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We find that electrons in single-wall carbon nanotubes may propagate substantial distances �tens of nanom-
eters� under metal contacts. We perform four-probe transport measurements of the nanotube conductance and
observe significant deviations from the standard Kirchhoff’s circuit rules. Most noticeably, injecting current
between two neighboring contacts on one end of the nanotube induces a nonzero voltage difference between
two contacts on the other end.
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Multiprobe transport measurements have been at the heart
of developments in mesoscopic physics.1 However, most of
the conductance measurements on single-wall carbon nano-
tubes are nowadays performed in a two-probe geometry,
where the same leads are used to supply voltage and measure
current �or vice versa�. Such measurements are necessarily
affected by the properties of the nanotube-metal contacts,
which are essentially connected in series with the nanotube
itself. Multiprobe measurements do not provide a significant
advantage, since the metal contacts separate the nanotube
into segments2,3 and the electrons fully equilibrate in the
metal upon leaving each segment. Therefore, the results of
the two- and four-probe measurements usually coincide. In a
notable exception, in Ref. 4 potential �voltage� probes to a
nanotube have been made of multiwall nanotubes, which al-
low for a true four-probe measurement. Also, a scanning mi-
croscope tip may serve as a weakly coupled potential probe
that does not significantly disturb the electron flow in the
nanotube beneath.5,6

In this work, we investigate the nanotube resistances mea-
sured in a four-probe setup with metal contacts �image in
Fig. 1�. The two central electrodes are made sufficiently nar-
row ��40 nm�, which allows some fraction of electrons to
stay in the nanotube while traversing the electrode. The elec-
tronic transport in this situation can be rather nonintuitive
�i.e., it may contradict the standard circuit rules�. Most inter-
estingly, when current flows through two neighboring con-
tacts on one end of the nanotube, we find a nonzero voltage
difference between the two contacts on the other end. This
nonlocal four-probe measurement allows us to study mode
equilibration in the nanotube.

The single-wall carbon nanotubes were grown by a
chemical vapor deposition �CVD� method using CO as a
feedstock gas �the details are described in our earlier
publication7�. PdAu contacts are patterned by e-beam lithog-
raphy and deposited by thermal evaporation on top of the
nanotube. We measure the metallic nanotube transport prop-
erties by passing a fixed ac current �supplied through a
10-M� resistor� and measuring the resulting ac voltage at
temperatures down to 1.3 K. Low currents �1–10 nA� are
used at lower temperatures, while at higher temperatures
�Figs. 4 and 5� the current is boosted to 100 nA. The fre-
quency of the excitation signal is kept below 100 Hz, which
was verified to be low enough to avoid spurious pickup sig-

nals. We choose to present here results measured on the
nanotube imaged in Fig. 1. The lengths of the three nanotube
segments are 400, 200, and 400 nm, and the two middle
electrodes are 40 nm wide. We denote the four contacts to
the nanotube A, B, C, and D, as labeled in the schematic in
Fig. 1.

The topmost curves in Fig. 1 correspond to two-probe
resistances measured between pairs of contacts �RAB, RBC,
and RCD�, while the two other contacts are floating. The re-
sistances in the range of a few tens of k� should be com-
pared to the minimal resistance of h /4e2�6.5 k�, possible
for ballistic single-wall nanotubes with ideal contacts �no
reflections�. The smooth oscillatory variations of resistance
with gate voltage are due to interference of standing waves in
the nanotube. In the following, we measure the nanotube
resistance in various contact configurations as a function of
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FIG. 1. �Color online� Top: the schematic and the scanning elec-
tron micrograph of the sample. White bar: 1 �m. Main panel, top
curves: differential resistances of the three nanotube segments mea-
sured by a two-probe method between pairs of contacts AB, BC,
and CD. Middle curves: the three-terminal contact resistances
Ri,g,v,f and Rf ,v,g,i �see clarification in the text�. Bottom: Ri,g,g,v data
�dots� and the fit described in the text. T=1.3 K.

PHYSICAL REVIEW B 76, 161405�R� �2007�

RAPID COMMUNICATIONS

1098-0121/2007/76�16�/161405�4� ©2007 The American Physical Society161405-1

http://dx.doi.org/10.1103/PhysRevB.76.161405


the gate voltage Vgate. Owing to the unique resistance pat-
terns, we can determine contributions of different parts of the
structure to the measured signal.

The middle curves in Fig. 1 represent the three-terminal
resistances.8 Ri,g,v,f is measured when a fixed current is sup-
plied through A, contact B is grounded, voltage is sensed at
C, and D is floating. Rf ,v,g,i denotes an inverse configuration,
where the current is supplied through D, contact C is
grounded, and voltage is sensed at B, while A is floating. �We
have to depart from the usual notation of Refs. 8 and 9 which
is not applicable to some of our measurements.� Convention-
ally, one may expect Ri,g,v,f to be a Vgate-independent con-
stant, corresponding to the metal lead resistance �R0

�500 ��. This would be the case if the electrons arriving
from A were completely equilibrated at the metal of contact
B. Then potential at C would be equal to potential at B and
given simply by R0I. The excess voltage that we measure at
C indicates that some of the electrons injected from A go
past contact B staying in the nanotube channel. Arriving at C,
these electrons raise its potential. This excess voltage ap-
pears in Ri,g,v,f as an apparent excess resistance on top of R0.

From the value of Ri,g,v,f, one may estimate the fraction of
electrons that go past contact B without equillibration:
�B��Ri,g,v,f −R0�G0�0.1–0.3, where G0=4e2 /h. One can
understand this expression as follows: If current I is injected
into contact A, its fraction �BI goes past contact B. The frac-
tion of this current that reaches C is determined by the trans-
parency of the middle section of the nanotube, which accord-
ing to the Landauer formula is equal to 1/ �G0RBC�. The
resultant current �BI / �G0RBC� has to be compensated by an
equal but oppositely directed current emerging due the volt-
age difference between contacts B and C: �BI / �G0RBC�
��VC−VB� /RBC= �IRi,g,v,f − IR0� /RBC. In the following, we
ignore R0 compared to Ri,g,v,f and Rf ,v,g,i.

The three-terminal measurements of nanotubes with nar-
row metal contacts are theoretically discussed in Ref. 10.
The values of ��0.5 are found for the metal contacts
�2 nm wide. One may expect � to decay exponentially with
the contact width. However, we observe nonvanishing values
of � in our much wider contacts ��40 nm�. Apparently, in
our case the metal is not as effective in wetting the nanotube
as is assumed in the model simulation.

We have checked that at zero magnetic field the three-
terminal resistances do not change upon permutation of the
current and voltage leads: Ri,g,v,f =Rv,g,i,f and Rf ,v,g,i=Rf ,i,g,v,
as it should be according to the Onsager relations.8,9 When a
magnetic field parallel to the nanotube axis is applied, the
three-terminal resistances of the same contact measured in
two configurations �e.g., Ri,g,v,f and Rv,g,i,f� become distinctly
different.

The scattered dots at the bottom of Fig. 1 correspond to
the measurement configuration denoted Ri,g,g,v, where a fixed
current is supplied through A, both B and C are grounded,
and voltage is sensed at D. The reverse configuration is de-
noted Rv,g,g,i. Again, these two quantities are found to be
equal, as expected from the Onsager relations �one may view
the two central grounded electrodes as one terminal�.

We may estimate the current that crosses the two
grounded electrodes and the central nanotube segment as

�I�B�C / �RBCG0�. We substitute �B�Ri,g,v,f /G0 and
�C�Rf ,v,g,i /G0 to get the current of �G0Ri,g,v,fRf ,v,g,i /RBC.
The voltage on D required to compensate for this current is
�VRi,g,v,fRf ,v,g,i /RBC. The lowest curve in Fig. 1 �superim-
posed over the Ri,g,g,v data� shows the resulting formula
Ri,g,g,v=Ri,g,v,fRf ,v,g,i /RBC, where all the parameters are taken
from the previous measurements.

The good quality of the fit indicates that our simple con-
siderations capture the essential features of the system.
Nonetheless, an essentially identical formula may be ob-
tained if we formally apply Kirchhoff’s circuit rules, by ar-
tificially taking Ri,g,v,f and Rf ,v,g,i for the contact resistances
and assuming RBC is much larger then either of them. In this
case, the nanotube would work as a voltage divider and we
would arrive at the same expression for the measured volt-
age. To clearly demonstrate that the conventional intuition
based on the resistor circuit rules does not work in our struc-
ture, we present in Fig. 2 the two-probe resistance of the
middle segment �denoted RBC

�2�� and the resistance of the same
segment measured in a conventional four-probe scheme,
where current is supplied to A, D is grounded, and the volt-
age difference is measured between B and C �denoted RBC

�4��.
Naively, the two measurements should differ by the resis-
tances of the contacts B and C �including the resistances of
the metal-nanotube interfaces, as in the three-terminal ar-
rangement in Fig. 1�. The lower curve in Fig. 1�b� shows
RBC

�2� −RBC
�4� −Ri,g,v,f −Rf ,v,g,i. As we see, the four-probe resis-

tance of the central segment plus the resistances of the con-
tacts do not add up to the total two-probe resistance. This
indicates that the Kirchhoff circuit rules are inadequate for
describing the transport and should be replaced by the
Landauer-Buttiker formalism.1,8,9 Indeed, if the electrons
flowing in the nanotube only partially equilibrate with the
narrow central electrodes, the four-probe resistance stops to
reflect the actual resistivity11 and may even become
negative.4,12

In the rest of the paper, we consider a nonlocal four-probe
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FIG. 2. �Color online� Differential resistance of the middle
segment measured by a two-probe method �solid line� and
by a four-probe method �dash-dotted line�. Dashed line:
RBC

�2� −RBC
�4� −Ri,g,v,f −Rf ,v,g,i. T=1.3 K.
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�NL4P� measurement, where a fixed current is supplied
through A, contact B is grounded, and a voltage difference is
measured between C and D �denoted Ri,g,v−,v+�. Similar non-
local “bend resistance” measurements were performed in
ballistic GaAs channels.11 Typically, this signal is very small,
an order of magnitude smaller than Ri,g,g,v discussed previ-
ously. NL4P should vanish within the Landauer theory if the
nanostructure has only one mode �see Fig. 12 in Ref. 13�:
since no current is flowing into C and D, the voltage drop
between them should be identically zero. However, we have
to recall that nanotubes have two transversal modes. If these
modes have different transmission coefficients and are differ-
ently coupled to the contacts, then a nonvanishing NL4P
signal Ri,g,v−,v+ may appear.

Figure 3 shows the two NL4P signals �Ri,g,v−,v+ and
Rv+,v−,g,i� measured as a function of magnetic field parallel to
the nanotube at a fixed gate voltage. The two signals coin-
cide at zero field, as it should be according to Onsager rela-
tions. We see that the two measurements split when the time-
reversal symmetry is broken by the magnetic field. A
substantial difference between the two is accumulated al-
ready in a field of �1 T. Indeed, the parallel field couples
strongly to the orbital motion of the electrons around the
circumference of the nanotube, splitting the two propagating
modes.

NL4P was studied previously in multiwalled nanotubes in
Ref. 14, where it was used to investigate the conductance
between the concentric shells. In those experiments, some of
the current flows in the inner shell past the drain terminal
toward the potential probes and then flows back toward the
drain in the outer shell. As a result, the voltage probe closer
to the drain always acquires a lower potential than the probe
farther away. In our measurements, we observe NL4P volt-
age of both signs. To qualitatively illustrate the possibility of
such behavior, one can imagine current flowing from B only
in mode �1� and returning from D only in mode �2�. The
relative potential of contact C will be different if it couples
preferentially to mode �1� or mode �2�.

To be more specific, we use the four-probe

formalism of Refs. 8 and 9 to express Ri,g,v−,v+ as
h
e2 �TADTBC−TACTBD� /D, where TAC indicates the electron
transmission between A and C while B and D are grounded,
and similarly for TBD and TAD. Here D is a denominator
defined in Refs. 8 and 9. In our case D�TABTBCTCD.
Throughout the text, we have tacitly assumed that TAC
=�BTABTBC, TBD=�CTBCTCD, and TAD=�B�CTABTBCTCD, in
which case Ri,g,v−,v+ should be identically equal to zero, as
TACTBD=TADTBC. However, let us now take into account the
presence of two modes, so that TAB=TAB

�1� +TAB
�2�,

�A=�A
�1�+�A

�2�, and similarly for TBC, TCD, and �B. Here
superscripts �1� and �2� indicate the mode index. Let us as-
sume for simplicity that the modes do not mix under the
metal contacts, so that TAC=�B

�1�TAB
�1�TBC

�1� +�B
�2�TAB

�2�TBC
�2�

and similarly for TBD and TAD. A straightforward
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FIG. 3. �Color online� Nonlocal four-probe resistance measure-
ments Ri,g,v−,v+ �see schematic� and Rv+,v−,g,i as a function of mag-
netic field parallel to the nanotube. T=1.3 K.
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FIG. 4. �Color online� Various signals discussed in the paper
measured at the temperature of 70 K. Top three curves
�R�10 k��: segment resistances. Next lower curves R�1 k�:
three-terminal resistances. Scattered squares with overlayed curve
�R�100 ��: Ri,g,g,v measurement and the corresponding fit. Lowest
curve: nonlocal four-probe resistance. Note that the NL4P signal
changes sign at Vgate�5.6 V.
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FIG. 5. �Color online� Nonlocal four-probe resistance as a func-
tion of gate voltage at several temperatures. The modulations of the
NL4P signal decay rapidly with temperature. However, a nonzero
signal is still left at the highest temperature.
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algebra leads to the expression Ri,g,v−,v+

= h
e2 TBC

�1�TBC
�2��TAB

�1��B
�1�−TAB

�2��B
�2���TCD

�1� �C
�1�−TCD

�2� �C
�2�� /D. It is

now enough to have TAB
�1��B

�1��TAB
�2��B

�2� and TCD
�1� �C

�1�

�TCD
�2� �C

�2� to ensure that Ri,g,v−,v+�0. We expect these in-
equalities to be naturally satisfied in real nanotubes, where
the mode splitting should be substantial.

Finally, in Fig. 4, we present all the signals discussed in
the paper, measured at T=70 K. Most of the observations
made in this paper at T=1.3 K still apply here. These include
the noticeable three-terminal contact resistance and the non-
local four-probe resistance. As mentioned earlier, a NL4P
signal of either sign is observed. The magnitude of this sig-
nal at 70 K �typically ohms� is noticeably smaller than that
observed at 1.3 K �typically tens of ohms�. As we discussed
above, the NL4P signal is sensitive to the presence of two
modes, which have different transmission coefficients. One
can intuitively argue that the elevated temperature should
increase the mode equilibration in the nanotube, reducing the
effect of the differences between their transmission coeffi-
cients. �Full mode equilibration is essentially identical to
having only one mode.�

In Fig. 5 we demonstrate the evolution of the NL4P signal
with temperature. Clearly, the oscillations in the NL4P signal
rapidly decay with temperature, although the leftover signal
of �5 � survives. The disappearance of the oscillations in
the NL4P signal correlates with the flattening of the resis-

tance curves for individual segments �Fig. 4, top curves,
Vgate�0�. It therefore simply reflects the smearing of the
single-particle interference due to energy spread of the par-
ticipating electrons. Interestingly, the NL4P signal does not
vanish even at 70 K. This indicates that the population
equilibration between the two modes is still not very effec-
tive at this relatively high temperature.

In conclusion, we report on multiprobe measurements of
single-wall carbon nanotubes with narrow metal electrodes.
We estimate the fraction of electrons which pass across the
40 nm electrodes without equilibration as ��0.1. We show
how Kirchhoff’s circuit rules break down due to electrons in
the nanotube flowing across narrow electrodes without full
equilibration. We study a nonlocal four-probe measurement,
which directly reflects the presence of more than one trans-
port mode in the nanotube. Our results indicate that the mode
equilibration is not complete even at the temperature of
70 K.

Note added in proof. A similar four-probe study of carbon
nanotubes with narrow metal contacts was reported in a re-
cent preprint.15

We thank H. Baranger and S. Teitsworth for valuable dis-
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0239748.
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