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While ferromagnetism at relatively high temperatures is seen in diluted magnetic semiconductors such as
Ga1−xMnxAs, doped semiconductors without magnetic ions have not shown evidence for ferromagnetism.
Using a generalized disordered Hubbard model designed to characterize hydrogenic centers in semiconductors,
we find that such systems may also exhibit a ferromagnetic ground state, at least on the nanoscale. This is
found most clearly in a regime inaccessible to bulk systems, but attainable in quantum dots as well as
heterostructures. We present numerical results demonstrating the occurrence of high spin ground states in both
lattice and positionally disordered systems. We examine how the magnetic phases are affected by characteris-
tics of real doped semiconductors, such as positional disorder and electron-hole asymmetry.
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The Hubbard model1 is perhaps the simplest model con-
taining the essential character of correlated electrons; it con-
sists of tight binding on a lattice with a purely on-site
electron-electron repulsion. It has been studied extensively,
e.g., in the large-U regime,2 on different lattices,3 with mul-
tiple possibly degenerate bands,4 and with binary alloy
disorder.5 It has been used to model Mott-insulator oxides,6

high-Tc superconductors,7 organic conductors,8 as well as
hydrogenic centers in doped semiconductors.9 For the latter,
it is especially relevant in the insulating phase, where the
Coulomb interaction is large compared to the kinetic energy.

The Hubbard model on a lattice is defined by the Hamil-
tonian:

H = − t �
�i,j��

�ci�
† cj� + c.c.� + U�

i

ni↑ni↓, �1�

where t and U are the kinetic and Coulomb energy
parameters, respectively, ci�

† �ci�� is the usual electron
creation �annihilation� operator on site i with spin �, and
angular brackets denote nearest neighbors. For example, in
the tight-binding model with hydrogenic wave functions,
t�r�=2�1+r /aB�exp�−r /aB�.10 Nagaoka11 showed that in the
limit U / t→�, the Hubbard model on a finite bipartite lattice
of dimension d�2 with periodic boundary conditions and a
single hole �away from half filling� has a ferromagnetic
ground state. The reason for this can be understood by con-
sidering a system with hole density �. The kinetic energy
gain of the holes is more restricted in an antiferromagnetic
background of spins than in a fully spin-polarized
background.12 This restriction is of order t�, whereas the
antiferromagnetic superexchange cost is order J=4t2 /U.13 At
small � and large enough U, t��J, and the system prefers a
ferromagnetic configuration because it allows for less con-
fined carriers. Subsequent work to Nagaoka’s pioneering re-
sult has shown that ferromagnetism is a subtle effect depend-
ing on lattice geometry. For example, Lieb and Mattis14

proved that in finite one-dimensional systems with zero-
wave function or zero-derivative boundary conditions, the
ground state must be a singlet, and Haerter and Shastry15

recently showed that on the frustrated triangular lattice

�t�0�, an itinerant hole actually helps to produce an antifer-
romagnetic ground state.

The mean-field diagram of this model on a simple cubic
lattice is given in Fig. 1, which agrees qualitatively with the
more extensive work in two dimensions by Hirsch.16 An an-
tiferromagnetic phase exists at half-filling for all values of
U / t, due to the effective antiferromagnetic interaction from
superexchange. Such a mean-field analysis does not include
the possibility of phase separation, e.g., the existence of po-
larons corresponding to “carrier-rich” ferromagnetic and
“carrier-poor” antiferromagnetic spatial regions. Phase sepa-
ration may alter the simple phase diagram of Fig. 1
substantially,17 though Dagotto et al.18 argue for its absence
in the Hubbard model based on 10- and 16-site square lat-
tices. Even though its precise location in phase space de-
pends on dimension and requires more careful work, it is
clear that for large enough U / t we expect an antiferromag-
netic to ferromagnetic transition on some mesoscopic or
macroscopic length scale, as a function of doping.

However, in spite of this expectation, Nagaoka ferromag-
netism does not seem to have been seen experimentally.
Whereas most Mott-insulator oxides appear not to have a
large enough U / t ratio to allow for it, doped semiconductors
have U / t tunable over several orders of magnitude �due to
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FIG. 1. Zero temperature mean-field theory phase diagram of
the Hubbard model on an 8	8	8 simple cubic lattice with peri-
odic boundary conditions �BC�.
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the exponential dependence of the hopping t on the dopant
spacing�, and thus are a promising candidate for Nagaoka
ferromagnetism. Unfortunately, the dopants are not arranged
on a superlattice, and the Hubbard Hamiltonian must be
modified to include a site-dependent hopping term.

H = − �
�i,j��

�tijci�
† cj� + c.c.� + U�

i

ni↑ni↓. �2�

It has been shown19 that in uncompensated semiconductors
�half-filled Hubbard band�, the randomness of the dopants
results in a valence-bond glass �random singlet� phase being
a better description of the ground state than the antiferromag-
net predicted on a lattice. Experiments on compensated sys-
tems �away from half-filling�, show no evidence of ferro-
magnetism in conventional semiconductors with
nonmagnetic dopants.20 This can be attributed to the local-
ization of the holes due to the strong randomness in hopping
parameters that results from random dopant positions. The
holes are consequently unable to gain the kinetic energy,
which favors a spin-polarized background. Thus despite the
ability to tune U / t over such a large range, Nagaoka ferro-
magnetism remains elusive.

In this Rapid Communication, we show that there exists a
regime of doped semiconductor systems that is attainable in
nanoscale quantum dots and heterostructures, but not acces-
sible to three-dimensional bulk systems, which is more
suited to the occurrence of Nagaoka type ferromagnetism. In
this region, ferromagnetism is found at least at the nanoscale,
and has a higher likelihood of emerging on macroscopic
scales �e.g., in modulation doped systems�.

The existence of such a regime is suggested by special
properties of the hydrogen atom �and hydrogenic centers�
that effectively reduce the disorder and move the randomly
doped semiconductor in the direction of a lattice problem.
The key property is that the second electron of a H− ion is
bound by only 0.0555 Ry,21 an energy much less than the
1 Ry binding of the initial electron. This property is linked
with the fact that the two-electron wave function of H− is
spatially much larger than the 1s wave function of the hy-
drogen atom. It is much easier for the second electron on a
hydrogenic center to hop away than it is for a single electron
on such a center to do so. Thus, near half-filling, in Hubbard
model parlance, the hopping amplitude for an electron is
much larger than for a hole. Consequently, starting from the
half-filled system �i.e., the uncompensated doped semicon-
ductor�, the system with a small percentage of extra elec-
trons, because of the more extended wave function, experi-
ences a greatly reduced effect of the positional disorder as
compared with the corresponding hole-doped �less than half-
filled, i.e., compensated� system, and so will behave more
like the uniform lattice. In diluted magnetic semiconductors
�DMS�, the existence of the relatively larger Bohr radius of
the carriers ��10 Å� compared to the extent of the spins on
the magnetic ions �1 to 2 Å� allows the carrier-magnetic mo-
ment interaction to dominate, resulting in a ferromagnetic
ground state.22 In the electron-doped semiconductor, elec-
trons occupying the D− state have a larger Bohr radius than
the electrons giving rise to the effective exchange interaction
�J� t2 /U�. This could cause carrier hopping to dominate,

similarly resulting in a ferromagnetic ground state. At the
very least, the different radii of the doubly vs singly occu-
pied sites suggests that we modify the Hamiltonian �2� to
become

H = − �
�i,j��

�tij�ni,nj�ci�
† cj� + c.c.	 + U�

i

ni↑ni↓, �3�

where ni is the total occupation of site i, and tij now has an
occupation dependence given by

tij�ni,nj� = 
 t̃i j , nj = 2 and ni = 1

tij , otherwise,
� �4�

where t̃i j is larger �and can be much larger� than tij. On a
lattice, with �1 electron per site, the low energy spectrum in
the limit U
 t̃, t is given by the t̃-J model, where J=4t2 /U,
as one would expect.23 Hirsch has investigated a similar
Hubbard model with occupation-dependent hopping, but
with focus on its prediction of superconductivity pairing.24

We proceed with semiconductors in mind, motivated by the
notion that one might expect to find a ferromagnetic phase in
this model.

In the present work, we focus on the effect of changing
the ratio t̃ / t on two-dimensional lattice systems and small
random clusters that may be realized in quantum dots. We
have computed U / t and t̃ / t appropriate for dopants in semi-
conductors by performing a realistic calculation of single
particle states of donors placed on a simple cubic lattice,
with lattice constant R, following Ref. 25, with pseudopoten-
tials appropriate for each band. We extract the dependence of
these ratios on R by fitting the single particle bands to a
nearest-neighbor tight binding model. Details of this work
will be given elsewhere;26 the resulting parameter ratios are
shown in Fig. 2. We see clearly that the range of U / t and t̃ / t
can be varied substantially in doped semiconductors. The
large span of U / t originates in the exponential dependence of
the hopping parameter on the atomic spacing, and the varia-
tion of t̃ / t from the relatively large size of the two-electron
wave function appearing as a factor in this exponential. The
Mott metal-insulator transition �MIT� criterion in these units
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FIG. 2. Variation of ratios U / t and t̃ / t with the dopant spacing R
�dopant density �= 1

R3 on a cubic lattice�.
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is R /aB=4,6,25 and thus the region where ferromagnetism is
expected lies well below the MIT. In the following, we re-
strict ourselves to U / t= �10,100	 and t̃ / t= �1,10	, which are
conservative when compared to the physically attainable
ranges �Fig. 2�.

We have solved the Hubbard and corresponding t̃-J mod-
els exactly using the Lanczos method to diagonalize the
Hamiltonian matrix, after first taking advantage of all avail-
able spatial symmetries of the system and the spin symme-
tries �where allowed by memory constraints�. The Hubbard
model depends on U / t and t̃ / t, whereas the t̃-J model only
depends on t̃ /J= 1

4 �t̃ / t��U / t�. Thus the value of t̃ /J marking
the onset of the Nagaoka state defines a line in U / t vs t̃ / t
space. Figure 3 shows the ground state spin phase diagram
for the 8-, 10-, and 16-site periodic square lattices doped
with one extra electron. One sees that the increase in t̃ / t
causes the area of the maximal spin ground state phase to
increase for electron-doped systems.

We have also solved the nearest-neighbor Hubbard model
on square lattices with a single hole, and see virtually no
dependence of the ground state spin on t̃ / t, indicating a pro-
nounced electron-hole asymmetry. It is clear that this asym-
metry originates from the electronic states having greater ra-
dius than the hole states, since for t̃= t the problem is
electron-hole symmetric. In the general case, there is an
asymmetry even in the simple Hubbard model,27 and taking
t̃� t may yield a combined effect whereby the initial asym-
metry is enhanced.

Figure 4 shows several clusters �open boundary condi-
tions�, each less symmetric than a lattice but retaining some
spatial symmetries, that have a high-spin ground state in cer-
tain parameter ranges. The magnetic phase diagrams of the
two largest clusters are shown in Fig. 5, where t̃ / t is plotted
vs a parameter measuring the geometry of the cluster. We
again see that the increase in t̃ / t enlarges the high-spin re-

gion of the phase diagram, indicating that the high-spin state
becomes more robust.

To further test the robustness of a cluster’s high spin
ground state, we multiply each ti by a random factor � whose
logarithm is chosen from the box distribution P�log ��
=1/ �2 log 
�, log �� �−log 
 , + log 
�. This more accurately
characterizes the fluctuations we expect in a random system,
since the hopping is exponentially dependent on the intersite
distance and we do not expect the fluctuations to preserve
any symmetry present in our clusters. We start with a cluster
known to have a large spin ground state �e.g., any cluster in
Fig. 4� and average over many of the just described random
perturbations. We find that the percentage of randomly per-
turbed clusters that retain the high spin ground state of the
original cluster increases dramatically with t̃ / t �set to the
same value on all edges�. Table I shows how this percentage
depends on t̃ / t and 
 for the particular cluster IV of Fig. 4
with t1=1, t2=0.3, U=100. We see clearly that increasing t̃ / t
makes the high spin ground states of the clusters in Fig. 4
significantly more robust to geometric fluctuations present in
the actual system.

In conclusion, we have shown that on both finite �peri-
odic� lattices and less symmetric isolated clusters, increasing
t̃ / t makes the appearance of nanoscale ferromagnetism sig-
nificantly more likely. The effect is greater for large U / t,
which implies small dopant densities, well below the metal-
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insulator transition density. Such high spin states should be
observable in doped quantum dots with dopant number Nd
=6–15 and with a small excess of electrons Ne−Nd=1–2.
The same density and �excess� electron doping regime is also
the most likely region for the possible appearance of true
macroscopic ferromagnetism, e.g., in modulated structures
with dopants in both quantum wells and barrier regions, so
that a region of excess electrons can be achieved, unlike in a

true bulk doped semiconductor. However, obtaining a con-
clusive answer to this question numerically requires going
beyond the small sizes possible with exact diagonalization
methods, using, e.g., density matrix or perturbative renor-
malization group methods, in combination with other nu-
merical techniques. Even if true ferromagnetism on the mac-
roscopic scale is absent, our calculations show that there
should be a significant asymmetry between the magnetic re-
sponse of systems with excess electrons above the half-filled
�uncompensated� case, and those with a deficit of electrons
from the half-filled case �i.e., compensated�: the former
should have a larger susceptibility in the paramagnetic phase
at low temperatures. This can be experimentally checked by
using gates to tune the electron density. If ferromagnetism is
attained on large enough length scales, it may show up as
hysteresis in transport measurements due to magnetic do-
mains.
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=0.7 67 100 100
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