf. Eq. �25��. This im-
plies that the Uk� matrix is nothing but the diagonalizer of
the term within the brackets Ne

−1�Re
exp�ik� ·Re�H0e,Re

el .
Therefore, to find eigenstates and eigenvalues of the elec-
tronic Hamiltonian at an arbitrary wave vector k�, we need to
perform �i� a Fourier interpolation of the Hamiltonian in the
Wannier representation, corresponding to the term within the
brackets in Eq. �31�, and �ii� a diagonalization of the result-
ing matrix, yielding Uk�, �nk�, as well as the new Bloch
eigenstates �nk�� through Eq. �9�. The procedure outlined in
this section was first proposed in Ref. 53 and subsequently
applied to the study of the anomalous Hall effect65 and the
magnetic circular dichroism.66

2. Phonons

The calculation of phonon eigenmodes and eigenfrequen-
cies at a new set of q� points proceeds along the same lines
as for the electrons �Sec. IV B 1�. The new set of points q�
may correspond to a fine mesh �not necessarily uniform� or
to a path in reciprocal space, depending on the application.
We formally invert Eq. �29� to obtain

Dq�
ph = eq�

† � 1

Np
�
Rp

eiq�·RpD0p,Rp

ph 	eq�, �32�

in complete analogy with the corresponding expression for
the electrons �Eq. �31��. In Eq. �32�, the sum extends over the
unit cells Rp belonging to the Wigner-Seitz cell constructed
for the supercell with N1

p
N2
p
N3

p replicas of the primitive
cell. The matrix elements of the dynamical matrix in the
Wannier representation D0p,Rp

ph are assumed to be vanishing
outside this Wigner-Seitz supercell. In practice, the length
scale of the spatial decay of D0p,Rp

ph with Rp determines the
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size of the original mesh of points N1
p
N2

p
N3
p required for

a given target accuracy.
As for the electrons �cf. Sec. IV B 1�, the known quantity

in Eq. �31� is the term within the brackets, and the matrix on
the left-hand side is diagonal by construction �cf. Eq. �27��.
Hence, the eigenmodes eq� at the new q� points must be
found by diagonalizing the term within the brackets
Np

−1�Rp
exp�iq� ·Rp�D0p,Rp

ph . Even in the case of phonons, the
determination of eigenfrequencies and eigenmodes at arbi-
trary momenta q� requires two steps: �i� a Fourier interpola-
tion of the dynamical matrix in the Wannier representation,
corresponding to the term within brackets in Eq. �32�, and
�ii� a diagonalization of the resulting matrix, yielding the
eigenmodes eq� and squared eigenfrequencies �q��

2 . This pro-
cedure corresponds to the standard approach used to com-
pute complete phonon dispersions starting from a small grid
in the Brillouin zone.32,58

3. Electron-phonon matrix elements

The calculation of the e-ph matrix element in the new sets
of points k� and q� is performed by using Eqs. �22� and the
transformation matrices Uk�, Uk�+q�, and eq� determined in
the previous steps �Secs. IV B 1 and IV B 2�. After this op-
eration, we have all the ingredients needed to evaluate the
physical quantities in Eqs. �3�, �4�, �7�, and �8�, with an ac-
curate and ultradense sampling of the Brillouin zone. The
entire Wannier-Fourier interpolation procedure described in
this section is summarized in Table I.

V. SPECIAL CASES AND PRACTICAL DETAILS

A. Electron-only Wannier representation

In some applications, we could be interested in the self-
energy of only a limited set of phonon modes �for instance,
modes at high-symmetry points�, rather than the whole vi-
brational spectrum in the Brillouin zone. In such cases, cal-
culating the dynamical matrix for every q vector in a uni-
form grid as described in Sec. IV A 2 may turn out to be too
expensive from a computational standpoint, and it is desir-
able to find an alternative path.

The easiest way to proceed in such cases consists in trans-
forming the electronic states in the Wannier representation
�Sec. III A� while keeping the phonon perturbation �Sec.
III B� in the Bloch representation. The transformation laws
of the e-ph vertex in such electron-only Wannier representa-
tion read

g�k,q� =
1

Ne
�
Re

eik·ReUk+qg�Re,q�Uk
† , �33�

g�Re,q� = �
k

e−ik·ReUk+q
† g�k,q�Uk, �34�

with the e-ph matrix element in the mixed representation
given by

gmn,��Re,q� = 
m0e��Vq��nRe� . �35�

In this case, the wave vector q is not required to be commen-
surate with the uniform electronic grid. Accordingly, two
minimizations �for every wave vector q� of the Berry-phase
spread functional are required to determine maximally local-
ized Wannier functions: one for the set of states ��nk, yield-
ing the matrix Uk, and another one for the set ��nk+q, pro-
viding the matrix Uk+q. The inverse transformation from the
Wannier to the Bloch representation on arbitrary points k�
proceeds as described in Sec. IV B 1.

B. Zone-center phonons and frozen-phonon methods

In the case of a very large system in a supercell geometry,
it could be convenient to restrict the sampling of the vibra-
tional Brillouin zone to the � point only. This is appropriate
whenever the interatomic force constants decay to negligible
values over a distance smaller than the size of the supercell.
This situation corresponds to the case q=0 of the electron-
only interpolation described in Sec. V A and only requires
the determination of the transformation matrices Uk once.

This situation is also interesting because the procedure
described so far can be performed without resorting to linear-
response techniques: the matrix of the interatomic force con-
stants �Eq. �30�� can be calculated by taking finite differences
of the total energy �frozen-phonon approach�,67 and our pro-

TABLE I. Summary of the Wannier-Fourier interpolation scheme from a set of matrix elements on a uniform grid �k ,q� to another set
with arbitrary momenta �k� ,q��. The leftmost column contains input quantities determined by density-functional calculations. The second
column indicates the operations required to transform from the Bloch to the Wannier representation. The quantities in the Wannier repre-
sentation thus obtained are reported in the third column. At this stage, we could work directly within the Wannier representation, or transform
back to the Bloch representation by Fourier interpolation. The inverse transforms are indicated in the fourth column, while the rightmost
column gives the final quantities.

Bloch Bloch→Wannier Wannier Wannier→Bloch Bloch

Electrons Hk
el Rotate Hk

el with Uk and HRe,Re�
el Inverse Fourier transform HRe,Re�

el Hk�
el

Uk Fourier transform �Eq. �26�� to k� and diagonalize �Eq. �31�� Uk�
Phonons Dq

ph Rotate Dq
ph with eq and DRp,Rp�

ph Inverse Fourier transform DRp,Rp�
ph Dq�

ph

eq Fourier transform �Eq. �29�� to q� and diagonalize �Eq. �32�� eq�
e-ph matrix g�k ,q� Rotate g�k ,q� with Uk, Uk+q, eq, g�Re ,Rp� Inverse Fourier transform g�Re ,Rp� to k�, q� g�k� ,q��
elements Uk, Uk+q, eq and Fourier transform �Eq. �24�� and rotate with Uk�, Uk�+q�, and eq� �Eq. �22��
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cedure can be implemented as a postprocessing step in any
electronic-structure package performing total-energy calcula-
tions.

C. Gauge arbitrariness

The diagonalization of the Kohn-Sham single-particle
Hamiltonian determines the eigenfunctions �nk up to an ar-
bitrary phase factor. In the presence of accidental degenera-
cies, the arbitrariness also includes a unitary transformation
within the degenerate manifold. In general, this gauge arbi-
trariness bears no implications on the calculation of ground-
state properties such as total energies and its derivatives.
However, the actual localization of the Wannier functions
�Eq. �9�� crucially depends on the phases of the wave func-
tions and may be compromised if this gauge freedom is not
dealt with properly. Indeed, small variations in the proce-
dures adopted to diagonalize the Hamiltonian may lead to
completely different phase settings. This is especially impor-
tant since the calculation of maximally localized Wannier
functions and the calculation of the e-ph matrix elements are
performed as two separate and subsequent steps.

Different phase settings may arise, for instance, �i� when
the eigenstates used to determine Uk with the procedure of
Ref. 49 are obtained with a different diagonalization algo-
rithm than that used in the calculation of the e-ph matrix
elements; �ii� when different algorithms are used to deal with
the cases q=0 or q�0; �iii� when k+q falls outside the first
Brillouin zone and can be folded into another point k� in the
first zone, but the Bloch phases exp�i�k+q� ·r� and
exp�ik� ·r� modify the Fourier coefficients of the nonlocal
projectors of the pseudopotentials; and �iv� when different
architectures or different parallel environments within the
same architecture are used for the calculation of Uk and the
e-ph matrix elements gmn,��k ,q�, respectively.

It is therefore desirable to fix a unique and unambiguous
gauge for the wave functions. We can accomplish this in two
separate steps: we first set the gauge within each degenerate
manifold, and then we set the phase of every eigenstate in-
dividually. The latter step is straightforwardly performed by
requiring the wave functions �nk�r� to be real valued at some
arbitrarily chosen point r. In a plane-wave formalism, the
same goal can be achieved more efficiently by requiring the
largest Fourier component of the wave functions to be real
valued. In practice, it is sufficient to search for the largest
coefficient in a small subset of plane waves. The first step is
performed by borrowing standard techniques from degener-
ate perturbation theory.68 To this end, we consider a fictitious

perturbation V̂fict which lifts the degeneracies of the Hamil-
tonian. We compute the matrix elements of this perturbation
in the degenerate manifold:

Vmn
fict = 
mk�V̂fict�nk� , �36�

and we diagonalize the perturbation to find the new eigen-
states:

�Bk
†VfictBk�mn = �mnvn

fict, �37�

with vn
fict being the eigenvalues of the fictitious perturbation.

At this point, we consider the new eigenstates

�nk� = �
m

Bk,nm�mk, �38�

which diagonalize the Hamiltonian Ĥel+V̂fict and are non-
degenerate by construction. The strength  of the fictitious
perturbation is now set to zero to recover the eigenvalues of
the original Hamiltonian. In order for the gauge matrix Bk to

be unitary, the perturbation V̂fict must be chosen Hermitian.
This is achieved by constructing a real-valued local fictitious
potential which does not contain any of the symmetries of
the Hamiltonian.

It is worth noting at this point that the e-ph matrix ele-
ment gmn,��k ,q� is not a gauge-invariant quantity itself, since
both the electronic eigenstates and the phonon eigenmodes
are defined up to a phase �possibly a unitary matrix�. This is
consistent with the fact that the matrix element is not a
physical observable. On the other hand, the self-energies
�Eqs. �3� and �4�� contribute to the electron and phonon spec-
tral functions, which are physical observables �for instance,
by photoemission or tunneling experiments�. Therefore, we
expect the self-energies �k��� and �q��� to be gauge invari-
ant. This is actually the case, because the quantities
�m��gmn,��k ,q��2 and �mn�gmn,��k ,q��2 entering Eqs. �3� and
�4� are both gauge invariant when the summations are re-
stricted to degenerate subspaces �this property corresponds to
the invariance of the Fröbenius norm under similarity trans-
forms�.

D. Irreducible wedge of the Brillouin zone

The most computationally intensive part of the procedure
described thus far is represented by the calculation of the
vibrational eigenmodes, eigenfrequencies, and the associated
phonon perturbation for all the q points needed in the Fourier
transforms �Eqs. �17� and �24��. It is therefore important to
consider the possibility of restricting the set of the required q
vectors to the irreducible wedge of the Brillouin zone.

The irreducible q points are determined by considering
the set of vectors which are nonequivalent under the symme-
try operations of the crystal point group. We follow the con-
vention of Ref. 69 in labeling the symmetry operations as
�S �v, in such a way that �S �vr=Sr+v, with S being the
rotational part �proper or improper� of the symmetry opera-
tion and v the eventually associated fractional translation.
Given a q vector in the irreducible part of the Brillouin zone,
we can generate the so-called star of q by applying all the
crystal symmetry operations.

Once the dynamical matrix and the phonon perturbation
for an irreducible q point have been calculated, the corre-
sponding quantities for a wave vector Sq belonging to the
star of q can be determined by exploiting the transformation
properties of the vibrational eigenmodes under the symmetry
operation �S �v. The transformation law for the eigenmodes
is given by69

eSq = ��S�v�q�eq, �39�

where the unitary matrix ��S�v�q� is defined as
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���S�v�q���
��� = S���,FS����e

iSq·���−�S�v����. �40�

In Eq. �40�  and � indicate Cartesian directions, and FS����
represents the atom that �� is brought into by the symmetry
operation �S �v. Equation �39� implicitly assumes that eigen-
modes at q and Sq carry no phase difference and that no
gauge mixing occurs whenever two or more eigenmodes are
degenerate. This choice implies that, when transforming the
dynamical matrix and the e-ph matrix elements from the
Bloch to the Wannier representation, one cannot directly ap-
ply the symmetry �S �v to the interatomic force constants
and then diagonalize the resulting dynamical matrix.32 In-
deed, such procedure would lead to eigenmodes which do
not obey the phase relations defined by Eq. �39�. The correct
procedure instead is to first transform the eigenmodes ac-
cording to Eq. �39� and then generate the corresponding dy-
namical matrix through eSqDq

pheSq
† , with Dq

ph being the diag-
onal matrix defined by Eq. �27� for the wave vector q.

The transformation law of the phonon perturbation
�Vq��r� under the operation �S �v is most easily worked out
by noting that �i� the displacement ���p

q� �Eq. �12�� is both
transferred to the atom ��=FS��� in the unit cell Rp�=SRp

and rotated according to S:

����p�
Sq,� = S���p

q� , �41�

�ii� the dielectric function is invariant under the symmetry
operation �S �v:

���S�vr, �S�vr�� = ��r,r�� , �42�

and �iii� the ionic �pseudo�potentials are rotationally invari-
ant:

V�
ion�Sr� = V�

ion�r� . �43�

By replacing Eqs. �41�–�43� into Eqs. �11�–�13�, we obtain,
after some algebra,

�VSq�r� = �Vq��S�v−1r� . �44�

It is important to realize that the derivation of Eq. �44� rests
on the choice of the phases of the vibrational eigenmodes at
q and Sq provided by Eq. �39�.

We can now exploit Eq. �44� to calculate the e-ph matrix
element corresponding to a momentum transfer of Sq:

gmn,��k,Sq� = 
�mk+Sq�r���Vq��S�v−1r���nk�r�� . �45�

In a pseudopotential plane-wave formulation, if the elec-
tronic eigenfunctions �nk�r� are expanded with a cutoff Ekin,
the phonon perturbation will be expanded with a cutoff 4Ekin
�this applies to norm-conserving pseudopotentials;70 in the
case of ultrasoft pseudopotentials,71 the cutoff of the phonon
perturbation would be larger because of the augmentation
charge�. Therefore, in such cases, it is more convenient to
apply the symmetry operation �S �v to the electronic eigen-
functions rather than to the phonon perturbation. A simple
change of variables in Eq. �45� gives

gmn,��k,Sq� = 
�mk+Sq��S�vr���Vq�r���nk��S�vr�� .

�46�

At this point, it may be tempting to apply the same argu-
ments discussed for the dynamical matrix to the electronic
Hamiltonian to express �k+Sq� in terms of �S−1k+q�:

�mk+Sq��S�vr� = �mS−1k+q�r� . �47�

However, Eq. �47� implicitly assumes a specific phase rela-
tion between electronic states at k+Sq and S−1k+q, which,
in general, does not hold if the gauge-fixing procedure de-
scribed in Sec. V C has already been performed. For this
reason, in our calculations, we determine the e-ph matrix
elements directly through Eq. �45�, which goes along with
the phonon phase setting given by Eq. �39� but does not
require Eq. �47� to be satisfied.

Of course, an alternative approach would be to enforce
Eq. �47� from the very beginning in the gauge-fixing proce-
dure described in Sec. V C. In both cases, the application of
the symmetry operation �S �v to the electronic eigenfunc-
tions is required. The computational cost of this step is neg-
ligible with respect to the determination of the dynamical
matrix and the phonon perturbations for a given q vector.

VI. APPLICATION TO BORON-DOPED DIAMOND

In order to illustrate the scheme developed in Secs. III and
IV with a practical calculation, we present here an applica-
tion to a virtual crystal model of B-doped diamond. We first
provide the technical details of the calculation. Then, we
discuss the localization properties of the Hamiltonian, the
dynamical matrix and the e-ph vertex in the Wannier repre-
sentation, and the ensuing accuracy of the Fourier interpola-
tion in momentum space. Finally, we present our results for
the electron and phonon self-energy arising from the e-ph
interaction, for the Eliashberg function, and for the mass en-
hancement parameter.

A. Technical details

Following Refs. 28 and 35, we consider B-doped diamond
with a B content of 1.85%, which is close to the original
experimental value.33 The calculations are performed within
the framework of density-functional theory in the local-
density approximation.72,73 We account for the core-valence
interaction by using norm-conserving pseudopotentials.70,74

Lattice-dynamical properties are calculated within density-
functional perturbation theory with the method of Refs. 32
and 75 and maximally localized Wannier functions obtained
by minimizing the Berry-phase spread functional with the
method of Refs. 49, 53, and 64. The electronic wave func-
tions are described by a plane-wave basis63,76 with a kinetic
energy cutoff of 60 Ry, yielding a total-energy accuracy of
10 meV/atom. The pseudopotential for the virtual atom
BxC1−x, with x=1/54=0.0185, was generated by considering
an ionic charge Zion=3x+4�1−x� and the common core elec-
tron density of boron and carbon. The fractional occupations
are described by first-order Hermite-Gaussian smearing.77

We checked the convergence of the lattice constant with re-
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spect to Brillouin-zone sampling and smearing parameter by
considering uniform and unshifted Brillouin-zone grids with
up to 203 points and a broadening as small as 0.001 Ry. The
converged lattice parameter was 6.6425 bohr �3.515 Å�. The
use of less stringent convergence parameters �123 k points
and 0.05 Ry smearing� led to a lattice constant differing by
less than 0.002% from the fully converged value. The calcu-
lated parameter underestimates the experimental lattice con-
stant of 3.576 Å �Ref. 33�by 1.7%, consistent with the com-
mon trend observed within the local-density approximation.
Since the B doping leads to the formation of a small Fermi
surface centered at � �cf. Fig. 3�, the zone-center phonons
are the most sensitive to the metallic character of this system.
Accordingly, we tested the convergence of the calculated vi-
brational frequencies for the highest optical modes at �. The
converged frequency for a smearing of 0.02 Ry and a k point
mesh of size 243 was 138.7 meV. A smearing of 0.05 Ry
together with a mesh of 123 points yielded the very similar
frequency of 139.3 meV. For convenience, in the following,
we describe results obtained within the latter settings.

Figure 3 shows the calculated band structure of B-doped
diamond compared to the band structure of pristine diamond.
The calculation for pristine diamond was performed with the
same lattice parameter of the doped system for the purpose
of comparison �the relaxed lattice parameter of B-doped dia-
mond with a B content of 2% is 0.2% larger than that of
intrinsic diamond�. After aligning the top of the valence
bands, the one-particle eigenvalues corresponding to the oc-
cupied subspace are found to differ by 0.1 eV at most, indi-
cating that the effect of the virtual pseudopotential could be
simulated equally by a simple rigid band model. The Fermi
level in of B-doped diamond is located 0.57 eV below the
top of the valence bands, which is in good agreement with
previous theoretical studies.28

Figure 4 shows the calculated phonon dispersions of
B-doped diamond, together with the phonon dispersions of
pristine diamond with the same lattice parameter. Within the
virtual crystal approximation, the doping with boron induces
a softening of the optical phonon frequencies around the
zone center. The largest softening is observed at the �
point and amounts to 28 meV. This value severely overesti-
mates the experimentally measured softening of 7 meV,78

indicating that a virtual crystal approximation is not

sufficient to describe the lattice dynamics of B-doped
diamond.35

B. Wannier representation and interpolation

In order to determine the electronic states in the Wannier
representation, we need to define an appropriate energy sub-
space for projecting the electronic Hamiltonian. The identi-
fication of this subspace is particularly simple in the present
case, since �i� boron doping shifts the Fermi down into the
valence bands of diamond. �ii� As discussed in Sec. II, only
electronic states close to the Fermi level need to be consid-
ered to compute the phonon linewidths, and only electronic
states with energy close to the initial state �nk are required
for the electron linewidths. �iii� The �local-density approxi-
mation� indirect band gap of intrinsic diamond is 4.3 eV;
therefore, the electronic transitions from the valence to the
conduction bands do not contribute to the electron and pho-
non linewidths nor to the superconducting pairing. Following
these considerations, we choose to describe the electronic
structure of B-doped diamond by considering four bond-
centered Wannier functions spanning the four valence bands
of diamond.49 The maximally localized Wannier functions
corresponding to this choice exhibit a spatial spread of
0.85 Å.

Figure 5 shows the spatial decay of the Hamiltonian ma-
trix elements in the Wannier representation HRe,Re�

el as a func-

tion of the distance between the unit cells Re ,Re� in which
the Wannier functions are located. The Hamiltonian matrix
elements are already very small for next-nearest-neighbor
Wannier functions �the reduction is approximately a factor of
0.01�. This finding is consistent with the proved accuracy of
nearest-neighbor tight-binding parametrizations of the elec-
tronic structure of carbon-based systems.80 The exponential
decay of the Hamiltonian matrix elements reflects the expo-
nential localization of Wannier functions corresponding to
the bonding orbitals of diamond. The present case is particu-
larly favorable since the hole doping preserves much of the
band structure of the insulating system: there is no entangle-
ment with higher-energy states, and we effectively deal with
a composite group of bands.
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FIG. 3. �Color online� Comparison between the electronic band
structure of pristine diamond �lines� and of B-doped diamond
within a virtual crystal approximation �circles�. The Fermi level of
doped diamond with a B concentration of 1.85% is located 0.57 eV
below the valence band top at � and is indicated by a black solid
line.
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FIG. 4. �Color online� Comparison between the phonon disper-
sions of pristine diamond �solid lines� and B-doped diamond within
a virtual crystal approximation �dashed lines�. The disks correspond
to inelastic neutron scattering data from Ref. 79.
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Figure 6 shows the spatial decay of the phonon dynamical
matrix in the Wannier representation �Eq. �29��. It is well
known that the interatomic force constants of intrinsic dia-
mond exhibit a rather fast spatial decay because of the van-
ishing Born dynamical charges �the first nonzero contribu-
tion is a quadropole-quadrupole interaction�. In the case of
B-doped diamond considered here, the metallic screening
produces a softening of the phonons around the zone center.
However, this does not significantly alter the range of the
interatomic force constants with respect to intrinsic diamond.
Accordingly, for the lattice-dynamical matrix, we also ob-
serve exponential localization.

After having examined the spatial decay of the Hamil-
tonian and the dynamical matrix, we now turn to the e-ph
matrix element g�Re ,Rp� �Fig. 7�. In this case, we have two
spatial variables and it is convenient to restrict the discussion
to the limiting cases considered in Sec. III C: �i� Rp=0, when
the localized phonon perturbation and one Wannier function

are located within the same unit cell, and �ii� Re=0, when the
two electron Wannier functions belong to the same unit cell.
In the first case, the spatial decay is dictated by the localiza-
tion of electronic Wannier functions and is expected to be
similar to the decay of the Hamiltonian matrix elements in
the Wannier representation. Figure 7�a� shows that this is
indeed the case since we observe exponential decay in the
electronic variable Re. In the second case, the spatial decay
of g�0e ,Rp� with Rp directly reflects the decay of the phonon
perturbation in the Wannier representation and is expected to
exhibit a localization similar to the dynamical matrix �cf.
Sec. III C�. Figure 7�b� shows that the e-ph matrix elements
decay rather quickly �within next-nearest-neighbor dis-
tances�, although the decay rate is smaller than for the force
constants. This is consistent with the fact that the force con-
stants relate to the gradient of the phonon perturbation �cf.
Eq. �19��.

In order to have an idea of the Brillouin-zone sampling
required to obtain matrix elements encompassing a given
spatial range R, we notice that in the present case, a uniform
6
6
6 sampling corresponds to interactions extending up
to R�10 Å, while a grid with 12
12
12 k points in the
Brillouin zone corresponds to a maximum range of
R�20 Å. Hence, Figs. 5–7 indicate that a Brillouin-zone
sampling corresponding to a 6
6
6 supercell should be
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FIG. 5. �Color online� Spatial decay of the electronic Hamil-

tonian in the Wannier representation HRe,Re�
el = 
mRe��Ĥ

el�nRe� �Eq.

�26�� as a function of R= �Re−Re��. The data points correspond to
the largest value taken over the Wannier functions indices and over
the unit cells Re, Re� located at the same distance R: �H�R��
=maxmn,�Re−Re��=R�
mRe��Ĥ

el�nRe��. The data are normalized to their
largest value. The inset shows the same quantity on a logarithmic
scale �log10�.
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FIG. 6. �Color online� Spatial decay of the dynamical matrix in

the Wannier representation DRp,Rp�
ph = 
Rp�D̂ph�Rp�� �Eq. �29�� as a

function of the distance R= �Rp−Rp��. The data points correspond to
the largest value taken over the ions in the unit cell, the Cartesian
directions, and the unit cells Rp, Rp� located at the same distance R:

�D�R��=max����,�Rp−Rp��=R�
���Rp�D̂ph��Rp���. The data are nor-
malized to their largest value. The inset shows the same quantity on
a logarithmic scale �log10�.
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FIG. 7. �Color online� Spatial decay of the e-ph vertex in the
joint electron-phonon Wannier representation gmn,��Re ,Rp�
= 
m0e���,Rp

V�nRe� �Eq. �23�� as a function of Rp and Re: �a� the
limiting case g�Re ,Rp=0� and �b� the limiting case g�Re=0 ,Rp�.
The data points correspond to the largest value taken over the Wan-
nier functions indices, the ions in the unit cell, the Cartesian direc-
tions, and the unit cells located at the same distance R= �Re� �panel
�a�� or R= �Rp� �panel �b�� from the origin of the reference frame: �a�
�g�R ,0��=maxmn,�,�Re�=R�gmn,��Re ,0p�� and �b� �g�0,R��
=maxmn,�,�Rp�=R�gmn,��0e ,Rp��. The data are normalized to their
largest value. The insets show the same quantities on a logarithmic
scale �log10�. When two Wannier functions are located on a C–C
bond crossing a cell boundary, identical e-ph matrix elements ap-
pear in adjacent unit cells, resulting in the steplike behavior seen in
�b�.
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sufficient to determine the self-energies �Eqs. �3� and �4��
with an accuracy of 1% �without taking into account cancel-
lation of errors arising from the k and q integrations in Eqs.
�3� and �4��. In the following section, we verify this obser-
vation by comparing the e-ph matrix elements obtained by
the Wannier-Fourier interpolation method discussed in Sec.
IV with those computed directly from first principles.

Accuracy of the electron-phonon matrix elements

In order to assess the accuracy of the interpolation method
introduced in Sec. IV, we need to compare the various quan-
tities needed for studying the e-ph interaction �single-particle
electronic eigenvalues, vibrational frequencies, and e-ph ma-
trix elements� obtained by Wannier-Fourier interpolation
with those obtained directly from first principles. The inter-
polation procedures for the band structure and for the phonon
dispersions have already been addressed elsewhere;32,53,58

therefore, we restrict ourselves here to the e-ph matrix ele-
ments.

The e-ph vertex gmn,��k ,q� is a ten-dimensional object,
and it is hard to present a comprehensive visual comparison
of the ab initio and the interpolated matrix elements. We
focus here on a special case which is representative of the
general trend. For this purpose, we take the initial electronic
state �nk� to be the �25� state �top of the valence band at the
zone center�, and we vary the phonon momentum q along the
same high-symmetry lines �, �, and � considered in Figs. 3
and 4. For each phonon momentum, the final electronic state
�mk+q� is taken on the top of the valence manifold through
the twofold degenerate bands �3 and �5, as well as the non-
degenerate �2 band �Fig. 8�a�, dashed line�. The emitted
and/or absorbed phonon is taken to be the highest optical
mode at the given momentum q along the same symmetry
lines, with the exception of the � line where we pick the �1
branch rather than the highest-energy �3 branch �Fig. 8�b�,
dashed line�. These choices were made in order to avoid
symmetry-forbidden transitions which are uninteresting for
our comparison. As discussed is Sec. V C, the e-ph matrix
element is not gauge invariant; therefore, the matrix elements
corresponding to degenerate electronic or vibrational states
do not carry any physical meaning by themselves. However,
for illustration purposes, we adopt here the convention that
every individual �squared� matrix element corresponds to the
average within the eventual degenerate manifold. This con-
vention leads to a discontinuity of the e-ph matrix elements
at the zone center which can be observed in Fig. 8�c�.

Figure 8�c� shows the variation of the e-ph matrix element
along the described energy and/or momentum path, as com-
puted directly from first principles, together with the values
obtained by the joint electron-phonon interpolation proce-
dure outlined in Sec. IV. We considered 50 phonon momenta
in the ab initio calculation and unshifted Brillouin-zone grids
with 43, 63, or 83 points for the interpolation procedure �we
generated 500 phonon momenta on the high-symmetry lines
considered in Fig. 8�. The calculated e-ph matrix elements
are consistent with the electron-phonon potential Vep
=280 meV obtained in Ref. 28, as well as the average matrix
element 
�g�2�1/2=670 meV estimated in Ref. 36 by deforma-
tion potential calculations. However, contrary to previous

assumptions,28,36 the e-ph vertex varies significantly through-
out the Brillouin zone, ranging from 0 to �500 meV.

It is clear that our interpolation scheme is very effective,
and already a 6
6
6 grid provides a very accurate descrip-
tion of the electron-phonon interaction in the example con-
sidered. We notice that the initial dynamical matrices and
phonon perturbations for 6
6
6 phonon momenta are ob-
tained from the irreducible wedge of the Brillouin zone and
therefore correspond to only 16 separate calculations.

For a quantitative assessment of the accuracy of our
method, we report here the absolute deviations of the inter-
polated e-ph matrix elements with respect to the first-
principles calculations on a uniform Brillouin-zone grid with
103 points. We found the largest deviations of 80, 30, and
15 meV for initial Brillouin-zone grids containing 43, 63, and
83 points, respectively. The corresponding deviations for the
interpolated electronic eigenvalues were 0.5, 0.1, and
0.05 eV, respectively, while the deviations of the phonon
frequencies were 10, 2, and 1 meV, respectively.

At the end of this section, it is worth pointing out that,
compared to other possible interpolation schemes, the one
discussed in the present work relies on a physical property of
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FIG. 8. �Color online� Comparison of the e-ph matrix elements
gmn,�

SE �k ,q� �Eq. �5�� obtained by direct first-principles calculations
�panel �c�, disks� and those computed with the Wannier-Fourier
interpolation method discussed in Sec. IV �panel �c�, lines�. The
interpolated matrix elements are computed starting from an initial
43 Brillouin-zone grid �dotted line�, a 63 grid �dashed line�, or a 83

grid �solid line�. For illustration, we fixed the initial electronic state
�nk� for the valence band top at � �k=0�; we let the final electronic
state �mk+q� span the �3, �5, and �2 bands as shown in panel �a�
�dashed line�, and we take the phonon perturbation corresponding to
the highest optical branches as shown in panel �b� �dashed line�.
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the system, which could be designated as the “near-
sightedness” of the electron-phonon interaction, in analogy
with a very general concept introduced for the electron-
electron interaction.81 In favorable cases �such as the appli-
cation discussed here�, our scheme shows exponentially in-
creasing accuracy with the spacing of the coarse grid on
which the first-principles calculations are performed.

C. Electron and phonon linewidths, Eliashberg function,
and mass enhancement parameter

Once the accuracy of the Wannier-Fourier interpolation is
established, we proceed to investigate the convergence of the
electron and phonon linewidths �Eqs. �3� and �4�� with the
sampling of the Brillouin zone. All the calculations described
in this section were performed by interpolating the electron
Hamiltonian, the lattice-dynamical matrix, and the e-ph ver-
tex evaluated on the unshifted 83 grid discussed in Sec. VI B.
The Dirac delta functions in Eqs. �3� and �4� were replaced
by Lorentzian distributions. The Fermi-Dirac and Bose-
Einstein occupations in Eqs. �3� and �4� were calculated with
the temperature set to 300 K.

1. Electron linewidths

Figure 9 shows the calculated electron linewidths arising
from the e-ph interaction for the electronic states indicated in
Fig. 8 ��3 and �5 bands�. The linewidths corresponding to
the other bands close to the Fermi level have qualitatively
similar behavior. The integration over the phonon momen-
tum in Eq. �3� is performed by interpolating the matrix ele-
ments on two sets of Brillouin-zone meshes: a coarse grid
including 10
10
10 points in the irreducible wedge, ob-
tained by randomly shifting a uniform grid, as well as a fine
grid including 50
50
50 points in the irreducible wedge.
For each Brillouin-zone mesh, we repeated the calculations
by setting the Lorentzian half-width to 10, 50, and 100 meV,
respectively. Figure 9 shows that 1000 q points are not suf-
ficient to perform the momentum integration. The use of a
small smearing parameter �10 meV, Fig. 11�a�� leads to
strong fluctuations of the linewidths, making it difficult to
identify a clear trend. On the other hand, a large smearing
�100 meV Fig. 11�c�� increases the linewidths close to the
zone center, leading to unphysical results �vide infra�. The
calculations performed with 125 000 q points in the momen-
tum integration is found to produce reasonably good results
for the smallest smearing considered of 10 meV �Fig. 11�c��,
although small unphysical fluctuations still persist.

It is worth mentioning that most current calculations of
the e-ph interaction are performed with grids including con-
siderably fewer irreducible phonon momenta, since the direct
computation of the lattice-dynamical matrix corresponds to
several total-energy minimizations for each q point. In prac-
tice, without our Wannier-Fourier technique, the calculations
described here would require several months of computation
on modern computers.82

The calculated electron linewidths show a peculiar sup-
pression when the electron momentum lies close to the zone
center. Careful analysis indicates that this happens for all
electronic states with energy �nk within �op from the valence

band top at �, where �op�160 meV is a characteristic opti-
cal phonon frequency. In this case, the electron cannot emit a
phonon since there are no available final states at the energy
�nk+�op �the final state falls within the band gap, cf. Eq. �3��.
Within this energy range, it is still possible for an electron to
emit an acoustic phonon; however, the matrix element for
this process is practically negligible. For electronic states far
from the zone center, we observe a monotonic increase of the
linewidth with the electron momentum. This behavior can be
understood by considering Eq. �3�. If we replace the e-ph
matrix element by its average value throughout the Brillouin
zone and remember that we are considering occupied states,
the imaginary part of the self-energy becomes ��nk� �
��	BZ

−1 �gSE�2�m��BZdq���nk−�q�−�mk+q�. By neglecting
the phonon frequency in the delta function, we obtain the
electronic density of states at the energy of the initial state
N��nk�. Therefore, when we move off the � point, the line-
width increases following the density of states. We have
checked numerically that the electron linewidth scales as
���������1/2, which is consistent with the underlying den-
sity of states of the parabolic bands of diamond. We notice
that this behavior is at variance with common models of the
electron self-energy arising from the e-ph interaction.38 The
latter models are based on the assumption of a constant den-
sity of states around the Fermi level, which does not hold in
the present case. The calculated linewidths for electronic
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FIG. 9. �Color online� Calculated electron linewidths for the �3

and �5 bands of B-doped diamond �Fig. 8�a��. Plots �a�–�c� on the
left were obtained by using 103 irreducible q points in the momen-
tum integration of Eq. �3�, while plots �d�–�f� on the right were
obtained with 503 irreducible points in the Brillouin zone. We report
the results for three broadening parameters �: 10 meV �panels �a�
and �d��, 50 meV �panels �b� and �e��, and 100 meV �panels �c� and
�f��. The curves are cut off at half the Brillouin-zone size for clarity.
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states close to the Fermi level ��50 meV� are smaller than
the values of �300 meV that can be estimated from the pho-
toemission data of Ref. 83. The underestimation of the ex-
perimental widths is consistent with the fact that our theory
does not take into account the broadening induced by
electron-electron and the electron-dopant interactions.

2. Phonon linewidths

Figure 10 shows the phonon linewidths corresponding to
the longitudinal optical mode of B-doped diamond �cf. 8�b��
calculated with different Brillouin-zone grids and smearing
parameters. The transverse optical modes behave similarly,
while the linewidths associated with the acoustic modes were
found to be negligibly small �less than 0.5 meV throughout
the entire Brillouin zone�. We find that 1000 q points in the
irreducible zone are not sufficient to reproduce the correct
momentum dependence of the phonon linewidths. On the
other hand, a Brillouin-zone mesh with 125 000 q points
yields reasonably good results, although small unphysical
fluctuations can still be seen in the plots. Two features stand
out in the plots of Fig. 10: �i� the linewidths become negli-
gible as we move far enough from the zone center, and �ii�
there is singular behavior at the zone-center where we ob-
serve a dip instead of a peak. Feature �i� is associated with
the fact that phonons with momentum larger than the average

Fermi-surface diameter �q�2kF� cannot be scattered since
the initial and final electronic states are pinned near to the
Fermi surface �cf. Eq. �4��.35 Feature �ii� is more subtle and
arises from the fact that electronic transitions with no mo-
mentum transfer �q=0� are essentially forbidden. When the
energy separation between initial states on the Fermi surface
and final states with the same momentum k exceeds the larg-
est phonon frequency �op, the transition is blocked by the
energy selection rule in Eq. �4�.35,46 Our linewidths are con-
sistent with those calculated in Ref. 84. However, the char-
acteristic dip at the zone center found here is missing in Ref.
84 because of the common although unjustified approxima-
tion of neglecting of the phonon energy in Eq. �4�.

In Fig. 10, the linewidths close to the zone center are
consistent with the values of �8 meV determined by inelas-
tic x-ray scattering on B-doped diamond samples with a
similar doping level.78 We note, however, that in the present
work, we do not take into account the local structural relax-
ation induced by the B atoms. When this effect is included,
finite phonon linewidths are observed even at large momenta
�q�2kF� due to the breaking of the lattice periodicity.35

3. Eliashberg function and mass enhancement
parameter

Figure 11 shows the Eliashberg function �Eq. �7�� ob-
tained with the phonon linewidths discussed in Sec. VI C 2.
As already pointed out, 1000 k and q irreducible points in
the Brillouin zone are not sufficient to achieve convergence,
while a grid with 125 000 points leads to stable results. The
reliability of the calculated Eliashberg function is important
in the study of phonon-mediated superconductivity, since
2F��� is commonly used to identify the phonon modes re-
sponsible for the pairing. Figure 11 shows that, within the

0

5

10

15

20

Li
ne

w
id

th
(m

eV
)

(a)

10 meV
10x10x10

0

5

10

15

Li
ne

w
id

th
(m

eV
)

(b)

50 meV
10x10x10

(d)

10 meV
50x50x50

(e)

50 meV
50x50x50

L XΓ

(f)

100 meV
50x50x50

0

2

4

6

8

10

12

L XΓ

Li
ne

w
id

th
(m

eV
)

(c)

100 meV
10x10x10

FIG. 10. �Color online� Calculated phonon linewidths for the
highest optical mode of B-doped diamond �Fig. 8�b��. Plots �a�–�c�
on the left were obtained with 103 irreducible q points in the mo-
mentum integration of Eq. �4�, while plots �d�–�f� on the right were
obtained with 503 irreducible points. The results for three broaden-
ing parameters 10, 50, and 100 meV are shown in panels �a� and
�d�, panels �b� and �e�, and panels �c� and �f�, respectively. Note the
different vertical scales in the plots corresponding to different
broadening parameters.
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FIG. 11. �Color online� Eliashberg function 2F��� calculated
for B-doped diamond in the virtual crystal approximation with �a�
103 k and q points in the irreducible part of the Brillouin zone and
�b� 503 points. For each case, we report the results corresponding to
the smearing parameters 10 meV �dotted lines�, 50 meV �dashed
lines�, and 100 meV �solid lines�. The Dirac delta function in Eq.
�7� was replaced by a Gaussian with a standard deviation of
0.5 meV. Note the different energy scales and scaling factors for the
acoustic and the optical frequency ranges.

ELECTRON-PHONON INTERACTION USING WANNIER… PHYSICAL REVIEW B 76, 165108 �2007�

165108-15



virtual crystal approximation, only the high-frequency opti-
cal modes of B-doped diamond participate in the supercon-
ducting pairing, while the acoustic modes play a minor role.
When the dopant atoms are taken explicitly into account,28,35

the picture derived from the virtual crystal model needs to be
revised; the dominant contribution to the pairing field is
found to arise from the vibrational modes associated with the
impurity.28,35

The mass enhancement parameter � is obtained from the
Eliashberg function through Eq. �8�. This parameter is com-
monly used to estimate the superconducting transition tem-
perature of isotropic superconductors in conjunction with the
semiempirical McMillan formula Tc=

�log

1.2 exp�−1.04�1
+�� / ��−���1−0.62���, where �log is the logarithmic aver-
aged phonon frequency and �� is the Coulomb
pseudopotential.85 Since the superconducting transition tem-
perature exhibits an exponential dependence on � �at least
for ��1.25�, it is essential to obtain accurate values for the
coupling strength. A survey of the existing literature reveals
that calculated values of � for B-doped diamond vary by
more than a factor of 2, ranging from �=0.24 to
�=0.53.28,36,37,84,86 The superconducting transition tempera-
ture Tc corresponding to this range �assuming, for simplicity,
the same Coulomb pseudopotential ��=0.13 and the loga-
rithmic frequency �log=1000 cm−1� spans several orders of
magnitude, from 10−3 to 14 K, clearly pointing to a serious
difficulty in the calculation of e-ph interaction properties.

Table II reports our calculated e-ph coupling strengths
corresponding to the Eliashberg functions shown in Fig. 11.
We find that a grid of 1000 points in the irreducible wedge of
the Brillouin zone yields � values which are very sensitive to
the choice of the smearing parameter. A grid with 125 000
points provides instead results which are reasonably insensi-
tive to this choice. Our fully converged value for the e-ph
coupling strength is �=0.237. This value was obtained in
Ref. 35 using 1003 k points and 303 q points in the irreduc-
ible wedge of the Brillouin zone. The corresponding transi-
tion temperature is 5
10−4 K �with a Coulomb pseudopo-
tential ��=0.13 and a logarithmic frequency �log
=1010 cm−1� and is in sharp contrast with the experimentally
observed Tc of 4 K.33 As discussed in Ref. 35, the failure of
the virtual crystal model of B-doped diamond is to be as-
cribed to the neglect of the vibrational modes associated with
the boron atoms.

VII. CONCLUSION

The present work was motivated by the long-standing dif-
ficulty of studying the electron-phonon interaction from first

principles. This difficulty arises from the necessity of a very
careful description of the e-ph scattering processes in the
Brillouin zone, in particular, in proximity of the Fermi sur-
face. We have shown that this difficulty can be overcome by
performing a generalized Wannier-Fourier interpolation of
the e-ph vertex, leading to results as accurate as a full ab
initio calculation but at a comparably negligible computa-
tional cost. In order to assess the accuracy of our methodol-
ogy, we have performed a comprehensive set of tests on a
virtual crystal model of B-doped diamond. In particular, we
calculated the electron and phonon linewidths arising from
the e-ph interaction as well as the Eliashberg spectral func-
tion, and we discussed the dependence of these quantities on
the sampling of the Brillouin zone. Our study revealed that,
contrary to common assumptions, the momentum depen-
dence of the e-ph matrix element is significant throughout
the Brillouin zone and cannot be neglected.

It is interesting to consider future directions and possible
developments of the present theory. The first obvious appli-
cation of our method consists in using the e-ph matrix ele-
ments in the Wannier representation to investigate how elec-
trons and ions interact at the atomistic scale. Indeed, we
could decompose the various contributions to the electron
and phonon self-energies into their atomistic components in
the spirit of the analysis of Ref. 56.

A further step in the same direction could be taken by
reformulating the electron-phonon problem in a fully local-
ized representation based on Wannier functions. This possi-
bility is appealing since, as we have shown in this work, all
the information needed to describe the e-ph interaction is
encoded in a small number of matrix elements in the Wan-
nier representation. Therefore, in principle, there is no need
to go back to Bloch space by Wannier-Fourier interpolation.
It is interesting to note that a similar idea has been suggested
in Ref. 87, where the authors were interested in reformulat-
ing the Eliashberg equations in a localized Wannier represen-
tation.

Even without attempting an all-Wannier calculation as
suggested above, our Wannier-Fourier interpolation method
will prove useful for solving the Eliashberg equations ap-
pearing in the theory of strong-coupling
superconductivity,23,24,26 or the Bogoliubov–de Gennes-type
equations to be solved in the density-functional theory for
superconductors.31,47 In both cases, a very fine description of
the e-ph scattering processes near the Fermi surface is
strictly required.

The availability of electron and phonon eigenstates and
the associated e-ph matrix elements at a very small compu-
tational cost could also be used as a starting point to explore
the effects of the vertex corrections to the Migdal approxi-
mation. Indeed, while, in principle, Migdal theorem does not
apply in the presence of Fermi-surface nesting,26 we are not
aware of any attempts to go beyond this approximation
within first-principles approaches.

Finally, we mention the possibility of using the present
method to directly address the e-ph interaction in complex
systems with many atoms in the unit cell,35 or to define tight-
binding parametrizations for large-scale systems.

TABLE II. Electron-phonon mass enhancement parameter � of
B-doped diamond in the virtual crystal approximation, calculated
with different Brillouin-zone grids and smearing parameters.

10 meV 50 meV 100 meV

10
10
10 0.073 0.156 0.212

50
50
50 0.232 0.219 0.210
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APPENDIX: FOURIER INTERPOLATION
OF THE SQUARED MATRIX ELEMENT

For completeness, in this appendix, we provide a formal
justification of the approach proposed in Ref. 35. The proce-
dure introduced in Ref. 35 is similar in spirit to the present
work, altough the practical implementation differs consider-
ably. Maintaining the notation of Sec. IV, the squared e-ph
matrix element in the Bloch representation introduced in Ref.
35 is

gmn,��,k
2 �q� = gmn,�

* �k,q�gmn,��k,q� , �A1�

while the corresponding matrix element in the phonon Wan-
nier representation is

gmn,��,k
2 �Rp� = �

����
�
q

e−iq·Rpuq���gmn,����,k
2 �q�uq���

−1 .

�A2�

The interpolation formula for an arbitrary phonon momen-
tum q given in Ref. 35 is

gmn,��
2 �k,q� = �

����
�
Rp

eiq·Rpuq���
−1 gmn,����,k

2 �Rp�uq���.

�A3�

The interpolation by means of Eq. �A3� is convenient
when the matrix elements gmn,��,k

2 �Rp� exhibit a rapid spatial
decay in the variable Rp. We show here that the latter re-
quirement follows from the localization of the phonon per-
turbation in the Wannier representation �Eq. �18��. For this
purpose, we consider the product g�k ,q�uq

−1 in Eq. �A2�. By
combining Eqs. �15� and �6� we find

�
��

gmn,���k,q�uq���
−1 = �

Rp

eiq·Rp
mk + q���,Rp
V�nk� .

�A4�

By changing the integration variable to r−Rp and taking into
account the resulting Bloch phases of �mk+q� and �nk�, we
can rewrite Eq. �A4� as

�
��

gmn,���k,q�uq���
−1 = Np
mk + q���,0p

V�nk� . �A5�

It is convenient to Fourier analyze the potential ��,0p
V as

follows:

��,0p
V�r� =� �V��q��eiq�·rdq�, �A6�

with the integration extending over the entire reciprocal
space. We now combine Eqs. �A5� and �A6�, decompose the
real-space integral into a sum over Ne unit cell integrals, and
use the periodicity of the Bloch functions. The algebra shows
that only the q wave component of ��,0p

V�r� appears in the
final expression:

�
��

gmn,���k,q�uq���
−1 = NeNp�V��q�
umk+q�unk� , �A7�

where unk and umk+q are the cell-periodic part of the electron
Bloch functions, and the overlap integral is restricted to the
unit cell. By combining Eqs. �A2� and �A7�, we obtain

gmn,��,k
2 �Rp� = Ne

2Np
2�

q
e−iq·Rp�V�

* �q��V��q��
umk+q�unk��2.

�A8�

Now we observe that �i� the largest nonvanishing Fourier
component q in Eq. �A6� corresponds to a small fraction of
the Brillouin-zone size, since the phonon perturbation in the
Wannier representation is localized within a distance corre-
sponding to a few lattice constants. �ii� For small q, the
overlap term �
umk+q �unk��2 has no linear variation in q, as
can be derived from k ·p perturbation theory.88 As a conse-
quence, �
umk+q �unk��2 is a slowly varying function of q in
the region of reciprocal space where the ionic term is most
significant. The result is that the spatial decay of the squared
e-ph matrix element in the phonon Wannier representation
�Eq. �A2�� is dominated by the localization of the phonon
perturbation. This property allows an efficient interpolation
in Bloch space through Eq. �A3�.

It should be pointed out that in this derivation, we did not
make use of the electron Wannier representation. This con-
stitutes the main difference with the strategy outlined in Sec.
III. The advantage of the formulation introduced in Ref. 35
and described in this appendix is that the interpolation over
the phonon momentum q can be performed independently of
the electronic momentum and without resorting to electronic
Wannier functions. The disadvantage is that when we need to
interpolate both on the electronic momentum k and the pho-
non momentum q, there is a large computational overhead
arising from the need to perform the two operations sequen-
tially. Ultimately, the choice between the two procedures will
depend on the specific problem under consideration. When it
is hard to obtain electron Wannier functions �e.g., for high-
energy conduction band states� or the interpolation over the
electron momentum is not needed, it may be preferable to
use the scheme outlined in this appendix. In all other cases,
the formulation of Sec. III is preferable.
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