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The zero-temperature phase diagram of the checkerboard Hubbard model is obtained in the solvable limit in
which it consists of weakly coupled square plaquettes. As a function of the on-site Coulomb repulsion U and
the density of holes per site, x, we demonstrate the existence of at least 16 distinct phases. For instance, at zero
doping, the ground state is a novel d-wave Mott insulator �d-Mott�, which is not adiabatically continuable to a
band insulator; by doping the d-Mott state with holes, depending on the magnitude of U, it gives way to a
d-wave superconducting state, a two-flavor spin-1 /2 Fermi liquid �FL�, or a spin-3 /2 FL.
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The phase diagram of weakly correlated metals tends to
be relatively simple—superconductivity can occur at low
temperatures induced by weak attractive interactions and
spin-density waves �SDWs� and/or charge density waves
�CDWs� occur under special circumstances when the Fermi
surface is sufficiently well nested. However, with strong in-
teractions, there is no reason not to have multiple ordered
phases. Inverting this logic, one might expect competing
phases to be a generic feature of strongly interacting sys-
tems. So it becomes increasingly important to find a simple
and solvable model of strong interactions, which could serve
as a paradigmatic example showing these complexities of
competing orders.

The Hubbard model is the simplest model of a strongly
interacting electron gas, but alas, no well-controlled solution
exists in more than one dimension. Here we study the Hub-
bard model, Eq. �1�, on a checkerboard lattice with hopping
matrix element t between nearest-neighbor sites on elemen-
tary square plaquettes and t� between sites on neighboring
plaquettes. �See Fig. 1� For t�= t, this model reduces to the
usual �still unsolved� Hubbard model on a square lattice.1

For t�� t, where it is a crystal of weakly coupled “Hubbard
clusters,” we are able to establish a number of features of the
zero-temperature phase diagram, even for strong interactions,
U / t�1, using t� / t as a small parameter. �See Fig. 2� Particu-
larly striking is the large number of zero-temperature phases;
we have established the existence of at least 16 distinct
phases, and there are undoubtedly more in the portions of the
phase diagram for which we have not yet obtained a solution.
For instance, at x=0 and U�O�t��, the ground state is a
novel d-wave Mott insulator �d-Mott�, which is a true new
state of matter. More generally, the details of the phase dia-
gram depend sensitively on the choice of clusters. For ex-
ample, the phase diagram of the dimerized Hubbard model2

largely consists of a single Fermi liquid �FL� phase, plus a
band-insulating �BI� and spin-1 /2 antiferromagnetic �AF� in-
sulating phase. However, multiple competing phases appear
to be a common feature of the strong interacting limit.

Recently, there have been a number of cluster-dynamical
mean-field theory �DMFT� studies of correlated electrons.
The complexity of the phase diagram of the present model in
the t�� t limit and the strong dependence on the precise type
of clusters raise questions concerning the validity of this ap-

proach. Conversely, solvable cluster models in the small t�
limit can serve as interesting benchmark tests for such ap-
proximate approaches and for future analog simulations with
cold fermionic atoms in optical lattices.

Model Hamiltonian. The checkerboard Hubbard model,
originally studied in Ref. 2, has Hamiltonian

H = − �
�rr��,�

trr�cr�
† cr�� +

U

2 �
r

�n̂r − 1�2, �1�

where cr�
† creates an electron on site r with spin polarization

�= ↑ ,↓ and n̂r=��cr�
† cr�

. Here trr� is the hopping matrix ele-
ment from site r� to r and �rr�� denotes nearest-neighbor
sites. trr�= t or trr�= t�� t when �rr�� are a pair of sites con-
nected, respectively, by a solid bond or a dashed bond shown
in Fig. 1. We set t=1 as our energy units. Note that the model
with uniform on-site repulsion U preserves the point-group
symmetry C4v of the square lattice. The density of electrons
per site is defined to be nel�1−x where x is the density of
“doped holes” per site. Since the model is particle-hole sym-
metric, we restrict our discussion to 0�x�1.

Treating t� as a small parameter permits us to solve this
model using perturbation theory. In the unperturbed t�=0

t't

r

FIG. 1. �Color online� The schematic representation of the
checkerboard Hubbard model. The hopping amplitudes are t=1 on
the solid bonds �blue� and t��1 on the dashed bonds �black�. r
labels sites and R the plaquettes. The lattice spacing between
nearest-neighboring sites is set to 1 for simplicity.
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problem, the two-dimensional �2D� lattice consists of decou-
pled four-site square plaquettes. The Hubbard model of a
four-site plaquette is exactly solvable. The eigenstates of the
decoupled 2D system are direct products of the eigenstates
on each plaquette. For most densities x, the unperturbed
ground state is degenerate, so we use degenerate �or near-
degenerate� perturbation theory to derive an effective Hamil-
tonian in the low-energy state space.

Ground states of an isolated plaquette. The eigenstates of
a single plaquette can be specified by the number of doped
holes, Qh, the total and z component of the spin, and the
familiar orbital labels “s” �even under C4—i.e., 90° rotation�,
“px± ipy” �phase changed by ±� /2 under C4�, and “d” �odd
under C4�. For a single plaquette, the Qh=0 ground state is
unique for any positive U and has d-wave symmetry. In the
Qh=1 sector, the plaquette ground state for U�Ut	18.6 has
spin 1/2 and px± ipy orbital symmetry, i.e., it is fourfold
degenerate corresponding to spin polarizations s= ±1/2 and
orbital “chiralities” �= ±1/2. However, for Qh=1 and
U�Ut, the ground state is spin 3/2 and orbital s wave, so it
is still fourfold degenerate. When there are two holes
�Qh=2�, the ground state is unique and has s-wave symmetry
for all U. The Qh=3 ground state is �trivially� spin 1/2 and s
wave.

In adding holes to the system, the issue arises whether it is
energetically cheaper to add two holes to one plaquette or
one hole to each of two plaquettes. This is determined by the
sign of the pair binding energy3 ��E0�0�+E0�2�−2E0�1�,
where E0�Qh� is the ground-state energy of one plaquette
with Qh holes. When U�Uc	4.6, � is negative which in-

dicates that doped two holes prefer to stay in the same
plaquette, effectively forming a hard-core boson. When
U�Uc, � is positive; i.e., two holes repel each other. Note,
in Fig. 2, that the critical values of U at which level crossings
occur for the isolated plaquette figure prominently in the
phase diagram of the perturbed system, as well.

Effective Hamiltonians. Starting from these states, for
various ranges of x and U, we can derive the effective low-
energy Hamiltonian in powers of t�. Although this procedure
reduces the number of dynamical degrees of freedom, it still
leaves us with a nontrivial many-body problem, which is
only solvable in certain cases; the phases exhibited in Fig. 2
are those whose existence we have established, but there are
compelling reasons to expect additional phases to exist in the
portions of the x-U plane that we have not fully analyzed.
We will provide more details of the analysis and a discussion
of the regions of the phase diagram that have only been
partially analyzed in a future publication.4

For 0�U�O�t��, the interactions are weak, so the
zeroth-order description is in terms of bands �see below�, and
except at x=0 �where the Fermi surface �FS� is nested� and
x=1/2, where there is a BI, we expect a FL description to be
valid.

For 0�x�1/2 and O�
t���U�Uc−O�t��, 2x of the
plaquettes are occupied by a pair of holes and �1−2x� have
no holes. Identifying hole pairs as hard-core bosons, the ef-
fective Hamiltonian is

H�1� = − t�1� �
�RR��

bR
† bR� + V�1� �

�RR��

	R	R�, �2�

where the bosonic creation operator bR
† creates a hole pair on

plaquette R, 	R=bR
† bR is the number operator, and there is an

implicit no-double occupancy �hard-core� constraint. Be-
cause the zero-hole state has d-wave symmetry and the two-
hole state has s-wave symmetry, bR is a charge-2e field
which transforms like a d-wave under C4.5 Here t�1� is the
effective hopping of bosons and V�1� the repulsion between
nearest-neighbor bosons, both of order t�2. Their explicit de-
pendences on U are somewhat complicated, but we have
computed them exactly.4

For 0�x�1/2 and Uc−O�t���U�Uc+O�t��, both sin-
gly charge and doubly charged plaquettes occur, so the prob-
lem maps onto a rather complicated version of the Boson-
Fermion model, as discussed in Ref. 2.

For 0�x�1/4 and Uc+O�t���U�Ut, the low-energy
states are a mixture of no-hole and one-hole plaquettes,
where the one-hole states are further distinguished by two
possible total-spin polarizations s= ±1/2 and two orbital
chiralities �= ±1/2—i.e., px± ipy. Consequently, the effec-
tive Hamiltonian is a two-flavor version of the t-J-V model:

H�2� = − t�2� �
�RR��,s,�


R,R�fR,s,�
† fR�,s,−� + H�2,2�, �3�

where fR,s,�
† creates a fermion with spin polarization s

= ±1/2 and chirality �= ±1/2, and there is a no-double
occupancy constraint which we have left implicit. Here

R,R�is+1 �−1� if the effective bond RR� is along the x̂ �ŷ�
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FIG. 2. �Color online� Phase diagram of the checkerboard
Hubbard model for 0�x�1/2 and all U�0. Abbreviations:
“FL” =Fermi liquid; “s=n /2” =spin-n /2; “PS” =phase
separation; “AF” =antiferromagnet; “WC” =Wigner crystal;
“d-BCS” =d-wave superconductor; “d-Mott,” “d-BEC,” and
“d-CDW” are phases made of d-wave two-particle bound-states
�hard-core bosons� which are, respectively, a Bose-Mott insulator, a
superfluid, and a charge density wave; “SDW” =spin-density wave;
and “BI” =band insulator. The various phases are described in the
text.
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direction. The hopping parameter t�2� is order of t�, while
H�2,2� refers to terms of order t�

2
:

H�2,2� = J�2� �
�RR��

SR · SR� + V�2� �
�RR��

nRnR� + �
�RR��

�Jx� R
x � R�

x

+ Jy� R
y � R�

y + Jz� R
z � R�

z �, + �
�RR��

SR · SR��Jx�� R
x � R�

x

+ Jy�� R
y � R�

y + Jz�� R
z � R�

z � , �4�

where SR, �R, and nR are spin, pesudospin, and density op-
erators on plaquette R, respectively. Strictly speaking, there
are additional “pair-hopping” terms, which we have com-
puted but do not display; for x=1/4, where H�2,2� is the lead-
ing term in the effective Hamiltonian, the pair-hopping terms
vanish.

For U�Ut, the one-hole ground state of a single plaquette
has spin 3/2, so the effective Hamiltonian for 0�x�1/4 is
a t−J−V model for spin-3 /2 fermions:

H�3� = − t�3� �
�RR��,s

fRs
† fR�s + J�3� �

�RR��

SR · SR�

+ V�3� �
�RR��

nRnR�, �5�

where fRs
† is the plaquette fermion creation operator on

plaquette R with spin polarization s= ±1/2 , ±3/2 �as always
there is no double occupancy allowed� and SR and nR are
corresponding spin and density operators on plaquette R. In
this case, the effective hopping t�3� is order of t�

3
while J�3�

and V�3� are order of t�
2
. Consequently, this model always

occurs in what, for the spin-1 /2 model, is considered an
unphysical limit J�3�, V�3�� t�3�.

For U�Uc+O�t�� and 1/4�x�1/2, the effective
Hamiltonian is, again, of the form presented in Eqs. �3� and
�4� �for U�Ut� or Eq. �5� �for U�Ut�, but with different
values of the couplings. Moreover, whereas for 0�x�1/4
the vacuum state is identified with the x=0 state with 4 elec-
trons per plaquette, so the mean density of fermions per
plaquette is 4x; for 1 /4�x�1/2, the vacuum state has 2
electrons per plaquette and the mean density of fermions is
�2−4x�.

When x�1/2, the low-energy degrees of freedom are al-
ways plaquettes fermions, each of which is just an ordinary
electron. The effective Hamiltonian is the t−J−V model,
having the same form as Eq. �5�, but for spin-1 /2 fermions
with different effective parameters t�4�, V�4�, and J�4�. Here,
t�4� is order of t�, while J�4� and V�4� are order of t�

2
. So t�4�

�V�4�, J�4�.
Phase diagram. Much of the structure of the phase dia-

gram is obvious from the effective Hamiltonian. We now
sketch some less obvious aspects of the analysis.

Zero doping. Because the zero-hole ground state of a
single plaquette is unique and there is a finite gap, at x=0 the
unperturbed ground state in the limit t�→0 is a direct prod-
uct state and small t� produces only perturbative corrections
which do not change any qualitative properties of the ground
state. This is an insulating phase with no broken symmetry.
However, despite the fact that there are four electrons per

unit cell, this state is not adiabatically connected to a BI
state, since it transforms according to a nontrivial represen-
tation of the point group: from the d-wave character of the
single-plaquette wave function, it follows that the many-
body wave function changes sign under 90° rotation about a
plaquette center. One can think of this as a Mott insulating
state with one d-wave boson per plaquette; hence, we call it
a “d-Mott” state. In terms of macroscopic observable prop-
erties, this phase has at least two identifying features: �i� The
pair-field pair-field correlation function �c0↑

† cr↓
† cR↓cR+r�↑�, al-

though it falls exponentially with distance �R�, has an
asymptotic d-wave symmetry �for large �R�� upon 90° rota-
tion of r or r� separately. �ii� It is an orbital paramagnet.4,6

This d-Mott phase is a genuine new state of matter, in con-
trast with the similar state in ladder systems7,8 where there is
no C4 symmetry to unambiguously distinguish it from a band
insulator.

The fact that the d-Mott phase is not adiabatically related
to a BI implies that, even for x=0, there must be a phase
transition as a function of decreasing U. For fixed, small t�,
when U gets small enough, the gap in the isolated plaquette
is no longer large compared to t�. Specifically, when U� t�
the kinetic energy is dominant and the U term can be treated
through a weak-coupling Hartree-Fock approximation. Since
there are four sites per unit cell, there are for U=0 four bands
as follows:

�k = ± 
�t − t��2 + 4tt� cos2 kx ± 
�t − t��2 + 4tt� cos2 ky .

The top and bottom bands are well separated from the two
middle bands �k,±	 ±2t��cos2 kx−cos2 ky� by a gap of ap-
proximately 2t. Particle-hole symmetry fixes the Fermi en-
ergy at 0 for x=0, so that the FS coincides with the lines
cos kx= ±cos ky where the two bands touch. Consequently,
the FS is perfectly nested and any weak positive U induces
an SDW ground-state ordering at �� /2 ,� /2�, in which the
FS is fully gapped.

For x=1/2 there is an insulating ground state which is
smoothly connected to the BI state at U=0. For x=1, there
are no electrons, which is trivially an insulating state.

The hard-core boson model in Eq. �2� has been studied9

extensively numerically, and its T=0 phase diagram is
known. For most x� �0,1 /2� �i.e., for boson concentrations
between 0 and 1�, it has a uniform superfluid phase, which
inherits the d-wave symmetry of the bosons, but has no nodal
quasiparticles; this is labeled d-BEC in Fig. 2. At x=1/4, the
boson density is 1 /2 per plaquette; in this case, it is easy to
see �by mapping the problem to an equivalent XXZ model�
that, for V�1� / t�1��2, the ground state is a 
2
2 CDW
state of d-wave bosons, while for V�1� / t�1��2, the ground
state is superfluid. At the critical point separating these two
phases, V�1� / t�1�=2, the effective Hamiltonian has an emer-
gent SU�2� symmetry. In the present case, we find that at
U=Uc and U=Us	2.7, V�1� / t�1�=2 and that V�1� / t�1��2 for
Us�U�Uc and V�1� / t�1��2 for U�Us. Around the d-CDW
line in the phase diagram shown in Fig. 2, there is a small
two-phase coexistence or phase separation �PS� region be-
cause the transition from the d-CDW state to the d-BEC is
first-order.9,10
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The boson-fermion model which applies for U�Uc and
0�x�1/2 is quite complicated and has not been fully ana-
lyzed. However, as was shown in Ref. 2, it can be analyzed
for x�0, taking advantage of the fact that the fermions and
bosons are dilute. A similar analysis applies in terms of the
particle-hole transformed model for x�1/2. By increasing
U, there exists a crossover �the dotted line in Fig. 2� from the
d-BEC phase to a BCS-like superconducting phase �d-BCS
without nodal quasiparticles�. For even larger U, a phase
transition into a spin-1 /2 FL phase with two flavors �bands�
of fermions �FL-II� is expected for the effective model in Eq.
�3� at small x.

The spin-3 /2 t−J−V model, Eq. �5�, is similar to the spin-
1 /2 model in the weak hopping limit; this model was studied
in detail.11,12 The ground state depends on the ratio of
J�3� /V�3�. In the present problem, we obtain values of V�3� an
order of magnitude larger than J�3�. Thus, the ground state is
a spin-3 /2 FL �FL-III� for x�1/8. For x=1/8 �one fermion
on every second plaquette�, the system forms a 
2
2
Wigner crystalline �WC� state, on top of which the residual
antiferromagnetic interactions induce 22 AF order
�
2
2WC+AF�. For x=1/4, every plaquette is occupied
by a single fermion, whose spins order to yield a 
2
2 AF.
When x=1/5, there is a concentration 4�1/4−1/5�=1/5 of
unoccupied plaquettes which order in a 
5
5 WC
in the background of the 
2
2 antiferromagnetic order
�
5
5WC+AF�. A particle-hole transformation results in
a second copy of the same sequence of phases �with some-
what different energetics� for 1 /4�x�1/2.

For Uc�U�Ut and x=1/4, there is one fermion per
plaquette, so the only terms in the effective Hamiltonian that
operate are those in H�2,2�. This is a complex model with a
spin and pseudospin on each plaquette. We have solved it by
approximating the ground state as a direct product of spin
and pseudospin factors. Since the spin interactions are AF
and isotropic, they form the well-understood Néel ground-

state of the spin-1 /2 AF, in which �SR ·SR��	−1/3 for
nearest-neighboring R and R�. Then, the effective psue-
dospin Hamiltonian is

Hpscudo
�2,2� = �

�RR��
�

�=x,y,z
J̄��R

��R�
� , �6�

where J̄�=J�+J���SR ·SR��. The ordering of the pseu-

dospins is determined by the J̄� with largest absolute value.

When U�Un	7.3, −J̄x�−J̄y � J̄z�0, which indicates
that the ground state of pseudospins is ferromagnetically or-
dered along the x direction. This orbital ordering corresponds
to the fact that the electron density spontaneously breaks the
C4 rotational symmetry to C2 with no breaking of transla-
tional symmetry, so this is an “electron nematic” or “orbital
nematic” phase,13 while for Un�U�Ut there is no such
nematic ordering.4

For x=1/2, with two electrons per plaquette, the insulat-
ing ground state is adiabatically connected to the BI state at
U=0. Since the plaquette fermion hopping is the dominant
term, for 1 /2�x�3/4 and 3/4�x�1, the ground state �ex-
cept, probably, for a narrow region �x−3/4 � �O�t��� is a
spin-1 /2 FL, while at x=3/4, the ground state is a spin-1 /2
AF.

Finite temperature. The finite-T phase diagram is also
interesting14 and worth future study. For instance, at x=1/4
and for Uc�U�Un, the T=0 phase is a spin-1 /2 AF and
orbital nematic. At any finite T, the spin order is lost, leaving
a pure �Ising� nematic phase up to a nonzero critical tempera-
ture.
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