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We have developed a type of self-consistent scheme within the GW approximation, which we call quasipar-
ticle self-consistent GW �QSGW�. We have shown that QSGW describes energy bands for a wide range of
materials rather well, including many where the local-density approximation fails. QSGW contains physical
effects found in other theories such as LDA+U, self-interaction correction, and GW in a satisfactory manner
without many of their drawbacks �partitioning of itinerant and localized electrons, adjustable parameters,
ambiguities in double counting, etc.�. We present some theoretical discussion concerning the formulation of QS
GW, including a prescription for calculating the total energy. We also address several key methodological
points needed for implementation. We then show convergence checks and some representative results in a
variety of materials.
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In the 1980’s, algorithmic developments and faster com-
puters made it possible to apply Hedin’s GW approximation
�GWA�1 to real materials.2,3 Especially, Hybertsen and
Louie4 first implemented the GWA within an ab initio frame-
work in a satisfactory manner. Theirs was a perturbation
treatment starting from the Kohn-Sham eigenfunctions and
eigenvalues given in the local density approximation �LDA�
to density functional theory �DFT�.5,6 We will denote this
approach here as one-shot-GW. Until now one-shot-GW has
been applied to a variety of materials, usually in conjunction
with the pseudopotential �PP� approximation. Quasiparticle
�QP� energies so obtained are in significantly better agree-
ment with experiments than the LDA Kohn-Sham
eigenvalues.7

However, we have recently shown that one-shot-GW has
many significant failings. Even in simple semiconductors it
systematically underestimates optical gaps.8–11 In general,
the quality of results are closely tied to the quality of the
LDA starting point. For more complicated cases where the
LDA eigenfunctions are poor, one-shot-GW can fail even
qualitatively.11

A possible way to overcome this difficulty is to determine
the starting point self-consistently. The effects of the
eigenvalue-only self-consistency �keeping the eigenfunctions
as given in LDA� was discussed by Surh, Louie, and
Cohen.12 Recently, Luo, Ismail-Beigi, Cohen, and Louie13

applied it to ZnS and ZnSe, where they showed that the band
gaps of one-shot-GW 3.19 and 2.32 eV for ZnS and ZnSe are
increased to 3.64 and 2.41 eV by the eigenvalue-only self-
consistency �see Table IV also�. The differences suggest the
importance of this self-consistency. Furthermore, for ZnSe,
the value 2.41 eV changes to 2.69 eV when they use eigen-
functions given by generalized gradient approximation
�GGA�. This difference suggests that we may need to look
for a means to determine optimum eigenfunctions for GWA.
Aryasetiawan and Gunnarsson applied another kind of self-
consistent scheme to NiO.14 They introduced a parameter for
the nonlocal potential which affects the unoccupied eg level,
and made it self-consistent. They showed that the band gap
of one-shot-GW is�1 eV, and that it is improved to �5.5 eV
by the self-consistency.

Based on these self-consistency ideas, we have developed
an ab initio approach to GW,15–18 which we now call “qua-
siparticle self-consistent GW” �QSGW� method. QSGW is a
first-principles method that stays within the framework of
Hedin’s GWA, that is, QSGW is a perturbation theory built
around some noninteracting Hamiltonian. It does not depend
on the LDA anymore but rather determines the optimum
noninteracting Hamiltonian in a self-consistent manner. We
have shown that QSGW satisfactorily describes QP energies
for a wide range of materials. Bruneval, Vast, and Reining19

implemented it in the pseudopotential scheme, and gave
some kinds of analysis including the comparison with the
Hartree-Fock method and with the Coulomb-hole and
screened exchange �COHSEX� methods.

The present paper begins with a derivation of the funda-
mental equation of QSGW, and some theoretical discussion
concerning it �Sec. I�. The fundamental equation is derived
from the idea of a self-consistent perturbation. We also
present a means for computing the total energy through the
adiabatic connection formalism. Next, we detail a number of
key methodological points �Sec. II�. The present implemen-
tation is unique in that it makes no pseudopotential or shape
approximation to the potential, and it uses a mixed basis for
the response function, Coulomb interaction, and self-energy,
which enables us to properly treat core states. The GWA
methodology is presented along with some additional points
particular to self-consistency. In Sec. III, we show some con-
vergence checks, using GaAs as a representative system.
Then we show how QSGW works by comparing it to other
kinds of GWAs for compounds representative of different
materials classes: semiconductors C, Si, SiC, GaAs, ZnS,
and ZnSe; oxide semiconductors ZnO and Cu2O; transition
metal monoxides MnO and NiO; and transition metals Fe
and Ni.

I. THEORY

A. GWA

Let us summarize the GWA �Refs. 1 and 4� for later dis-
cussion. Here we omit spin index for simplicity. Generally
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speaking, we can perform GWA from some given one-body
Hamiltonian H0 written as

H0 =
− �2

2m
+ Veff�r,r�� . �1�

The one-particle effective potential Veff�r ,r�� can be nonlo-
cal, though it is local, i.e., Veff�r ,r��=Veff�r���r−r�� when
generated by the usual Kohn-Sham construction. H0 deter-
mines the set of eigenvalues ��i� and eigenfunctions ��i�r��.
From them we can construct the noninteracting Green’s
function G0 as

G0�r,r�,�� = �
i

�i�r��i
*�r��

� − �i ± i�
, �2�

where −i� is for occupied states and +i� for unoccupied
states. Within the random-phase approximation �RPA�, the
screened Coulomb interaction is

W = �−1v = �1 − v��−1v , �3�

where �=−iG0�G0 is the proper polarization function, and
v�r ,r��= e2

�r−r��
is the bare Coulomb interaction. � denotes the

dielectric function. As seen in, e.g., works by Alouani and
co-workers,20,21 W calculated from a reasonable H0 should
be in good agreement with experiments, even if W does not
satisfy the f-sum rule because H0 is nonlocal20 �because of
the so-called scissors operator�.

Hedin’s GWA gives the self-energy ��r ,r� ,�� as

��r,r�,�� =
i

2	
� d��G0�r,r�,� − ���W�r,r�,���e−i���.

�4�

From this self-energy, the external potential Vext from the
nuclei, and the Hartree potential VH which is calculated from
the electron density through G0, we obtain an �-dependent
one-body effective potential VGW���:

VGW��� = Vext + VH + ���� . �5�

Note that VH is determined from the density which is calcu-
lated for the noninteracting system specified by H0. For sim-
plicity we omit arguments �r ,r��. Then the one-body Green
function is given as G=1/ 	−�2 /2m+VGW���
. Vext and VH

are local and �-independent potentials. Thus the GWA maps
Veff to VGW���. In other words, the GWA generates a pertur-
bative correction 
V��� to the one-particle potential Veff,
written as


V��� = VGW��� − Veff. �6�

VGW��� and 
V��� can be regarded as functionals of Veff �or
H0�.

In the standard one-shot-GW with H0 generated by the
LDA, Veff is the LDA Kohn-Sham Hamiltonian. Neglecting
off-diagonal terms, the QP energy �QPE� is

Ekn = �kn + Zkn	��kn���r,r�,�kn���kn�

− ��kn�Vxc
LDA�r���kn�
 , �7�

where Zkn is the QP renormalization factor

Zkn = 
1 − ��kn� �

��
��r,r�,�kn���kn��−1

. �8�

Subscripts label the wave vector k and band index n. We will
write them later as a compound index, i��k ,n�. Equation
�7� is the customary way QPEs are calculated in GW. How-
ever, as we discussed in Ref. 11, using Z=1 instead of Eq.
�8� is usually a better approximation; see also Sec. III. Chap-
ter 7 of Ref. 22 presents another analysis where Z=1 is
shown to be a better approximation, in the context of the
Frölich Hamiltonian. In any case, we have to calculate ma-
trix elements ��kn� ���r ,r� ,�� ��kn� as accurately and as ef-
ficiently as possible �off-diagonal elements are necessary in
the QSGW case, as explained below�.

As we showed in Ref. 11, H0 generated by LDA is not
necessarily a good approximation. �Even the H0 for “true
Kohn-Sham” Hamiltonian in DFT can be a poor descriptor
of QP excitation energies.23� For example, time-reversal
symmetry is automatically enforced because Veff is local �and
thus real�. This symmetry is strongly violated in open f-shell
systems.18 The bandgap of a relatively simple III-V semicon-
ductor InN is close to zero;8,9 also the QP spectrum of NiO is
little improved over LDA.15 A variety of other examples
could be cited where GWA starting from H0=HLDA is a poor
approximation. �In contrast, see Sec. III and Ref. 16 to see
how QSGW gives consistently good agreement with experi-
ment.�

B. Quasiparticle self-consistent GW

QSGW is a formalism which determines Veff �or H0� self-
consistently within the GWA, without depending on LDA or
DFT. If we have a mapping procedure VGW���→Veff, we can
close the equation to determine Veff, i.e., determine Veff self-
consistently by Veff→VGW���→Veff→¯ . The main idea to
determine the mapping is grounded in the concept of the QP.
Roughly speaking, Veff is determined so as to reproduce the
QP generated from VGW���. In the following, we explain
how to determine this VGW���→Veff, and derive the funda-
mental QSGW equation.15–18

Based on Landau’s QP picture, there are fundamental one-
particle-like excitations denoted as quasiparticles �QP�, at
least around the Fermi energy EF. The QPEs and QP eigen-
functions �Ei ,�i�r�� are given as1


− �2

2m
+ Vext + VH + Re	��Ei�
 − Ei���i� = 0. �9�

We refer to the states characterized by these Ei and �i�r� as
the “dressed QP.” Here Re	X
 means just take the Hermitian
part of X so Ei is real for Ei. This is irrelevant around EF
because the anti-Hermitian part of ��Ei� goes to zero as Ei

→EF. On the other hand, we have another one-particle pic-
ture described by H0; we name these QPs “bare QPs,” and
refer to the QPEs and eigenfunctions corresponding to H0 as
��i ,�i�r��.

Let us consider the difference and the relation of these
two kinds of QP. The bare QP is essentially consistent with
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the Landau-Silin QP picture, discussed by, e.g., Pines and
Nozieres in Sec. 3.3 of Ref. 24. The bare QPs interact with
each other via the bare Coulomb interaction. The bare QPs
given by H0 evolve into the dressed QPs when the interaction

Ĥ−H0ˆ is turned on adiabatically. Here Ĥ is the total Hamil-

tonian 	see Eq. �12�
; the hat signifies that Ĥ is written in

second quantized form. H0ˆ and H0 are equivalent. The
dressed QP consists of the central bare QP and an induced
polarization cloud consisting of other bare QP; this view is
compatible with the way interactions are treated in the GWA.

H0 generating the bare QPs represents a virtual reference
system just for theoretical convenience. There is an ambigu-
ity in how to determine H0; in principle, any H0 can be used

if Ĥ−H0ˆ could be completely included. However, as we

evaluate the difference Ĥ−H0ˆ in some perturbation method

such as GWA, we must utilize some optimum �or best� H0ˆ :

H0ˆ should be chosen so that the perturbative contribution is
as small as possible. A key point remains in how to define a
measure of the size of the perturbation. We can classify our
QSGW method as a self-consistent perturbation method
which self-consistently determines the optimum division of

Ĥ into the main part H0 and the residual part Ĥ−H0ˆ . There
are various possible choices for the measure; however, here
we take a simple way, by requiring that the two kinds of QPs
discussed in the previous paragraphs correspond as closely as
possible. We choose H0 so as to reproduce the dressed QPs.
In other words, we assign the difference of the QP eigenfunc-
tions �and also the QPE� between the bare QP and the
dressed QP as the measure, and then we minimize it. From
the physical point of view, this means that the motion of the

central electron of the dressed QP is not changed by Ĥ−H0ˆ .

Note that Ĥ−H0ˆ contains two kinds of contributions: not
only the Coulomb interaction but also the one-body term
Vext−Veff. The latter gives a counter contribution that cancel
changes caused by the Coulomb interaction.

We now explain how to obtain an expression in practice.
Suppose that self-consistency has been somehow attained.
Then we have ��i ,�i���Ei ,�i� around EF. ��i� is a
complete set because they come from some H0, though
the ��i� are not. Then we can expand Re	���i�
 ��i�
��Re	��Ei�
 ��i�� in ��i ,�i� as

Re	���i�
��i� = �
j,i

�� j�Re	���i�
 ji,

where Re	����
ij = ��i �Re	����
 �� j�. Then we introduce
an energy-independent operator R defined as

R = �
j,i

�� j�Re	���i�
 ji��i� ,

which satisfies R ��i�=Re	���i�
 ��i�. Thus we can use this
R instead of Re	��Ei�
 in Eq. �9�; however, R is not Hermit-
ian thus we take only the Hermitian part of R as Vxc

=Re	R
;

Vxc =
1

2�
ij

��i��Re	���i�
ij + Re	��� j�
ij��� j�, mode A

�10�

for the calculation of �Ei ,�i� ����i ,�i�� in Eq. �9�. Thus we
have obtained a mapping Veff→VGW���→Veff: for given Veff

we can calculate Vxc in Eq. �10� through ���� in the GWA.
With this Vxc together with VH, which is calculated from the
density for G0 �or H0�, we have a new Veff. The QSGW cycle
determines all H0, Veff, W, and G self-consistently. As shown
in Sec. III and also in Refs. 15–17, QSGW systematically
overestimates semiconductor band gaps a little, while the
dielectric constant �� is slightly too small.16

It is possible to derive Eq. �10� in a straightforward
manner from a norm-functional formalism. We first
define a positive-definite norm functional M�Veff�
=Tr�Re	
V���

 Re	
V���
� to measure the size of pertu-
bative contribution. Here the weight function 
=���−H0�
defines the measure; Tr is for space, spin, and �. For fixed 
,
this M�Veff� is treated as a functional of Veff because Veff

determines 
V��� through Eq. �6� in the GWA. As M�Veff�
=� j,i � ��i �Re	VGW�� j�
−Veff �� j��2, we can show its mini-
mum occurs when Eq. �10� is satisfied in a straightforward
manner. This minimization formalism clearly shows that QS
GW determines Veff for a given Vext; in addition, it will be
useful for formal discussions of conservation laws and so on.
The discussion in this paragraph is similar to that given in
Ref. 16, though we use a slightly different M�Veff�.

Equation �10� is derived from the requirement so that
��i ,�i���Ei ,�i� around EF. This condition does not neces-
sarily determine Vxc uniquely. It is instructive to evaluate
how results change when alternative ways are used to deter-
mine Veff. In Ref. 15 we tested the following:

Vxc = �
i

��i�Re	���i�
ii��i�,

+ �
i�j

��i�Re	��EF�
ij�� j�, mode B . �11�

In this form �which we denote as “mode B”�, the off-
diagonal elements are evaluated at EF. The diagonal parts of
Eqs. �11� and �10� are the same. As noted in Ref. 15, and as
discussed in Sec. III, Eqs. �10� and �11� yield rather similar
results, though we have found that mode-A results compare
to experiment in the most systematic way.

As the self-consistency through Eq. �10� 	or Eq. �11�
 re-
sults in ��i ,�i���Ei ,�i�, we can attribute physical meaning
to bare QPs: we can use the bare QP in the independent-
particle approximation when, for example, modeling trans-
port within the Boltzmann-equation.25 It will be possible to
calculate scattering rates between bare QP given by H0,
through calculation of various matrix elements �electron-
electron, electron-phonon, and so on�. The adiabatic connec-

tion path from H0ˆ to Ĥ used in QSGW is better than the path
in the Kohn-Sham theory where the eigenfunction of HKS
�Kohn-Sham Hamiltonian� evolves into the “dressed QP.”
Physical quantities along the path starting from HKS may not
be very stable. For example, the band gap can change very
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much along the path �it can change from metal to insulator in
some cases, e.g., in Ge and InN;11 QSGW is free from this
problem16�, even if it keeps the density along the path. 	Note:
Pines and Nozieres �Ref. 24, Sec. 1.6� use the terms “bare
QP” and “dressed QP” differently than what is meant here.

They refer to eigenstates of Ĥ as “bare QP” and spatially
localized QP as “dressed QP” in the neutral Fermi liquid.


From a theoretical point of view, the fully self-consistent
GW �Refs. 26 and 27� looks reasonable because it is derived
from the Luttinger-Ward functional E	G
. This apparently
keeps the symmetry of G, that is, E	G
=E�R	G
�, where
R	G
 denotes some G→G mapping �any symmetry in
Hamiltonian, e.g., time translation and gauge transforma-
tion�; this clearly results in the conservation laws for external
perturbations28 because of Noether’s theorem 	exactly speak-
ing, we need to start from the effective action formalism for
the dynamics of G �Ref. 29�
. However, it contains serious
problems in practice. For example, a fully self-consistent
GW uses W from �=−iG�G; this includes electron-hole
excitations in its intermediate states with the weight of the
product of renormalization factors Z�Z. This is inconsistent
with the expectation of the Landau-Silin QP picture.15,30 In
fact, as we discuss in Appendix A, the effects of Z factor
included in G are well canceled because of the contribution
from the vertex; Bechstedt et al. showed the Z-factor cancel-
lation by a practical calculation at the lowest order.30 In prin-
ciple, such a deficiency should be recovered by the inclusion
of the contribution from the vertex; however, we expect that
such expansion series should be not efficient.

Generally speaking, perturbation theories in the dressed
Green’s function G �as in Luttinger-Ward functional� can be
very problematic because G contains two different kinds of
physical quantities to intermediate states: the QP part �sup-
pressed by the factor Z� and the incoherent part �e.g.,
plasmon-related satellites�. Including the sum of ladder dia-
grams into � via the Bethe-Salpeter equation should be a
poorer approximation if G is used instead of G0, because the
one-particle part is suppressed by Z factors; also the contri-
bution from the incoherent part can give physically unclear
contributions. The same can be said about the T-matrix
treatment.31 Such methods have clear physical interpretation
in a QP framework, i.e., when the expansion is through G0. A
similar problem is encountered in theories such as “dynami-
cal mean field theory”+GW,32 where the local part of the
proper polarization function is replaced with a “better” func-
tion which is obtained with the Anderson impurity model.
This question, whether the perturbation should be based on
G, or on G0, also appeared when Hedin obtained an equation
to determine the Landau QP parameters; see Eq. �26.12� in
Ref. 1.

As we will show in Sec. III �see Ref. 16 also�, QSGW
systematically overestimates band gaps, consistent with sys-
tematic underestimation of ��. This looks reasonable because
W does not include the electron-hole correlation within the
RPA. Its inclusion would effectively reduce the pair excita-
tion energy in its intermediate states. If we do include such
kind of correlation for W at the level of the Bethe-Salpeter
equation, we will have an improved version of QSGW. How-
ever, the QPE obtained from G0W with such a W corre-

sponds to the �=1 approximation, from the perspective of
the �=G0W� approximation, as used by Mahan and
Sernelius;33 the contribution from � is neglected. In order to
include the contribution properly, we need to use the self-
energy derived from the functional derivative of Ec as shown
in Eq. �21� in next section, where we need to include the
proper polarization �� which includes such Bethe-Salpeter
contributions; then we can include the corresponding �. It
looks complicated, but it will be relatively easy to evaluate
just the shift of QPE with neglecting the change of QP eigen-
functions; we just have to evaluate the change of Ec numeri-
cally, when we add �or remove� an electron to G0. However,
numerical evaluations for these contributions are demanding,
and beyond the scope of this paper.

C. Total energy

Once Veff is given, we can calculate the total energy based
on the adiabatic connection formalism.23,29,34,35 Let us imag-
ine an adiabatic connection path where the one-body Hamil-

tonian H0= −�2

2m +Veff evolves into the total Hamiltonian Ĥ,
which is written as

Ĥ = Ĥk + V̂ee + V̂ext, �12�

Ĥk = �
�
� dr�̂�

†�r��−
�2

2m
��̂��r� , �13�

V̂ext = �
�
� drV�

ext�r�n̂��r� , �14�

V̂ee =
1

2 �
���

� drdr�v�r,r���̂�
†�r��̂��

† �r���̂���r���̂��r� .

�15�

V̂eff is also defined with Veff instead of Vext in Eq. �14�. We

use standard notation for the field operators �̂��r�, spin index
�, and external potential V�

ext�r�. We omit spin indexes below
for simplicity.

A path of adiabatic connection can be parametrized by �

as Ĥ�= Ĥ0+��V̂ext− V̂eff+ V̂ee�. Then the total energy E is
written as

E = E0 + �
0

1

d�
dE�

d�
= E0 + �

0

1

d��0��V̂ext − V̂eff�0��

+ �
0

1

d��0��V̂ee�0�� , �16�

where �0�� is the ground state for Ĥ�. We define Eext

=�0
1d��0� � V̂ext �0��. This path is different from the path used

in DFT, where we take a path starting from ĤKS to Ĥ while
keeping the given density fixed. Along the path of the adia-
batic connection, the Green’s function changes from G0 to G.
Because of our minimum-perturbation construction �10�, the
QP parts �QP eigenfunctions and QPE� contained in G are
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well kept by G0. If n��r�= �0� � n̂�r� �0�� along the path is
almost the same as n�=0�r�, E0 plus the second term in the

right-hand side �RHS� of Eq. �16� is reduced to �0�=0 � Ĥk

+ V̂ext �0�=0� �this is used in E1st below�. The last term on the
RHS of Eq. �16� is given as EH+Ex+Ec, where

EH =
1

2
�

0

1

d�n��r�v�r,r��n��r�� , �17�

Ex = −
1

2
�

0

1

d��n��r,r���2v�r,r�� , �18�

Ec =
1

2
�

0

1

d��0��V̂ee�0�� − EH − Ex. �19�

Here we used n��r ,r��= �0� ��†�r���r�� �0��.
We define the first-order energy E1st as the total energy

neglecting Ec:

E1st = E0
k + E0

ext + E0
H + E0

x, �20�

where subscript 0 means that we use n�=0�r� instead of n��r�
	and the same for n��r ,r��
 in the definition of Eext, EH, and

Ex; E0
k= �0�=0 � Ĥk �0�=0�. This is the HF-like total energy, but

with the QP eigenfunction given by Veff.
Ec is written as

Ec =
1

2
�

0

1

d� Tr	v���1 − �v���−1 − v��
 , �21�

where �� is the proper polarization function for the ground

state of Ĥ�. The RPA makes the approximation �����=0
���=0 is simply expressed as � below�. The integral over �
is then trivial, and

Ec,RPA =
− 1

2
Tr	ln�1 − v�� + v�
 ,

ERPA = E1st + Ec,RPA, �22�

ERPA denotes the RPA total energy. � is given by the product
of noninteracting Green’s functions �=−iG0�G0, where G0

is calculated from Veff. Thus we have obtained the total en-
ergy expression ERPA for QSGW. As we have the smooth
adiabatic connection from �=0 to �=1 in QSGW �from bare
QP to dressed QP� as discussed in the previous section, we
can expect that we will have better total energy than ERPA

where we use the KS eigenfunction and eigenvalues �where
the band gap can change much from bare QP to dressed QP�.
ERPA will have characteristics missing in the LDA, e.g.,
physical effects owing to charge fluctuations such as the van
der Waals interaction, the mirror force on metal surfaces, the

activation energy, and so on. However, the calculation of
Ec,RPA is numerically very difficult, because so many unoc-
cupied states are needed. Also deeper states can couple to
rather high-energy bands in the calculation of �. Few calcu-
lations have been carried out to date.34–37 As far as we tested
within our implementation, avoiding systematic errors is
rather difficult. In principle, the expression ERPA is basis in-
dependent; however, it is not so easy to avoid the depen-
dence; for example, when we change the lattice constant in a
solid, Ec,RPA artificially changes just because of the changes
in the basis sets. From the beginning, very high-level nu-
merical accuracy for ERPA is required; very slight changes of
Ec,RPA result in non-negligible error when the bonding origi-
nates from weak interactions such as the van der Waals in-
teraction. These are general problems in calculating the RPA-
level of correlation energy, even when evaluated from Kohn-
Sham eigenfunctions.

QSGW with Eq. �10� or Eq. �11� can result in multiple
self-consistent solutions for G0 in some cases. This situation
can occur even in HF theory. For any solution that satisfies
the self-consistency as Eq. �10� or Eq. �11�, we expect that it
corresponds to some metastable solution. Then it is natural to
identify the lowest energy solution as the ground state, that
is, we introduce a new assumption that “the ground state is
the solution with the lowest total energy among all solu-
tions.” In other words, the QSGW method may be regarded
as a construction that determines Veff by minimizing ERPA

under the constraint of Eq. �10� 	or Eq. �11�
. This discussion
shows how QSGW is connected to a variational principle.
The true ground state is perturbatively constructed from the
corresponding H0. However, total energy minimization is not
necessary in all cases, as shown in Sec. III. We obtain unique
solutions �no multiple solutions� just with Eq. �10� or Eq.
�11�. �Exactly speaking, we cannot prove that multiple solu-
tions do not exist because we cannot examine all the possi-
bilities. However, we made some checks to confirm that the
results are not affected by initial conditions.� In the cases we
studied so far, multiple solutions have been found, e.g., in
GdN, YH3, and Ce.18,38 These cases are related to the metal-
insulator transition, as we will detail elsewhere. As a possi-
bility, we can propose an extension of QSGW, namely, to add
a local static one-particle potential as a correction to Eq.
�10�. The potential is controlled to minimize ERPA. This is a
kind of hybridization of QSGW with the optimized effective
potential method.23 See Appendix B for further discussion as
to why the total energy minimization as functional of Veff is
not a suitable way to determine Veff.

Finally, we discuss an inconsistency in the construction of
the electron density within the QSGW method. The density
used for the construction of VH in the self-consistency cycle
is written as nG0

�r�= −i
2	 �d�G0�r ,r ,��ei��, which is the “QP

density” given by H0. On the other hand, the density can be
calculated from ERPA by the functional derivative with re-
spect to Vext. Since ERPA is a functional of Vext, we write it as
ERPA	Vext
; its derivative gives the density nERPA

�r�= �ERPA

�Vext .
The difference in these two densities is given as
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nERPA
�r� − nG0

�r�

=
− i

2	
� d1� d2	��1,2� − Vxc�1,2�


�G0�1,2�
�Vext�r�

,

�23�

where Vxc is the static nonlocal potential defined in Eqs. �10�
or �11�. This difference indicates the size of inconsistency in
our treatment; from the view of the force theorem �Hellman-
Feynman theorem�, we need to identify nERPA

�r� as the true

density, and nG0
�r� for VH as the QP density. We have not

evaluated the difference yet.

II. GW METHODOLOGICAL DETAILS

A. Overview

In the full-potential �FP� linear muffin-tin orbital method
�LMTO� and its generalizations, eigenfunctions are ex-
panded in linear combinations of Bloch summed muffin-tin
orbitals �MTOs� �RLj

k �r� of wave vector k as

�kn�r� = �
RLj

zRLj,n
k �RLj

k �r� , �24�

where n is the band index; �kn�r� is defined by the �eigen-
vector� coefficients zRLj,n

k and the shape of the �RLj
k �r�. The

MTO we use here is a generalization of the usual LMTO
basis, and is detailed in Refs. 11 and 39. R identifies the site
where the MTO is centered within the primitive cell and L
identifies the angular momentum of the site. There can be
multiple orbitals per RL; these are labeled by j. Inside a MT
R, the radial part of � is spanned by radial functions ��Rl, �̇Rl
or �Rl, �̇Rl, �Rl

z � at that site. Here �Rl is the solution of the
radial Schrödinger equation at some energy �� �usually, for l
channels with some occupancy, this is chosen to be at the
center of gravity for occupied states�. �̇Rl denotes the energy
derivative of �Rl; �Rl

z denotes local orbitals, which are solu-
tions to the radial wave equation at energies well above or
well below ��. We usually use two or three MTOs for each l
for valence electrons �we use just one MTO for high l chan-
nels with almost zero occupancy�. In any case these radial
functions are represented in a compact notation ��Ru�. u is a
compound index labeling L and one of the ��Rl, �̇Rl, �Rl

z �
triplet. The interstitial is comprised of linear combinations of
envelope functions consisting of smooth Hankel functions,
which can be expanded in terms of plane waves.40

Thus �kn�r� in Eq. �24� can be written as a sum of aug-
mentation and interstitial parts

�kn�r� = �
Ru

�Ru
kn�Ru

k �r� + �
G

�G
knPG

k �r� , �25�

where the interstitial plane wave �IPW� is defined as

PG
k �r� = �0 if r � any MT

exp	i�k + G� · r
 otherwise
�26�

and �Ru
k are Bloch sums of �Ru

�Ru
k �r� � �

T
�Ru�r − R − T�exp�ik · T� , �27�

where R denotes the center of site R. T and G are lattice
translation vectors in real and reciprocal space, respectively.
Equation �25� is equally valid in a LMTO or LAPW frame-
work, and eigenfunctions from both types of methods have
been used in this GW scheme.41,42 Here we restrict ourselves
to �generalized� LMTO basis functions, based on smooth
Hankel functions.

Throughout this paper, we will designate eigenfunctions
constructed from MTOs as VAL. Below them are the core
eigenfunctions which we designate as CORE. There are two
fundamental distinctions between VAL and CORE: first, the
latter are constructed independently by integration of the
spherical part of the LDA potential, and they are not included
in the secular matrix. Second, the CORE eigenfunctions are
confined to MT spheres.44 CORE eigenfunctions are also ex-
panded using Eq. �25� in a trivial manner ��G

kn=0 and only
one of �Ru

kn is nonzero�; thus the discussion below applies to
all eigenfunctions VAL and CORE. In order to obtain CORE
eigenfunctions, we calculate the LDA Kohn-Sham potential
for the density given by H0, and then solve the radial
Schrödinger equation. In other words, we substitute the non-
local Veff potential with its LDA counterpart to calculate
CORE. More details of the core treatment are given in Sec.
II B.

We need a basis set �referred to as the mixed basis� which
encompasses any product of eigenfunctions. It is required for
the expansion of the Coulomb interaction v �and also the
screened interaction W� because it connects the products as
��� �v ����. Through Eq. �25�, products �k1n��k2n� can
be expanded by PG

k1+k2�r� in the interstitial region because
PG1

k1 �r�� PG2

k2 �r�= PG1+G2

k1+k2 �r�. Within sphere R, products of
eigenfunctions can be expanded by BRm

k1+k2�r�, which is the
Bloch sum of the product basis �PB� �BRm�r��, which in turn
is constructed from the set of products ��Ru�r���Ru��r��.
For the latter we adapted and improved the procedure of
Aryasetiawan.45 As detailed in Sec. II C, we define the mixed
basis �MI

k�r����PG
k �r� ,BRm

k �r��, where the index I
��G ,Rm� classifies the members of the basis. By construc-
tion, MI

k is a virtually complete basis, and efficient one for
the expansion of �kn products. Complete information to gen-
erate the GWA self-energy are matrix elements
��qn ��q−kn�MI

k�, the eigenvalues �kn, the Coulomb matrix
vIJ�k���MI

k �v �MJ
k�, and the overlap matrix �MI

k �MJ
k�. �The

IPW overlap matrix is necessary because �PG
k � PG�

k ��0 for
G�G�.� The Coulomb interaction is expanded as

v�r,r�� = �
k,I,J

�M̃I
k�vIJ�k��M̃J

k� , �28�

where we define

�M̃I
k� � �

I�

�MI�
k ��Ok�I�I

−1 , �29�
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OI�I
k = �MI�

k �MI
k� . �30�

W and the polarization function � shown below are ex-
panded in the same manner.

The exchange part of � is written in the mixed basis as

��qn��x��qm� = − �
k

BZ

�
n�

occ

��qn��q−kn�M̃I
k�vIJ�k�

��M̃J
k�q−kn���qm� . �31�

It is necessary to treat carefully the Brillouin zone �BZ� sum-
mation in Eq. �31� and also Eq. �34� because of the divergent
character of vIJ�k� at k→0. It is explained in Sec. II E.

The screened Coulomb interaction WIJ�q ,�� is calculated
through Eq. �3�, where the polarization function is written as

�IJ�q,�� = �
k

BZ

�
n

occ

�
n�

unocc �M̃I
q�kn��q+kn����q+kn���knM̃J

q�

� − ��q+kn� − �kn� + i�

+ �
k

BZ

�
n

unocc

�
n�

occ �M̃I
q�kn��q+kn����q+kn���knM̃J

q�

− � − ��kn − �q+kn�� + i�
.

�32�

When time-reversal symmetry is assumed, � can be simpli-
fied to read

�IJ�q,�� = �
k

BZ

�
n

occ

�
n�

unocc

�M̃I
q�kn��q+kn����q+kn���knM̃J

q�

�� 1

� − �q+kn� + �kn + i�

−
1

� + �q+kn� − �kn − i�� . �33�

We developed two kinds of tetrahedron method for the Bril-
louin zone �BZ� summation entering into �. One follows the
technique of Rath and Freeman.46 The other, which we now
mainly use, first calculates the imaginary part �more pre-
cisely the anti-Hermitian part� of �, and determines the real
part via a Hilbert transformation �Kramers-Krönig relation�;
see Sec. II D. The Hilbert transformation approach signifi-
cantly reduces the computational time needed to calculate �
when a wide range of � is needed. A similar method was
developed by Miyake and Aryasetiawan.47

The correlation part of � is

��qn��c�����qm� = �
k

BZ

�
n�

All

�
IJ

��qn��q−kn�M̃I
k�

��M̃J
k�q−kn���qm��

−�

� id��

2	
WIJ

c �k,���

�
1

− �� + � − �q−kn� ± i�
, �34�

where Wc�W−v �−i� must be used for occupied states, +i�

for unoccupied states�. Section II F explains how the � inte-
gration is performed.

B. Core treatment

Contributions from core �or semicore� eigenfunctions re-
quire special cares. In our GW, CORE is divided into groups
CORE1 and CORE2. Further, VAL can be divided into
“core” and “val.” Thus all eigenfunctions are divided into the
following groups:

All eigenfunctions

CORE VAL

CORE1 CORE2 “core” “val” �35�

VAL states are computed by the diagonalization of a secu-
lar matrix for MTOs; thus they are completely orthogonal to
each other. VAL can contain core eigenfunctions we denote
as “core.” For example, we can treat the Si 2p core as
“core.” Such states are reliably determined by using local
orbitals, tailored to these states.11

CORE1 is for deep core eigenfunctions. Their screening is
small, and thus can be treated as exchange-only core. The
deep cores are rigid with little freedom to be deformed; in
addition, CORE2+VAL is not included in these cores. Thus
we expect they give little contribution to � and to �c for
CORE2+VAL. Based on the division of CORE according to
Eq. �35�, we evaluate � as

� = �x
CORE1 + �x

CORE2+VAL + �c
CORE2+VAL. �36�

�We only calculate the matrix elements ��i �� �� j�, where i
and j belong to CORE2+VAL, not to CORE1.� We need to
generate two kinds of PB; one for �x

CORE1, the other for
�x

CORE2+VAL and �c
CORE2+VAL. As explained in Sec. II C, these

PB should be chosen taking into account what combination
of eigenfunction products are important. States CORE2
+VAL are usually included in �, which determines W. Core
eigenfunctions sufficiently deep �more than �2 Ry below
EF� are well localized within their MT spheres. For such core
eigenfunctions, we confirmed that results are little affected
by the kind of core treatments �CORE1, CORE2, and “core”
are essentially equivalent�; see Ref. 11.

As concerns their inclusion in the generation of � and �,
Eq. �36� means that not only VAL but also CORE2 are
treated on the same footing as “val.” However, we have
found that it is not always possible to reliably treat shallow
cores �within �2 Ry below EF� as CORE2. Because CORE
eigenfunctions are solved separately, the orthogonality to
VAL is not perfect; this results in a small but uncontrollable
error. The nonorthogonality problem is clearly seen in
v��q ,�� as q→0: cancellation between denominator and
numerator becomes imperfect. �We also implemented a pro-
cedure that enforced orthogonalization to VAL states, but it
would sometimes produce unphysical shapes in the core
eigenfunctions.� Even in LDA calculations, MT spheres can
be often too small to fully contain a shallow core’s eigen-
function. Thus we now usually do not use CORE2; for such
shallow cores, we usually treat it as “core” � VAL; or as
CORE1 when they are deep enough. We have carefully
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checked and confirmed the size of contributions from cores
by changing such grouping, and also intentional cutoff of the
core contribution to W and so on; see Ref. 11.

C. Mixed basis for the expansion of �Ã�

A unique feature of our GW implementation is its mixed
basis set. This basis, which is virtually complete for the ex-
pansion of the products ���, is central for the efficient
expansion of products of relatively localized functions, and
essential for proper treatment of very localized states such as
core states or f systems. Products within a MT sphere are
expanded by the PB procedure originally developed by
Aryasetiawan.45 We use an improved version explained here.
For the PB construction we start from the set of radial func-
tions ��ls�r��, which are used for the augmentation for � in
a MT site. l is the principal angular momentum, s is the other
index �e.g., we need s=1 for �, and s=2 for �̇ in addition to
s=3,4 , . . ., for local orbitals and cores�. The products
�ls�r���l�s��r� can be reordered by the total angular mo-
mentum lp= l+ l� , . . . , �l− l��. Then the possible products of
the radial functions are arranged by lp. To make the compu-
tation efficient, we need to reduce the dimension of the radial
products as follows.

�1� Restrict the choice of possible combinations �ls�r� and
�l�s��r�. In the calculation of W, one � is used for occupied
states, the other for unoccupied states.45 In the calculation of
��kn� �G�W ��kn�, �km

* ��kn appears, with �km
* coming

from G. Thus all possible products can appear; however, we
expect the important contributions come from low energy
parts. Thus, we define two sets �occ and �unocc as the subset
of ��ls�r��. �occ includes �ls�r� mainly for occupied states
�or a little larger sets�, and �unocc is �occ plus some �ls�r� for
unoccupied states �thus �occ��unocc�. Then we take all pos-
sible products of �ls�r���l�s��r� for �ls�r���occ and
�l�s��r���unocc. Following Aryasetiawan,45 we usually do

not include �̇ kinds of radial functions in these sets �we have
checked in a number of cases that their inclusion contributes
little�.

�2� Restrict lp to be less than some cutoff lp
max, removing

expensive product basis with high lp. In our experience, we
need lp

max=2� 	maximum l with nonzero �or not too small�
electron occupancy
 is sufficient to predict band gaps to
�0.1 eV, e.g., we need to take lp

max=4 for transition metal
atoms.

�3� Reduce linear dependency in the radial product basis.
For each lp, we have several radial product functions. We
calculate the overlap matrix, make orthogonalized radial
functions from them, and omit the subspace whose overlap
eigenvalues are smaller than some specified tolerance. The
tolerance for each lp can be different, and typically tolerances
for higher lp can be coarser than for lower lp.

This procedure yields a product basis �100 to 150 func-
tions for a transition metal atom, and less for simple atoms
�see Sec. III A for GaAs�.

There are two kinds of cutoffs in the IPW part of the
mixed basis: �q+G�max

� for eigenfunctions Eq. �25� and �q
+G�max

W for the mixed basis in the expansion of W. In prin-

ciple, �q+G�max
W must be 2� �q+G�max

� to span the Hilbert
space of products. However, it is too expensive. The compu-
tational time is strongly controlled by the size of the mixed
basis. Thus we usually take small �q+G�max

W , rather smaller
than �q+G�max

� �the computational time is much less strongly
controlled by �q+G�max

� �. As we illustrate in Sec. III A,
�0.1 eV level accuracy can be realized for cutoffs substan-
tially below 2� �q+G�max

� .
For the exchange part of CORE1, we need to construct

another PB. It should include products of CORE1 and VAL.
We construct it from �CORE1��VAL, where �VAL��unocc,
so as to make it safer ��unocc is bigger than �occ�.

We also have tested other kinds of mixed basis which are
smoothly augmented; we augment IPWs and construct
smoothed product basis �value and slope vanishing at the MT
boundary�. However, little computational advantage was re-
alized for such a mixed basis.

D. Tetrahedron method for W

Equation �32� requires an evaluation of this type of BZ
integral:

X��� = �
k

BZ

Tk
f„�a�k�…�1 − f„�b�k�…�

� − „�b�k� − �a�k�… ± i�
, �37�

where Tk is a matrix element and f��� is the Fermi function.
To evaluate this integral in the tetrahedron method, we divide
the BZ into tetrahedra. Tk is replaced with its average at the
four corners of k, Tk. We evaluate the integral within a tet-
rahedron, linearly interpolating �a�k� and �b�k� between the
four corners of the tetrahedron. In the metal case, we have to
divide the tetrahedra into smaller tetrahedra; in each of them,
f(�a�k�)�1− f(�b�k�)�=1 or =0 are satisfied; see Ref. 46.
Thus we only pick up the smaller tetrahedron 
� satisfying
f(�a�k�)�1− f(�b�k�)�=1 and calculate

1

	
Im 
X��� = Tk�


�

d3k��� − „�b�k� − �a�k�…� . �38�

Based on the assumption of linear interpolation, the integral
in Im 
X��� equals the area of the cross section of tetrahe-
dron in a plane specified by energy �=�b�k�−�a�k�. We cre-
ate a histogram of energy windows 	��i� ,��i+1�
 , i
=0,1 , . . ., by calculating the weight falling in each window
as ���i�

��i+1�Im 
X���d�. We take windows specified as ��i�
=ai+bi2 �i=0,1 , . . . �, where we typically take a�0.05 eV
and b�1−10 eV. Summing over contributions from all tet-
rahedra, we finally have

Im X�	��i�,��i + 1�
� = �
��i�

��i+1�

d� Im X��� = �
k

wk�i�Tk.

�39�

Applying this scheme to Eq. �33�, we have
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Im ��q,	��i�,��i + 1�
� = �
k

�
n,n�

wk
qnn��i�Tk

qnn�IJ, �40�

where Tk
qnn�IJ= �M̃I

q�kn ��q+kn����q+kn� ��knM̃J
q�. The real

part of � is calculated through a Hilbert transform of Im �
�Kramers-Krönig relation�.

Some further considerations are as follows.
�A� For band index n, �kn may be degenerate. When it

occurs, we merely symmetrize wk
qnn��i� with respect to the

degenerate �kn.
�B� When Eq. �32� is evaluated without time-reversal

symmetry assumed, windows for negative energy must be
included because Im ��q ,−��� Im ��q ,��.

�C� In some limited tests, we found that linearly interpo-
lating Tk within the tetrahedron, instead of using Tk, did little
to improve convergence.

�D� We sometimes use a “multidivided” tetrahedron
scheme to improve on the resolution of the energy denomi-

nator. We take a doubled k mesh when generating wk
qnn��i�.

For example, we calculate � with a 4�4�4 k mesh for the
k sum in Eq. �40�; but we use a 8�8�8 mesh when we

calculate wk
qnn��i�. Then the improvement of � is typically

intermediate between the two meshes: we obtain results be-
tween the 4�4�4 and 8�8�8 results in the original
method.

E. Brillouin-zone integral for the self-energy; the smearing
method and the offset-� method.

1. Smearing method

To calculate �x and �c, Eqs. �31� and �34�, each pole at
�q−kn� is slightly smeared. The imaginary part, proportional

to ���−�q−kn��, is broadened by a smeared function �̄��
−�q−kn��. In order to treat metals, this smearing procedure is
necessary. Usually we use a Gaussian for the smeared func-
tion

�̄��� =
1

�2	�
exp�−

�2

2�2� , �41�

though other forms have been tested as well.
We explain the smearing procedure by illustrating it for

�x. Equation �31� becomes

��qn��x��qm� = �
k

BZ


qnm�k� , �42�


qnm�k� � �
n�

all

�
IJ

�̄�EF − �q−kn����qn��q−kn�M̃I
k�vIJ�k�

��M̃J
k�q−kn���qm� , �43�

where �̄��� is a smeared step function d�̄��� /d�= �̄���.
Owing to the sudden Fermi-energy cutoff in the metals

case, 
qnm�k� may not vary smoothly with k. Increasing �

smooths out 
qnm�k�, making it more rapidly convergent in
spacing between k points, at the expense of introducing a
systematic error to the fully k-converged result. With a
denser k mesh, smaller � can be used, which reduces the
systematic error. In practice we can obtain converged results
for given � with respect to the number of k points, and then
take the �→0 limit.

2. Offset-� method

The integrand in �42� contains divergent term proportional
to 1/ �k�2 for k→0. In order to handle this divergence we
invented the offset-� method. It was originally developed by
ourselves8 and is now used by other groups;48,49 it is numeri-
cally essentially equivalent to the method of Gygi and
Baldereschi,50 where the divergent part is treated analyti-
cally.

We begin with the method of Gygi and Baldereschi.50 The
Coulomb interaction vIJ�k�, which is a periodic function in
k, includes a divergent part vIJ

0 �k��UI
0�k�UJ

0*�k�F�k� where
F�k�→1/ �k�2 as k→0. UJ

0�k� are coefficients to plane wave
eikr in the mixed basis expansion. They divided the integrand
into two terms, one with no singular part which is treated
numerically; the other is a combination of analytic functions
that contain the singular part

��qn��x��qm� = �
k

BZ

	
qnm�k� − 
qnm
0 �k�
 + Aqnm�

k

BZ

F�k� ,

�44�

where


qnm
0 �k� = AqnmF�k� �45�

Aqnm = lim
k→0

�k�2
qnm�k� . �46�

As for the first term on the right-hand side �RHS� of Eq.
�44�, the integrand 
qnm�k�−
qnm

0 �k� is a smooth function in
the BZ with no singularity �more precisely, it can contain a
part �k / �k�2, however, it adds zero contribution around k
=0 because it is odd in k�; it is thus easily evaluated numeri-
cally. The second term is analytically evaluated because F�k�
is chosen to be an analytic function as shown below. We
evaluate the first term by numerical integration on a discrete
mesh in a primitive cell in the BZ. The mesh is given as

k�i1,i2,i3� = 2	� i1

N1
b1 +

i2

N2
b2 +

i3

N3
b3� ,

�
k

BZ

�
1

N1N2N3
�

i1,i2,i3

. �47�

Forms of the analytic functions F�k� are chosen so that it
can be analytically integrated. We choose F�k� as

F�k� = �
G

All
exp�− ��q + G�2�

�q + G�2
, �48�
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where G denotes all the inverse reciprocal vectors and � is a
parameter. F�k� is positive definite, periodic in BZ and has
the requisite divergence at k→0. �Gygi and Baldereschi
used a different function in Ref. 50, but it satisfies the same
conditions.� We can easily evaluate F�k� analytically. Thus it
is possible to calculate �x if we can obtain the coefficients
Aqnm. However, it is not easy to calculate Aqnm. This is espe-
cially true for �c, Eq. �34�, where the coefficients are energy
dependent.

The offset-� method avoids explicit evaluation of Aqnm,
while retaining accuracy essentially equivalent to the method
described above. It evaluates the k integral in �42� as a dis-
crete sum

�
k

BZ

�
1

N1N2N3
�

i1,i2,i3

˜ , �49�

where �˜ denotes the sum for k�i1 , i2 , i3� but k=0 is replaced
by the offset-� point Q= �Q ,0 ,0�. Q is near k=0, and cho-
sen so as to integrate F�k� exactly:

�
k

BZ

F�k� =
1

N1N2N3
�

i1,i2,i3

˜F�k� . �50�

Then Eq. �42� becomes

��qn��x��qm� �
1

N1N2N3
�

i1,i2,i3

˜
qnm�k�

=
1

N1N2N3
�

i1,i2,i3

˜	
qnm�k� − 
qnm
0 �k�


+
Aqnm

N1N2N3
�

i1,i2,i3

˜F�k� . �51�

For larger N1N2N3, �Q ,0 ,0� is closer to �0,0 ,0�, thus the
first term on the RHS of Eq. �51� is little different than the
sum with the mesh �47�. Then the second term in Eq. �51� is
exactly the same as the second term in Eq. �44� because of

Eq. �50�. Thus the simple sum 1
N1N2N3

�˜i1,i2,i3
can reproduce

the results given by the method �44�.
In practical applications, we have to take some set of Q

points to preserve the crystal symmetry. Typically we prepare
six Q points, �±Q ,0 ,0� , �0, ±Q ,0� , �0,0 , ±Q�, and then gen-
erate all possible points by the crystal symmetry. The weight
for each Q should be 1/N1N2N3 divided by the total number
of Q points. The value of Q is chosen to satisfy Eq. �50�. It
evidently depends on the choice of F�k�; in particular, when
F is given by Eq. �48�, Q depends on �. A reasonable choice
for � is �→0 �then no external scale is introduced�. How-
ever, we found �=1.0 a.u. is small enough for simple solids,
and the results depend little on whether �=1.0 or �→0.

In addition, we make the following approximation:


qn�Q� � �
n�

all

�
IJ

�̄�EF − �qn����qn��qn�M̃I
k=0�vIJ�Q�

��M̃J
k=0�qn���qn� . �52�

That is, the matrix element is not evaluated at k=Q but at
k=0. This is not necessary, but it reduces the computational
costs and omits the contribution �kx / �k�2 which gives no
contribution around k=0.

Finally, we use crystal symmetry to evaluate Eq. �43�:
vIJ�k� and also WIJ

c �k� are calculated only at the irreducible k
points and at the inequivalent offset-� points. We also tested
a modified version of the offset-� method with another kind
of BZ mesh �it is not used for any results in this paper�. The
uniform mesh is shifted from the � point:

k�i1,i2,i3� = 2	� i1 +
1

2

N1
b1 +

i2 +
1

2

N2
b2 +

i3 +
1

2

N3
b3� . �53�

Then we evaluate the BZ integral as

�
k

BZ

F�k� → �
i1,i2,i3

WkF�k� +
WQ

N1N2N3
F�Q� , �54�

where k�i1, i2, i3� is used. WQ is a parameter given by hand
to specify the weight for the offset-� point Q. 	In principle,

WQ

N1N2N3
F�Q� must give no contribution as N1 ,N2 ,N3→�.

Thus Eq. �54� can be taken a trick to accelerate the conver-
gence on N1N2N3; this is necessary in practice.
 We usually
use a small value, e.g., WQ�0.01 or less, but taken not too
small so that it does not cause numerical problems. Integra-
tion weights are Wk=1/ �N1N2N3� except for those closest to
�. These latter W�shortest k� are chosen so that the sum of all
Wk and WQ is unity. Then Q is determined in the same man-
ner in the original offset-�method. This scheme picks up the
divergent part of integral correctly, and can be advantageous
in some cases, in particular for oddly shaped Brillouin zones.

The original method with Eq. �47� can show difficulty in
treating anisotropic systems, e.g. the one-dimensional atomic
chain. In such a case, we cannot determine reasonable Q for
the BZ division for, e.g., �N1=N2=1 and N3�large number�,
while the modified form Eq. �53� has no difficulty. We can
choose Q close to � �any Q can be chosen if it is close
enough to ��. As WQ becomes smaller, so does Q. Two final
points relevant to the modified version are as follows

In some anisotropic cases �e.g., antiferromagnetic II NiO�,
we need to use negative WQ because the shortest k on regu-
lar mesh is already too short and the integral of F�q� evalu-
ated on the mesh of Eq. �53� already exceeds the exact value.
However, the modified version works even in such a case.

In some cases �e.g., Si�, the shifted mesh can be some-
what disadvantageous because certain symmetry operations
can map some mesh points to new points not within the
shifted mesh �53�. Then the QP energies that are supposed to
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be degenerate are not precisely so for numerical reasons. One
solution is to take a denser k mesh to avoid the effect of
discretization. Our current implementation allows us to com-
pute � and � with different meshes, Eq. �47� or Eq. �53�.
This is sometimes advantageous to check the stability of cal-
culations with respect to the k mesh.

F. �� integral for �c

Equation �34� contains the following integral:

X = �
−�

� id��

2	
Wc����

1

− �� + �� ± i�
, �55�

where ��=�−�q−kn�. Here we fix indexes I ,J ,k ,q ,n� and
omit them for simplicity. We use a version of the imaginary-
path axis integral method:51,52 the integration path is de-
formed from the real axis to the imaginary axis in such a way
that no poles are crossed; see Fig. 1. As a result, X is written
as the sum of an imaginary axis integral Ximg and pole con-
tributions Xreal. Ximg is

Ximg =
− 1

	
�

0

�

d��WS����
��

��2 + ��
2

+
1

	
�

0

�

d��WA����
��

��2 + ��
2 , �56�

where WS����= 	Wc�i���+Wc�−i���
 /2 and WA����
= 	Wc�i���−Wc�−i���
 /2i. Note that WA�����0 unless
time-reversal symmetry is satisfied. Ximg adds a Hermitian
contribution to �c.

We have to pay attention to the fact that WS���� is rather
strongly peaked around ��=0, and follow the prescription by
Aryasetiawan52 to evaluate the first term in Eq. �56�.

�i� Divide WS���� into WS�0�exp�−a2��2� and the residual
WS����−WS�0�exp�−a2��2�. a is a parameter. The first inte-
gral is performed analytically, the residual part numerically.
We chose a in one of two ways, either to match
d2WS���� /d��2 at ��=0, or use a=1.0 a.u. �as originally
done by Aryasetiawan�. Then we find the latter is usually
good enough, in the sense that it does not impose additional
burden on numerical integration of the residual term.

�ii� The residual term is integrated with a Gaussian
quadrature in the interval x= 	0,1
, making the transforma-
tion ��=x / �1−x� a.u. �as was done first by Aryasetiawan�.
Typically, a 6 to 12 point quadrature is sufficient to achieve
convergence less than 0.01 eV in the band gap.

�iii� On Ximg, we did not include smearing of the pole
�q−kn� as explained in Sec. II E 1, because it gives little ef-
fect, although it is necessary for the evaluation on Xreal as
described below. However, we add another factor to avoid a
numerical problem; we add an extra factor 1−exp	−���2

+��
2� /2�2
 in the integrand of the numerical integration. This

avoids numerical difficulties, since �� / ���2+��
2� can be

large. In our implementation, we simply fix � in �iii� to be
the same as � for the smearing in Eq. �41� and check the
convergence. Generally speaking, �=0.001 a.u. is satisfac-
tory �the differences are negligible compared to �→0 re-
sults�. This procedure is not always necessary, but it makes
calculations safer.

Thus the analytic part proportional to WS�0� is

− WS�0�
	

�
0

�

d��
�� exp�− a2��2��1 − e−

��2+��
2

2�2 �
��2 + ��

2

=
− WS�0�ea2��

2

2
�erfc�a��� − erfc����a2 +

1

�2�2�
�� ,

�57�

where we use a formula �0
�dxe−��x2+�2� / �x2+�2�

= 	

2�2 erfc����. Here erfc�¯� is the complementary error
function �to check this formula, differentiate with respect to
� on both sides�. For small �, we expand Eq. �57� in a
Taylor series in �, to keep numerical accuracy.

Next, let us consider Xreal. It has three branches

Xreal = �Wc���� if � − EF � �� � 0,

− Wc���� if 0 � �� � � − EF,

0 otherwise.

�58�

Poles are smeared out as discussed in Sec. II E; �q−kn� �thus
��� has a Gaussian distribution. This means that we take
±wWc���� instead of Eq. �58�, where w is the weight sum
falling in the range 	0,�−EF
 �or 	�−EF ,0
�, and �� is the
mean value of �� in the range. The QP lifetime �which origi-
nates from the non-Hermitian part of �c� comes entirely
from the imaginary part of Xreal. Thus the condition that the
lifetime is infinite �no imaginary part� at �=EF is assured
from the path shown in Fig. 1, since �=EF means no contour
on real axis. The lifetime of a QP is due to its decay to

ω'-plane (ω-EFermi<0)

o o o o

ω-EFermi

o o o o o o o o o o o o o o o o o o

x x x x x x x x x x x x x

x x x x x x x x x x x x x

Band Gap

ω'-plane (ω-EFermi>0)

o o o o o o o o o o o o o o o o

ω-EFermi

o o o o o

x x x x x x x x x x x x x

x x x x x x x x x x x x x

Band Gap

o: Poles of G(ω-ω ')
x : Poles of W c(ω ')

FIG. 1. Integration contour of the correlated part of the self-
energy �56�. The original path along real axis is deformed without
crossing poles. G�q−k ,�−���=�n1/ ��−��−�q−kn� has poles at
��=�−�q−kn.
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another QP accompanied by the states included in Im	Wc
;
these states can be independent electron-hole excitations,
plasmon-like collective modes, local collective charge oscil-
lations 	e.g., d electrons in transition metals oscillate with
�5 eV �Ref. 53�
, and also their hybridizations. In the insu-
lator case, there is “pair-production threshold:” if the elec-
tron QPE is below �conduction band minimum�+Eg, its
imaginary part is zero because it cannot decay to another
electron accompanied by an electron-hole pair �similarly for
holes�: the imaginary part of the QPE for low-energy elec-
trons �holes� is directly interpreted as the impact ionization
rate. We will show results elsewhere; to calculate QPE life-
times, a numerically careful treatment is necessary—
especially for Im Wc.

G. Self-consistency for �

The self-consistent cycle is shown in Fig. 2. It is initiated
as in a standard GW calculation, by using HLDA for H0 �“ze-
roth iteration”�. It is a challenge to calculate the QSGW Vxc,
Eq. �10�, efficiently. The most time-consuming part of a stan-
dard GW calculation is the generation of the polarization
function ��q ,��, because only diagonal parts of � are re-
quired. However in the QSGW case, the generation of � for
Eq. �10� is typically 3 to 10 times more expensive computa-
tionally. These two steps together �bold frame, Fig. 2� are
typically 100 to 1000 times more demanding computation-
ally than the rest of the cycle. Once a new static Vxc is gen-
erated, the density is made self-consistent in a “small” loop
where the difference in the QSGW and LDA exchange-
correlation potentials 
Vxc�Vxc−Vxc,LDA, is kept constant.
Vxc−Vxc,LDA is expected to be somewhat less sensitive to
density variations than Vxc itself, so the inner loop updates
the density and Hartree potential in a way intended to mini-
mize the number of cycles needed to generate � self-
consistently.

The required number of cycles in the main loop to make
� self-consistent depends on how good the LDA starting
point is: for a simple semiconductor such as Si, typically
three or four iterations are enough for QP levels to be con-
verged to 0.01 eV. The situation is very different for com-
plex compounds such as NiO; the number of cycles then
depends not only on the quality of the LDA starting point,
but other complicating factors as well. In particular, when
some low-energy fluctuations �spin and orbital moments� ex-
ist, many iterations can be required for self-consistency. So-
lutions near a transition to a competing electronic state are
also difficult to converge.

Vxc is calculated only at irreducible k points on the regu-
lar mesh, Eq. �47�. However, we must evaluate 
Vxc�k� at
continuous k points for a viable scheme. In the self-
consistency cycle, for example, the offset-� method requires
eigenfunctions at other k. The ability to generate H0 at any k
is also needed to generate continuous energy bands �essential
for reliable determination of detailed properties of the band
structure such as effective masses� or integrated quantities,
e.g., DOS or EELS calculations. Also, while it is not essen-
tial, we typically use a finer k mesh for the step in the cycle
that generates the density and Hartree potential �oval loops in
Fig. 2�, than we do in the GW part of the cycle.54

The interpolation is accomplished in the �generalized�
LMTO basis by exploiting their finite range. Several trans-
formations are necessary for a practical scheme, which we
now describe. For a given 
Vxc, there are three kinds of basis
sets: the MTOs �RLj

k ; the basis �kn in which H0=HLDA

+
Vxc is diagonal �the “QSGW” basis�; and the basis �kñ
LDA

in which HLDA is diagonal �the “LDA” basis�. ‘‘�’’ over the
subscripts signifies that the function is represented in the
basis of LDA eigenfunctions. LDA and orbital basis sets are
related by the linear transformation �24�. For example, 
Vnm

xc

in the QSGW basis, 
Vnm
xc �k����kn �
Vxc�k� ��km�, is re-

lated to 
VR�L�j�,RLj
xc �k����R�L�j�

k �
Vxc�k� ��RLj
k �in the MTO

basis by


Vnm
xc �k� = �

R�L�j�,RLj

zR�L�j�,n
k†


VR�L�j�,RLj
xc �k�zRLj,m

k . �59�

Vxc�k� is generated in the QSGW basis on the irreducible
subset of k points given by the mesh �47�, which we denote
as kmesh. Generally, interpolating Vxc�kmesh� to other k will be
problematic in this basis, because of ambiguities near band
crossings. This problem can be avoided by transformation to
the MTO basis �localized in real space�. Thus, the transfor-
mation proceeds as


Vnm
xc �kmesh� → 
VR�L�j�,RLj

xc �kmesh� → 
VR�L�j�,R+TLj
xc .

Equation �59� is inverted to obtain 
VR�L�j�,RLj
xc �kmesh� with

the transformation matrix zRLj,m
k . The last step is an inverse

Bloch transform of 
VR�L�j�,RLj
xc �k� to real space. It is done

by FFT techniques in order to exactly recover

VR�L�j�,RLj

xc �k� by the Bloch sum �Teik·T
VR�L�j�,R+TLj
xc . It is

accomplished in practice by rotating 
Vxc according to the
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FIG. 2. Self-consistency cycle. Cycle consists of a large loop
HLDA+
Vxc→��q ,��→
Vxc→HLDA+
Vxc→¯. There is an in-
ner loop within the H0=HLDA+
Vxc step, where the density and
LDA potential are made self-consistent for a fixed 
Vxc. The cycle
is started by taking 
Vxc=0, or H0=HLDA; the first iteration is
equivalent to the standard GLDAWLDA with Z=1 and including the
off-diagonal parts of �. The time-consuming part is framed in bold.
Subscripts to � and Vxc refer to the basis it is represented in; see
text.
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crystal symmetry to the mesh of k points in the full BZ, Eq.
�47�.

From 
VR�L�j�,R+TLj
xc , we can make 
Vñm̃

xc �k� in the LDA
basis for any k by Bloch sum and basis transformation. We
then approximate 
Vxc�k� for the higher lying states by a
matrix that is diagonal in the LDA basis. The diagonal ele-
ments are taken to be linear function of the corresponding
LDA energy 
Vññ

xc�k�=a�ñ
LDA+b. Thus we use 
Vxc as


Vñm̃
xc �k�, �kñ

LDA,�km̃
LDA � Exccut2,

�a�kñ
LDA + b��ñm̃ otherwise.

There are two reasons for this. First, 
Vñm̃
xc �k� is well de-

scribed at the mesh points kmesh, but often does not interpo-
late with enough precision to other k for states ñm̃ associated
with very high energy. We believe that the unsmoothness is
connected with the rather extended range of the �generalized�
LMTO basis functions in the present implementation. While
their range is finite, the LMTOs are nevertheless far more
extended than, e.g., maximally localized Wannier functions
or screened MTOs.55 Because of their rather long range,
these basis functions are rather strongly linearly dependent
�e.g., the smallest eigenvalues of the overlap matrix can be of
order 10−10�. This, when combined with small errors in

Vñm̃

xc �k�, an unphysically sharp �unsmooth� dependence of
the QPEs on k can result for points far from a mesh point. To
pick up the normal part, it is necessary to use Exccut2�EF
+2 Ry or so. �The largest Exccut2 which still results in smooth
behavior varied from case to case. Somewhat larger Exccut2
can be used for wide-band systems such as diamond; systems
with heavy elements such as Bi often require somewhat
smaller Exccut2.�

A second reason for using the “diagonal” approximation
for high-energy states is that it can significantly reduce the
computational effort, with minimal loss in accuracy. In the
time-consuming generation of 
Vxc �bold box in Fig. 2� only
a subblock of 
Vnm

xc �kmesh� is calculated, for states with
�kn ,�km�Exccut1. This Exccut1 should be somehow larger than
Exccut2 �Exccut2+1 to 2 Ry�, so as to obtain 
Vñm̃

xc �k� with
smooth k dependence �this eliminates nonanalytic behavior
from sudden band cutoffs, which prohibits smooth interpola-
tion�.

a and b are determined by fitting them to 
Vññ
xc�k� which

are initially generated by a test calculation with somewhat
larger Exccut2. Typically the calculated diagonal 
Vññ

xc�k� is
reasonably linear in energy in the window 2−4 Ry above EF,
and the approximation is a reasonable one. In any case the
contribution from these high-lying states affect QPEs in the
range of interest �EF±1 Ry� very slightly; they depend mini-
mally on what diagonal matrix is taken, or what Exccut2 is
used. Even neglecting the diagonal part altogether �a=0 and
b=0� only modestly affects results ��0.1 eV change in
QPEs�. We finally confirm the stability of the final results by
monitoring how QPEs depend on Exccut2. Generally the de-
pendence of QPEs on Exccut2 �when Exccut2�2 Ry� is very

weak. Typically we take Exccut2�EF+2.5 to EF+3.5 Ry
�larger values for, e.g., diamond�. Thus we can say the effect
of the LDA used as a reference here is essentially negligible.
H0 is then given as Hñm̃

0 �k�=�kñ
LDA�ñm̃+
Vñm̃

xc �k� in the LDA
basis.

We use LDA as a reference not only for the above inter-
polation scheme, but also to generate MTOs. The shape of
the augmented functions ��Rl, �̇Rl, �Rl

z � and also CORE states
are generated by the LDA potential. However, we expect this
little affects the results; sp partial waves are but little
changed, and we use local orbitals to ensure the basis is
complete. CORE are sometimes tested as “core.” Thus we
believe that out implementation gives results which are
largely independent of the LDA.

III. NUMERICAL RESULTS

Here, we first show some convergence tests, and then
show results for some kinds of materials to explain how QS
GW works.

A. Convergence test for mixed basis

Table I shows convergence checks of the mixed basis
�product basis and IPWs� expansion of W, and the conver-
gence in IPWs for eigenfunctions. We take GaAs, where we
use 92 MTO basis set for valence:

TABLE I. Three tests for GaAs, showing convergence with re-
spect to the number of the interstitial plane waves �IPW� and prod-
uct basis �PB�. Calculations are performed for a 4�4�4 k mesh,
Eq. �47� �Results are not k converged, but the differences between
rows will not change significantly.� QPEs are in eV, relative to the
top of valence. For tests �i� and �ii�, numbers in the first column are
cutoffs in the G vectors for wave functions ��q+G�max

� � and Cou-
lomb interaction ��q+G�max

W �. �q+G � = �3.5,3.0,2.6,2.5,1.8� a.u.
correspond to �229,137,89,65,27� IPWs at q=0. The starting H0

was generated by the 3.5,2.6 case and was not updated to perform
the other tests. Test �iii� used the reference IPW cutoffs and varied
the product basis, as described in the text.

GaAs �1c �15c X5v X1c X3c L3v L1c L3c

�i� varying �q+G�max
W

3.5,1.8 1.932 4.761 −2.973 2.026 2.452 −1.259 2.087 5.588

3.5,2.5 2.041 4.799 −2.935 2.168 2.566 −1.245 2.189 5.652

3.5,2.6 2.046 4.803 −2.933 2.175 2.571 −1.244 2.194 5.657

3.5,3.0 2.053 4.809 −2.930 2.186 2.580 −1.243 2.201 5.664

3.5,3.5 2.053 4.810 −2.929 2.188 2.581 −1.243 2.202 5.666

�ii� varying �q+G�max
�

2.6,2.6 2.038 4.795 −2.939 2.158 2.558 −1.247 2.183 5.647

3.0,2.6 2.045 4.801 −2.935 2.172 2.569 −1.245 2.192 5.654

3.5,2.6 2.046 4.803 −2.933 2.175 2.571 −1.244 2.194 5.657

�iii� varying the product basis for W

Small 1.249 4.611 −3.202 1.702 2.133 −1.364 1.623 5.452

3.5,2.6 2.046 4.803 −2.933 2.175 2.571 −1.244 2.194 5.657

Big 2.057 4.811 −2.928 2.193 2.588 −1.243 2.207 5.669
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Ga: 4s � 2 + 4p � 2 + 3d � 2 + 4f + 5g

+ 4d�local�; 39 functions,

As: 4s � 2 + 4p � 2 + 3d � 2 + 4f + 5g

+ 5s�local�; 35 functions,

Fl: 1s + 2p + 3d; 9 � 2 functions.

“Fl” denotes floating orbitals �MTOs with zero augmentation
radius11� centered at the two interstitial sites.

H0 was made self-consistent for a reference case; then
one-shot calculations were performed systematically varying
parameters in the mixed basis. The result is shown in Table I,
where computational cases are specified by the two numbers
�or labels “small” and “big”� in the left-end column. These
are IPW cutoffs �q+G�max

� and �q+G�max
W introduced in Sec.

II C. The reference case is denoted by 3.5,2.6 meaning �q
+G�Max

� =3.6 and �q+G�max
W =2.6.

In the test �i� in Table I, we show the convergence with
respect to �q+G�max

W . �q+G�max
W =2.6 a.u. is sufficient for

�0.01 eV numerical convergence. Test �ii� is for �q+G�max
� ;

this also shows that 3.6 a.u. �even 3.0 a.u.� is sufficient
�0.01 eV convergence.

We can characterize the PB by the number of radial func-
tions in each l channel. In the reference case this consists of
�5,5,6,4,3� and �6,6,6,4,2� functions for lp=0, . . . ,4 on the Ga
and As sites, respectively �lp

max=4 in this case�. The number
of PB is then 5�1+5�3+6�5+4�7+3�9=105 on Ga
and 100 on As. The “Big” PB of Table I used lp

max=5 with
�8,8,8,6,3,2� functions for lp=0, . . . ,5 on Ga and As �326 PB
total�, while the “Small” PB had lp

max=2 with �5,5,6� and
�6,6,6� functions for lp=0,1 ,2 on Ga and As. Test �iii� shows
that the reference PB is satisfactory; it is a typical one for
calculations. Comparison with the “small” case shows that
lp
max=2 is poor; in our experience, lp

max must be twice larger
than the maximum l basis function that has significant elec-
tron occupancy.

In addition we tested many possible kinds of MTO basis
sets, similar to the tests presented for Si in Ref. 11. For
GaAs, e.g., removing the 5g orbitals from Ga and As reduces
the minimum band gap by �0.05 eV; adding 4f �1+5g
�1 for floating orbitals increases it by �0.03 eV. In general
we have found that it is difficult to attain satisfactory numeri-
cal stability �convergence� to better than �0.1 eV �this is a
conservative estimate; we probably reach �0.05 eV or less
for a simple semiconductor such as GaAs�. This means that
the numerical accuracy is mainly controlled by the quality of
the eigenfunctions input to the GW calculation, not by the
cutoff parameters as tested here.

B. Test of k point convergence

k-point convergence in QSGW calculations is somewhat
harder to attain than in LDA calculation. Figure 3 shows the
dependence of the direct and �25v→X1c gaps on nk, calcu-
lated by QSGW �self-consistent results�. Data are plotted as
1/nk

3, where nk
3=N1N2N3 is the number of mesh points in the

BZ; see Eq. �47�. Data is essentially linear in 1/nk
3, as it is in

one-shot calculations.11,56 The figure enables us to estimate
the error owing to incomplete k convergence by extrapola-
tion to 1/nk

3→0. Figure 3 indicates that our implementation
is stable enough to attain the self-consistency.

C. C, Si, SiC, GaAs, ZnS, and ZnSe

Tables II–IV show QPE within various kinds of GWA, for
C and Si, and for SiC, GaAs, ZnS, and ZnSe in the zinc-
blende structure. “one-shot” denotes the standard one-shot-
GW from the LDA including the Z factor, Eq. �7�; we also
show one-shot-NZ starting from the LDA, but using Eq. �7�
with Z=1. As noted by ourselves and others,8–11,42,43 stan-
dard one-shot generally underestimates band gaps relative to
experiment; for example, the difference between one-shot,8
�8�8 and LDA is 0.97–0.46 eV for bandgap of Si. This
difference is only �60% of the correction 1.24–0.46 eV
needed for the calculation to be exact. The systematic ten-
dency to underestimate gaps in one-shot is also confirmed by
a recent FP-LAPW GW calculation42 with huge basis sets.
one-shot-NZ shows better agreement with experiment; a jus-
tification for using Z=1 was presented in Ref. 11. However,
this good agreement is somewhat fortuitous because of can-
cellation between two contributions to W: there is one con-
tribution from the LDA bandgap underestimate, which over-
estimates � and underestimates W, and another from
omission of excitonic effects which overestimates W.11 In
other words, one-shot agreement with experiment would
worsen if W were to include excitonic effects: the screening
would be enhanced and result in smaller band gaps. “e-only”
denotes self-consistency in eigenvalues, while retaining LDA
eigenfunctions �and charge density�. “mode-A” is QSGW
with Eq. �10�, “mode-B” with Eq. �11�. “mode-A,8�8�8”
is k converged to �0.01 eV; see Fig. 3.

Tables II–IV show that e-only results are closer to one-
shot-NZ than one-shot. We present results for few materials
here, but find that it appears to be true for a rather wide range
of materials. We have already argued this point in Ref. 16.
Mahan compares the two in the context of the Frölich
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FIG. 3. �Color online� Convergence in the �25�v−X1c �circles�
and E0=�25�v−�15c �squares� gaps in Si with the density of k points
in the Brillouin zone, 1 /nk

3, calculated within the QSGW approxi-
mation. Points correspond to nk=4,5 ,6 ,7 ,8. Dot-dashed line is
shown as a guide to the eye.
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Hamiltonian.22 The Rayleigh-Schrödinger perturbation
theory corresponds to one-shot-NZ, which he argues is pref-
erable to the Brillouin-Wigner perturbation which corre-
sponds to one-shot.

e-only and mode-A do not differ greatly in these semicon-
ductors, because the LDA eigenfunctions are similar to the
QSGW eigenfunctions �this is evidenced by minimal differ-
ences in the LDA and QSGW charge densities�. Mode-A
band gaps are systematically larger than experiments, which
we attribute to the omission of excitonic contributions to the
dielectric function. Mode-A and mode-B show only slight
differences, which is indicator of the ambiguity in the QSGW
scheme due to the different possible choices for the off-
diagonal contributions to Vxc. This shows the ambiguity is
not so serious a problem in practice.

Fundamental gaps are precisely known; other high-lying
indirect gaps are well known only in a few materials. Much
better studied are direct transitions from measurements seen
as critical points in the dielectric function or reflectivity mea-
surements. We present some experimental data for states at
�, and also X and L. Agreement is generally very systematic:
�–� and �−L transitions are usually overestimated by
�0.2 eV, and �−X transitions by a little less. We can expect
valence band dispersions to be quite reliable in QSGW; they
are already reasonably good at the LDA level. Except for a
handful of cases �GaAs, Si, Ge, and certain levels in other
semiconductors� there remains a significant uncertainty in
the QP levels other than the minimum gap. In ZnSe, for
example, the L point was inferred to be 4.12 eV from a fast

TABLE II. QPE relative to top of valence for various kinds of GWA, in eV. Calculations use 6�6�6 k
points, except rows labeled 8�8�8. k convergence can be estimated by comparing mode-A and mode-A,
8�8�8 �see also Fig. 3�. One-shot denotes standard one-shot-GW with H0=HLDA, Eq. �7�. We also show
one-shot-NZ for the one-shot case with Z=1. e-only denotes eigenvalue-only self-consistency: eigenvalues
are updated but LDA eigenfunctions are retained. mode-A corresponds to QSGW using Eq. �10�, mode-B to
Eq. �11�. expt.+correction adds to the experimental value contributions from spin-orbit and zero-point motion
�referred to as “Adj” in Table III of Ref. 11�. Estimates for the latter are taken from Table III of Ref. 57.
Experimental data taken from compilations in Refs. 58 and 59 except where noted.

C �1v �15c �2�c X4v X1c L3�v L1c L3c Eg

LDA −21.32 5.55 13.55 −6.29 4.70 −2.79 9.00 8.39 4.09

one-shot −22.24 7.41 14.89 −6.69 6.07 −2.99 10.37 10.34 5.51

one-shot-NZ −22.60 7.79 15.26 −6.80 6.33 −3.04 10.67 10.76 5.77

one-shot,8�8�8 −22.25 7.38 14.87 −6.69 6.04 −2.99 10.35 10.32 5.48

one-shot-NZ,8�8�8 −22.62 7.76 15.23 −6.81 6.30 −3.05 10.64 10.73 5.74

e-only −23.03 7.92 15.72 −6.92 6.53 −3.09 10.96 10.94 5.94

mode-A −23.05 8.01 15.73 −6.89 6.54 −3.07 10.96 10.99 5.97

mode-A ,8�8�8 −23.06 7.98 15.70 −6.90 6.52 −3.07 10.93 10.96 5.94

mode-B −23.05 8.04 15.79 −6.89 6.55 −3.07 10.98 11.00 5.97

expt. −23.0a 7.14b 6.08c 5.5c

expt.+correction 6.45d 5.87d

Si �1v �15c �2�c X4v X1c L3�v L1c L3c Eg

LDA −11.98 2.52 3.22 −2.86 0.59 −1.20 1.42 3.29 0.46

one-shot −11.90 3.14 4.04 −2.96 1.12 −1.25 2.07 3.91 0.98

one-shot-NZ −11.90 3.34 4.30 −3.01 1.27 −1.28 2.26 4.11 1.13

one-shot,8�8�8 −11.89 3.13 4.02 −2.96 1.11 −1.25 2.05 3.89 0.97e

one-shot-NZ,8�8�8 −11.89 3.32 4.28 −3.01 1.25 −1.27 2.24 4.09 1.11

e-only −12.17 3.36 4.30 −3.05 1.28 −1.29 2.26 4.14 1.14

mode-A −12.20 3.47 4.40 −3.05 1.38 −1.28 2.36 4.25 1.25

mode-A ,8�8�8 −12.19 3.45 4.38 −3.05 1.37 −1.28 2.35 4.23 1.23

mode-B −12.21 3.52 4.49 −3.04 1.42 −1.28 2.42 4.29 1.28

expt. −12.50 3.35f 4.18 −2.9 1.32 −1.2 2.18f 4.10f 1.17

expt.+correction 1.24g

aReference 60.
bReference 61.
c5.50 eV for fundamental gap on 
 line �Ref. 62�, adding �calculated� difference 0.58 eV from min→X.
dEP renormalization 0.37 eV �Ref. 57�.
eThis number was 0.95 eV in Ref. 11 because of differences in computational conditions.
fEllipsometry �Ref. 63�. Lc data assumes L3�v=−1.28 eV.
gCorrection: 0.01 eV �SO�+0.06 �EP enormalization� �Ref. 57�.
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carrier dynamics measurement,72 while optical data show
�0.2 eV variations in E1=L1c−L3�v; compare, for example,
Refs. 73 and 71. Most of the photoemission data �used for
occupied states in Tables II–IV� is also only reliable to a
precision of a few tenths of an eV.

Finally, when comparing to experiment, we must add cor-
rections for spin-orbit coupling and electron-phonon �EP�
renormalization of the gap owing to zero-point motion of the
nuclei. Neither are included in the QP calculations, and both
would reduce the QSGW gaps. EP renormalizations have
been tabulated for a wide range of semiconductors in Ref.
57. In some cases there appears to be some experimental
uncertainty in how large it is. In Si, for example, the EP
renormalization was measured to be �0.2 eV in Ref. 74,
while the studies of Cardona and co-workers put it much
smaller.57

D. ZnO and Cu2O

Data for the direct gap at � for wurzite ZnO, and for
Cu2O �cuprite structure� are given in Table V. In these ma-
terials, one-shot-NZ �and more so one-shot� results are rather
poor, as were ZnS and ZnSe �Table IV�. Corresponding en-
ergy bands are shown in Figs. 4 and 5. We used 144 and 64

k points in the first BZ to make H0 for ZnO and Cu2O,
respectively. one-shot-NZ�off-d� denotes a one-shot calcula-
tion, including the off-diagonal elements of 
Vxc computed
in mode-A; i.e., bands were generated by HLDA+
Vxc with-
out self-consistency. They differ little from standard one-
shot-NZ results in semiconductors, as we showed for variety
of materials in Ref. 11. Calculated dielectric constants �� are
shown in Table VI. Note its systematic underestimation. Data
“with LFC” is the better calculation, as it includes the so-
called local field correction �see, e.g., Ref. 21�.

1. ZnO

In contrast to the cases in Sec. III C e-only and one-
shot-NZ now show sizable differences. This is because the
LDA gap is much too small, and W is significantly overesti-
mated. The discrepancy is large enough that one-shot-NZ,
which approximately corresponds to e-only but neglecting
changes in WLDA, is no longer a reasonable approximation.
On the other band, Table V shows that the e-only and mode-
A are not so different �3.64 eV compared to 3.87 eV�. This
difference measures the contribution of the off-diagonal part
to band gap; it is similar to ZnS. This modest difference
suggests that the LDA eigenfunctions are still reasonable.

TABLE III. See caption for Table II.

SiC �1v �1c �15c X5v X1c L3v L1c L3c

LDA −15.31 6.25 7.18 −3.20 1.31 −1.06 5.38 7.13

one-shot −15.79 7.18 8.54 −3.43 2.16 −1.14 6.51 8.41

one-shot-NZ −16.01 7.43 8.89 −3.51 2.36 −1.17 6.79 8.73

one-shot,8�8�8 −15.79 7.16 8.53 −3.43 2.14 −1.14 6.49 8.39

one-shot-NZ,8�8�8 −16.01 7.42 8.87 −3.51 2.34 −1.17 6.77 8.71

e-only −16.33 7.71 9.09 −3.56 2.51 −1.18 6.99 8.95

mode-A −16.35 7.70 9.13 −3.58 2.53 −1.18 7.01 8.97

mode-A ,8�8�8 −16.35 7.69 9.12 −3.57 2.52 −1.18 7.00 8.96

mode-B −16.34 7.78 9.18 −3.58 2.58 −1.18 7.07 9.01

expt.a 2.39

GaAs Ga 3d at � �1c �15c X5v X1c X3c L3v L1c L3c

LDA −14.87,−14.79 0.34 3.67 −2.72 1.32 1.54 −1.16 0.86 4.58

one-shot −16.75,−16.70 1.44 4.30 −2.86 1.76 2.11 −1.22 1.66 5.14

one-shot-NZ −17.64,−17.60 1.75 4.49 −2.91 1.88 2.26 −1.24 1.88 5.32

one-shot,8�8�8 −16.75,−16.69 1.41 4.27 −2.86 1.74 2.08 −1.23 1.64 5.12

one-shot-NZ,8�8�8 −17.65,−17.61 1.70 4.46 −2.91 1.85 2.23 −1.25 1.85 5.29

e-only −17.99,−17.97 1.69 4.58 −2.94 1.97 2.32 −1.26 1.89 5.44

mode-A −18.13,−18.07 1.97 4.77 −2.93 2.15 2.54 −1.24 2.14 5.63

mode-A ,8�8�8 −18.13,−18.07 1.93 4.74 −2.93 2.12 2.51 −1.25 2.11 5.60

mode-B −18.10,−18.04 2.03 4.80 −2.94 2.17 2.56 −1.25 2.18 5.65

expt. −18.8b 1.52c 4.51c −2.80b 2.11c −1.30b 1.78c

expt.+correction 1.69d

aReference 64.
bPhotoemission data, Ref. 65 �Ref. 66 for Ga 3d levels�.
cEllipsometry from Ref. 67. Lc and Xc assume L4,5v=−1.25 eV, X7v=−3.01 eV �QSGW results with SO�.
dCorrections include 0.11 eV �SO�+0.06 eV�EP�.
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However, there still remains a difficulty in disentangling d
valence bands from the others in the e-only case: topological
connections in band dispersions cannot be changed from the
LDA topology, as we discussed in Ref. 11.

The imaginary part of the dielectric function Im ��q
=0,�� is calculated from the mode-A potential and

compared to the experimental function in Fig. 6. There is
some discrepancy with experiment. Arnaud and Alouani21

calculated the excitonic contribution to Im ���� with the
Bethe-Salpeter equation for several semiconductors. Gener-
ally speaking, such a contribution can shift peaks in
Im ��q=0,�� to lower energy and create new peaks just

TABLE IV. See caption for Table II.

�-ZnS �1v Zn 3d at � �1c �15c X5v X1c X3c L3v L1c L3c

LDA −13.10 −6.44,−5.95 1.86 6.22 −2.23 3.20 3.89 −0.87 3.09 6.76

one-shot −12.92 −7.29,−6.93 3.23 7.73 −2.34 4.33 5.36 −0.92 4.58 8.20

one-shot-NZ −12.92 −7.74,−7.42 3.59 8.15 −2.39 4.62 5.76 −0.94 4.97 8.61

one-shot,8�8�8 −12.92 −7.29,−6.94 3.21 7.72 −2.35 4.32 5.35 −0.92 4.57 8.19

one-shot-NZ,8�8�8 −12.93 −7.75,−7.42 3.57 8.14 −2.39 4.61 5.74 −0.94 4.96 8.59

e-only −13.52 −8.14,−7.82 3.83 8.47 −2.44 4.91 6.01 −0.96 5.22 8.95

mode-A −13.50 −8.33,−7.97 4.06 8.69 −2.43 5.06 6.24 −0.95 5.47 9.14

mode-A ,8�8�8 −13.50 −8.33,−7.97 4.04 8.68 −2.43 5.05 6.23 −0.95 5.45 9.13

mode-B −13.53 −8.31,−7.94 4.13 8.75 −2.44 5.12 6.30 −0.95 5.53 9.20

expt. −8.7a 3.83b

expt.+correction 3.94c

ZnSe �1v Zn 3d at � �1c �15c X5v X1c X3c L3v L1c L3c

LDA −13.32 −6.64,−6.27 1.05 5.71 −2.21 2.82 3.32 −0.88 2.36 6.30

one-shot −13.15 −7.66,−7.39 2.31 6.82 −2.35 3.62 4.41 −0.94 3.57 7.32

one-shot-NZ −13.09 −8.17,−7.94 2.63 7.14 −2.40 3.82 4.70 −0.96 3.89 7.62

one shot, 8�8�8 −13.16 −7.66,−7.39 2.28 6.80 −2.35 3.60 4.40 −0.94 3.56 7.31

one-shot-NZ,8�8�8 −13.10 −8.18,−7.94 2.59 7.12 −2.40 3.80 4.68 −0.96 3.86 7.60

e-only −13.61 −8.52,−8.30 2.79 7.41 −2.43 4.08 4.92 −0.97 4.08 7.93

mode-A −13.64 −8.63,−8.36 3.11 7.69 −2.42 4.32 5.20 −0.96 4.39 8.19

mode-A ,8�8�8 −13.65 −8.63,−8.36 3.08 7.68 −2.42 4.30 5.19 −0.96 4.38 8.17

mode-B −13.65 −8.65,−8.38 3.16 7.72 −2.42 4.34 5.23 −0.96 4.43 8.21

expt. −9.0d 2.82e −2.1d 4.06f −1.2d 3.96f

expt.+correction 3.00g

aReference 68.
bReference 69.
cCorrections include 0.02 eV �SO� +0.09 eV�EP� �Ref. 57�.
dReference 70.
eReference 69.
fReflectivity from Ref. 71. Lc and Xc assume L4,5v=−0.95 eV, X7v=−2.47 eV �QSGW results with SO�.
gCorrections include 0.13 eV �SO� +0.05 eV�EP� �Ref. 57�.

TABLE V. Direct gap �eV� at � for ZnO and Cu2O for kinds of GWA. For Cu2O, Eg and E0 are the first
and second minimum gap at �.

Expt.
+corr LDA one-shot one-shot-NZ

one-shot-NZ
�off-d� e-only mode-A

ZnO 3.60a 0.71 2.46 2.88 3.00 3.64 3.87

Cu2OEg 2.20a 0.53 1.51 1.99 1.95 1.98 2.36

E0 2.58a 1.29 1.88 1.97 1.93 2.32 2.81

aValues computed from 3.44+0.164, 2.17+0.033, and 2.55+0.033 eV, where 0.164 and 0.033 eV are zero-
point contributions; see Table IV in Ref. 57. The one-shot value 2.46 eV for ZnO is slightly different from a
prior calculation �2.44 eV in Ref. 41� because of more precise computational conditions. one-shot-NZ�off-d�
denotes a one-shot calculation including the off-diagonal elements.
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around the band edge. It is in fact just what is needed to
correct the discrepancy with experiments as seen in
Fig. 6.

2. Cu2O

We have to distinguish between the QP density of states
�QP-DOS�, which is calculated from H0 �the poles of G0�,
and the “spectrum” density-of-states, which is calculated
from the poles of G. The QP-DOS is the important quantity
needed to describe the fundamental excitations in materials.
QP-DOS in mode-A are shown in Fig. 7. The absorption
coefficient in RPA from H0 is shown in Fig. 8, as well as the
energy bands in Fig. 5. This calculation includes Cu3p and
Cu4d as VAL states using local orbitals.

As shown in Table V, the discrepancy between e-only and
mode-A fundamental gap is �0.4 eV, rather significant and
larger than cases considered previously. This reflects an in-
creased discrepancy between the LDA and QSGW eigen-
functions. The mode-A energy bands can be compared with
results by Bruneval et al.,81 who also performed QSGW cal-
culations within a pseudopotential framework. The lowest

and second gaps we obtain, Eg=2.36 eV and E0=2.81 eV,
are somewhat larger than their values �1.97 and 2.27 eV�.
Further, the difference between the peaks just below EF and
the main 3d peak is 1.90 eV, which is a little larger than
what Bruneval et al. obtain �1.64 eV�. This is the D1-F1
difference in Ref. 82, measured to be 1.94 eV. The absorp-
tion coefficient shows essentially the same kinds of discrep-
ancy with experiment as we saw for Im ���� in ZnO.
Bruneval et al. calculated the excitonic contributions for
Cu2O in a Bethe-Salpeter framework,81 and showed that they
account for most of the error in the RPA dielectric function
as computed by QSGW.

E. NiO and MnO

We described these compounds already in Ref. 15; here
we present some additional analysis. We assume antiferro-II
ordering83 and time-reversal symmetry �thus no orbital mo-
ments�, with 64 k points in the first BZ. In Fig. 9, we show
QSGW mode-A energy bands, comparing them to e-only and
LDA in the right panel. The problem with e-only bands is
now very apparent: the bandgap is much too small and the
conduction band dispersions are qualitatively wrong �mini-
mum gap falls at the wrong point for NiO�. Further, the

TABLE VI. Optical dielectric constant �� calculated in the RPA
�Ref. 75� from mode-A H0. Calculations were checked for k con-
vergence; data shown used 3888 k points for ZnO and 1444 points
for the others. “With LFC” means including the local field correc-
tion �see, e.g., Ref. 21�.

no LFC with LFC Expt.

ZnO�k / /C axis� 3.2 3.0 3.75–4.0a

Cu2O 5.9 5.5 6.46b

MnO 3.9 3.8 4.95c

NiO 4.4 4.3 5.43d,5.7c

aReference 58.
bReference 76.
cReferences 77 and 78.
dReference 79.
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FIG. 6. �Color online� Imaginary part of dielectric function for
ZnO. Local field corrections �LFCs� only slightly affect the result.
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FIG. 5. �Color online� Energy bands of Cu2O. Dotted �red�:
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KOTANI, VAN SCHILFGAARDE, AND FALEEV PHYSICAL REVIEW B 76, 165106 �2007�

165106-18



valence bands �especially, the relative position of O 2p and
TM 3d bands� changes little relative to the LDA. e-only
cannot change the LDA’s spin moment since eigenfunctions
do not change; they are significantly underestimated. The
QP-DOS are shown in Fig. 10. As we detail below, the self-
consistency is essential for these materials as was found by
Aryasetiawan and Gunnarsson.14

1. MnO

The Mn eg and O 2p QP-DOS show common peaks be-
low EF. This is because of the strong dd� coupling between
eg, mediated through the O 2p valence bands.83 The eg com-
ponents are separated mainly into two peaks which have
comparable weight, in contradiction to the LDA case where
the deeper peak has a very small weight. This is because eg
levels are pushed down relative to the LDA. The bottom
panel compares XPS �occupied states� and BIS �unoccupied
states� experiments with the total QP-DOS, broadened with
0.6 eV Gaussian. There is good agreement with the XPS part

for the eg peak just below EF, for the t2g peak, and for the
valence bandwidth. �Based on a model analysis by Takahashi
and Igarashi,88 we expect that many-body effects do not
strongly perturb the QP DOS.� However, there is discrepancy
in the BIS part. A possible assignment is to identify a shoul-
der of total QP-DOS seen at �EF+7 eV as the peak of the
BIS at �6.8 eV�as claimed in Ref. 15�. Alternatively it is
possible that the QP-DOS predicts conduction bands
�1.5 eV higher than the BIS data.

Figure 11 compares Im ���� generated by QSQW mode-A
with experiment. The discrepancy looks too large to explain
the difference between the mode-A calculation and the ex-
perimental data. However, if we neglect the difference in
absolute value, we can say that mode-A predicts the peak
Im ���� at an energy too high by �2 eV. This view is con-
sistent with the conjecture below for NiO.

2. NiO

The majority-spin QP-DOS of NiO is roughly similar to
that of MnO. However, the eg state just below EF is broad-
ened and carries less weight �Fig. 10�. That peak is seen in
MnO but is lost in this case, though the deeper eg peak re-
mains. The t2g DOS is widened relative to LDA. These
features are also observed in other beyond-LDA
calculations.89,90 The top of valence consists of O 2p states,
which hybridize with majority eg states, and minority t2g
which weakly hybridize. In the bottom panel, the d DOS
between EF and EF−4 eV falls in good agreement with XPS;
but the valence DOS width differs from XPS, in contradis-
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tinction to MnO. The reason can be attributed to the satellite
structure contained in the XPS data: e.g., Takahashi et al.88

predict that a satellite should appear around EF−9 eV.
Turning to the unoccupied states, we can see mode A puts

a peak �1.3 eV too high compared with BIS peak at �EF
+5 eV. On the other hand, Im ���� is in rather reasonable
agreement with experiment except for a shift in the first peak
by �2.0 eV �mode A�. Thus we can distinguish two kinds
errors in bandgap �1.3 eV in BIS, and 2.0 eV in Im ��. We
think both kinds of errors can be explained by the excitonic
effects for W missing in our QSGW calculation. This is con-
sistent with the QSGW �� being underestimated. Thus our
conjecture is: if we properly include the excitonic contribu-
tions to W, weights in Im � will shift to lower energy, in-
creasing ��. Self-consistency with such W should reduce the
band gap, simultaneously improving agreement with BIS and
the dielectric function.

F. Fe and Ni

Figure 12 shows energy bands for Fe and Ni calculated by
LDA, QSGW mode A and e-only. The two QSGW calcula-
tions show similar d band shapes: their widths narrow rela-
tive to LDA, moving into closer agreement with experiment.
On the other hand, the e-only calculation significantly shifts

the relative positions of the s and d levels, depressing the
bottom of s band �1 eV in contradiction to experiment. one-
shot-NZ-results �not shown� are very similar to the e-only
case. This indicates the importance of the charge redistribu-
tion due to the off-diagonal part of Eq. �10� in the 3d transi-
tion metals. Yamasaki and Fujiwara49 presented the one-shot
GWA results for Fe, Ni, and Cu, Aryasetiawan91 for Ni. Both
calculations included the Z factor �Z�0.8 for s band, Z
�0.6 for d band� thus the changes they found relative to
LDA are not so large. Including the Z factor mostly elimi-
nates the unwonted s band shift. However, it does so appar-
ently fortuitously. As one-shot �and one-shot-NZ� should be
taken as an approximation of e-only, it is wrong to take one-
shot as a better theoretical prediction than e-only. The calcu-
lated spin magnetic moments are listed in Ref. 16. Little
difference with experiment is found for Fe �2.2�B�. For Ni,
QSGW gives 0.7�B, a little larger than the experimental
value 0.6�B. This is reasonable because QSGW does not
include the effect of spin fluctuations.

IV. SUMMARY

We showed that the QSGW formalism can be derived
from a standpoint of self-consistent perturbation theory,
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where the unperturbed Hamiltonian is an optimized noninter-
acting one. Then we presented a means to calculate the total
energy based on adiabatic connection.

We then showed a number of key points in the implemen-
tation of our all-electron GWA and QSGW. The mixed basis
for W and the offset-� method are especially important tech-
nical points. We presented some convergence checks for the
mixed basis, and some results in various kinds of systems to
demonstrate how well QSGW works. For insulators, QSGW
provides rather satisfactory description of valence bands;
conduction bands are also well described though bandgaps
are systematically overestimated slightly. We compared the
difference of the QSGW results to eigenvalue-only self-
consistent results and to one-shot-GW results in various
cases.

How well eigenvalue-only self-consistency works de-
pends on how correlated the system is. In covalent semicon-
ductors LDA eigenfunctions are rather good, and there is
little difference. The error is no longer small in Cu2O, Fe,
and Ni; finally eigenvalue-only self-consistency fails qualita-
tively in NiO and MnO.
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APPENDIX A: HOW TO JUSTIFY G0W0 APPROXIMATION
FROM �†G‡?—Z FACTOR CANCELLATION

We explain the “Z factor cancellation,” which is one jus-
tification for so-called G0W0 approximation. To the best of
our knowledge, it is not clearly discussed in spite of its im-
portance. Hereafter, W and � denote the dynamical screened
Coulomb interaction, and the proper polarization function
without approximation; W0 and �0 denote the same in RPA.
It gets clearer that the well-balanced treatment between the
vertex function � and G to respect “Z factor cancellation” is
important; thus the so-called full self-consistent GW �Refs.
27, 32, and 92–94� must be a problematic approximation. We
will use symbolical notations hereafter for simplicity.

As is well known, the exact self-energy � is calculated
from G as �=GW�.1 G can be written as

G = ZG0 + Ḡ , �A1�

where G0 is the QP part of the Green’s function, Z is the

renormalization factor, and Ḡ is the incoherent part. The in-
coherent part contains physically unclear kinds of intermedi-
ate states, which are not always characterizable by a single-
particle propagator. In �a� below, we consider the Z-factor
cancellation in the calculation of �=GW� for given G, W,
and � and in �b�, the Z factor cancellation in �.

�a� In the integration of GW�, the most dominant part is
related to the long-range static part of W, the q→0 and �
→0 limit of W�q ,��. In this limit, the vertex function be-
comes

� → 1 −
��

��
= 1/Z . �A2�

This is a Ward identity. Here we need to assume the insulator
case. Then there is a cancellation between Z from ZG0 and

1/Z from �. Under the assumption that Ḡ is rather structure-

less, ḠW may give almost state-independent contributions
�may result in little changes of chemical potential�, thus
GW��G0W is essentially satisfied. In the case of metal,
there is an additional term in right-hand side of Eq. �A2� due
to the existence of the Fermi surface; then we expect �
�1/Z, see, e.g., Ref. 95; the point �b� below should be in-
terpreted in the same manner. In any cases, we can claim the
poorness of fully self-consistent GW which neglect �, as
discussed in the following.

�b� W is given in terms of the proper polarization function

� as W=v�1−v��−1. ��1,4�=�̄�1,1 ;4 ,4�, which is written
as
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FIG. 12. �Color online� Energy bands for Fe and Ni. Solid
�black�: QSGW �mode-A�; broken �blue�: e-only; dotted �red�:
LDA. Calculations used 12�12�12=1728 k points in the first BZ.
Comparing to calculations at other k meshes 8�8�8¯14�14
�14, we estimate the numerical convergence is a little better than
0.1 eV. In this case convergence is limited by uncertainties in the
determination EF �Ref. 54�. Inspection of the bands at fine resolu-
tion show slight discontinuities at certain k points. These occur at
times because of difficulties in the � interpolation; see Sec. II G and
the smearing procedure in Sec. II E.
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�̄�1,1�;4,4�� = G2�1,1�;4,4��

+ G2�1,1�;2,2��I�2,2�;3,3���̄�3,3�;4,4��

= G2 + G2IG2 + G2IG2IG2 + ¯ . �A3�

Here G2�1,1� ;2 ,2��=−iG�1,2�G�2� ,1��, and the duplicated
indices are integrated �the Einstein sum rule�. This looks
similar to an electron-hole ladder diagram, but with the two-
particle irreducible kernel I�1,1� ;2 ,2�� playing the role of
the steps of the ladder. G2 contains an electron-hole pair
excitation �i�r1��i

*�r1��� j
*�r2�� j�r2��� �nj −ni��	�− ��i

−� j�
 multiplied by Z2 in its intermediate state �imaginary
part�, because G2 contains ZG0�ZG0. Here �i and �i denote
a QPE and QP eigenfunction included in G0, and nj −ni is the
occupation number difference.

Let us consider how much the pair excitation is included

in �̄ 	i.e., how �̄�1,2 ;3 ,4� changes when a pair excitation is
added or removed
 in its intermediate states. This means take

the derivative of �̄ through G2 with respect to nj −ni �deriva-
tive is not through I. Such contribution is not two-particle

reducible, that is, not for the intermediate states for �̄�. We
can show that


��1,4� = ��1,2,2��
G2�2,2�;3,3����4,3�,3�;

this is derived from Eq. �A3� with paying attention to the
matrix notation; ��1,2 ,2��= 1

1−G2I and ��4,3� ,3�= 1
1−IG2

symbolically. Thus we see that the additional pair excitation
�intermediate state� is included in � with the weight 1

Z �Z2

�
1
Z =1 for q→0, �→0, because of Eq. �A2� �factors 1 /Z

come from ��. This is the Z factor cancellation mechanism

for �̄. Bechstedt et al. demonstrated this in practice30 at the
lowest level of approximation. This suggests that ��1,2�
��0�1,2�=−iG0�G0is a reasonable approximation because
the derivative of �0�1,2� apparently does not include any Z
factor—thus the Z factor cancellation is trivially satisfied.

In the above discussion, we use the fact that GWA is
dominated by the long range part of W; we may expect such
Z cancellation somehow occurs even for short-range W; but
it may be less meaningful. The above discussion shows why
the fully self-consistent GW method is a poor approximation.

Because the vertex function is omitted, Z in G=ZG0+ Ḡ is

not canceled. �=
�Exc	G


�G must be a rigorous formula; how-
ever, the series expansion in G should be very inefficient—it
contains rather large cancellations between terms in the se-
ries so as to cancel out the effect of Z as seen in �a� and �b�.

On the other hand, the G0W0 approximation looks reason-
able from the viewpoint of �a� and �b�, because it includes
contributions from QPs with correct weights. From the be-
ginning, this is what we expect from the Landau-Silin QP
picture.

Z factor cancellation is generally important. For example,
the Bethe-Salpeter equation �BSE� can be described as the
sum of the ladder diagrams; if G is used instead of G0 in the
sum, it should give a similarly poor result.

To summarize, it looks more reasonable to calculate �	G

through the QP part G0 contained in G. That is, G→G0

→�, where we can use G0W0 approximation for G0→�.
From this �, we can calculate a new G; this suggests the
self-consistency cycle G→G0→G→G0

¯ . The problem is
how to extract G0 from G; the QSGW method gives a
�nearly� optimal prescription.

Mahan and Sernelius33 also emphasized the balanced
treatment of the vertex function and W. Their work, however,
is not directly related to the discussion here. Their calcula-
tion is not based on GW�; instead they use G0, and their
vertex at q→0 is not 1 /Z, but unity. Their formula is based
on the derivative of the G0-based total energy with respect to
the occupation number.96 Their vertex function is identified
as the correction to modify W into the effective interaction
between a test charge and a QP. Their formula �or originally
from Quinn et al.96� is related to the discussion in Appendix
B.

APPENDIX B: CAN WE DETERMINE G BY TOTAL
ENERGY MINIMIZATION?

The RPA total energy Eq. �22� can be taken as a func-
tional of Veff�r ,r��: ERPA depends on Veff�r ,r�� through G0.
Note that the HF part of the total energy does not explicitly
include QPEs �eigenvalues of H0�, but Ec,RPA does include
them.

In contradiction to the local potential case as, e.g., in the
Kohn-Sham construction of DFT, it is meaningless to mini-
mize ERPA with respect to Veff�r ,r��. Veff�r ,r�� contains de-
gree of freedom that can shift QPEs while keeping the eigen-
functions fixed 	this is realized by adding a potential
proportional to �i�r��i

*�r��
. Thus it is possible to change
only Ec,RPA by varying Veff�r ,r�� in such a way that QPEs
change but not eigenfunctions. This implies that Ec,RPA can
be infinite �no lower bound� when all QPEs are moved to the
Fermi energy.

On the other hand, it is possible to determine a QPE from
the functional derivative of ERPA with respect to the occu-
pancy of a state �i. It gives the QPE as �i=

�ERPA

�ni
.96 This is in

agreement with QPE calculated by GWA starting from H0.
Thus, under the fixed QP eigenfunctions, we can determine
QPEs self-consistently; we use these �i in ERPA and take its
derivative with respect to �i to determine the next �i—this is
repeated until converged. This is nothing but the eigenvalue-
only self-consistent scheme. QPEs are not determined by the
total energy minimization: that is QPEs are not variational
parameters. Nevertheless it is a self-consistency condition
�consistency for the excitations around the ground state� and
it is meaningful.

Therefore, we can calculate ERPA for a given complete set
of QP eigenfunctions, where QPEs are made self-consistent
in the manner above. It will be possible to minimize this
ERPA with respect to the set of QP eigenfunctions. However,
such a formalism looks too complicated. Further, only the
occupied QP eigenfunctions are included in the Hartree-Fock
part of ERPA; thus, continuity �smoothness� from the occu-
pied eigenfunctions to unoccupied eigenfunctions will be
lost. Thus we think that it is better to choose another possi-
bility, namely, to determine not only QPEs but also the QP
eigenfunctions in the self-consistency cycle, as we do in QS
GW.
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