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In the weak coupling limit, we establish the phase diagram of a two-leg ladder with a unit cell containing
both Cu and O atoms, as a function of doping. We use bosonization and design a specific renormalization group
procedure to handle the additional degrees of freedom. Significant differences are found with the single orbital
case; for purely repulsive interactions, a completely massless quantum critical region is obtained at interme-
diate carrier concentrations �well inside the bands� where the ground state consists of an incommensurate
pattern of orbital currents plus a spin density wave structure.
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The challenging physics of strongly correlated systems
provides a unique opportunity to test many proposals for
new, unconventional quantum states of matter. In that re-
spect, ladders constitute a particularly interesting case.1

These one-dimensional �1D� systems behave quite differ-
ently from single chains. One can show, for instance, that for
purely repulsive interactions, they favor superconductivity in
their ground state. Understanding their properties—both
experimentally2 and theoretically—is thus interesting in its
own right but also could help us gain valuable insight into
the elusive physics of the two-dimensional cuprate supercon-
ductors.

Most studies of ladder compounds model these systems
with a single orbital per unit cell.3,4 Using a renormalization
group �RG� analysis of the Hamiltonian expressed in bosonic
variables, a phase diagram can be derived in the weak cou-
pling limit. As pointed out,3 the parameter that may be safely
tuned to arbitrary values in the weak-coupling limit is the
doping � and its variation produces a sequence of states,
labeled CnSm, with n�m� gapless charge �spin� modes. For
repulsive on-site Hubbard U terms, a C1S0 d-wave “super-
conducting” phase is found away from half filling ���0�.
Relaxing the constraint on the magnitude and on the sign of
the interactions and extending their range to more distant
sites allows one to promote other types of orders such as
orbital antiferromagnetism �OAF�.5 This state is also known
as a flux phase and was examined in the context of the two-
dimensional Hubbard model.6,7

The question of whether orbital currents could exist in
cuprate materials has received much attention. Analytical8

and numerical9 studies of a three-band model of the copper-
oxygen planes predict that, in the large U limit, a strong
Coulomb repulsion VCu-O between nearest-neighbor Cu and
O atoms favors such a phase. Recent experimental data seem
to support that picture,10 but more studies are needed to con-
firm this scenario.

We thus revisit models for ladders and include the oxygen
atoms. Here, we focus on the issue of whether their presence
causes any significant changes11 and in particular whether
orbital phases might exist for realistic choices of microscopic
interactions, for ��0.12 We establish, in the weak coupling
regime, the phase diagram as a function of hole doping of
two-leg ladders whose unit cell contains both Cu and O at-

oms, with on-site repulsions UCu �UO� on the Cu �O� sites
and a nearest-neighbor VCu-O Coulomb term. We use RG
techniques to map out the flows for the bosonized version
of the model. In contrast with the case of a single orbital
ladder we find that for an intermediate range of dopings
�c1����c2 a fully massless phase is stabilized. The value
of �c1�c2� depends on the bare magnitude of the Hubbard
terms and/or the interoxygen hopping tpp which we treat as
tunable parameters. Furthermore, increasing tpp beyond a
minimum value tpp

min promotes, for all ���c1, an incommen-
surate orbital current state. It is similar to one of the patterns
advocated by Varma8 �see Fig. 1�b��. The corresponding
phase has an additional spin-density �SDW� character for
���c2 or charge-density wave �CDW� character for ���c2.

We consider the two leg ladder of Fig. 1�a� where the
relevant hopping parameters and interactions are shown. HT
is the sum of contributions describing carrier hops plus a
term proportional to �=ECu−EO, the difference between the
Cu and O site energies. Relevant values pertaining to se-
lected copper oxide ladders have been computed in local-
density approximation,13 and we use here t�=1, �=0.5 in
units of t. HT is diagonalized in momentum space, and since
� and the various t’s are of the same order, one can safely
neglect the high energy orbitals. We are left with two low
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FIG. 1. �Color online� �a� Molecular structure of the unit cell
showing the hopping and interaction parameters included in the
Hamiltonian. �b� Orbital current pattern and SDW modulation �bold
arrows� in the C2S2 phase. The chain direction is vertical. kF0 is the
Fermi wave vector in the 0 band.
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lying bands crossing the Fermi energy EF, one bonding �0�
and one antibonding ��� combination of chain states. The
energy dispersion is linearized near EF. From the fermionic
densities, we introduce14 charge �c� and spin boson �s� fields
� for each specie. HT is
diagonal when expressed in terms of ��,	 operators �=c or
s, 	=0 or � in the B0� basis. The nonlinear terms of
Hint, denoted by Hint

NL, have a simple form in the B+− basis,
where ��,	=1/�2���,0+	��,��, 	=+ or −. When density-
density interactions are included, the quadratic part of H is
diagonal in the B0 basis where we introduce �
 operators
with 
=1,2 ,3 ,4 �1,2 are s modes and 3,4 are c modes�:

H0 = �


� dx

2�
��u
K
����
�2 + 	 u


K


��x�
�2� . �1�

The matrix S which defines the rotation of the B0 basis with
respect to B+− is given by

S =
1
�2�

P1 Q1 0 0

− Q1 P1 0 0

0 0 P2 Q2

0 0 − Q2 P2

 . �2�

Pi and Qi are expressed in terms of angles � for the spin part
and  for the charge part; P1�2�=cos ���+sin ��� and
Q1�2�=cos ���−sin ���. In the B+− basis Hint

NL reads

Hint
NL = − g1c� dr cos�2�s+�cos�2�c−�

+ g1a� dr cos�2�s+�cos�2�s−�

− g2c� dr cos�2�c−�cos�2�s−�

+ g4a� dr cos�2�s−�cos�2�s−�

+ g1� dr cos�2�s+�cos�2�s−�

+ g2� dr sin�2�s−�sin�2�s+�

+ g�c� dr cos�2�c−�cos�2�s−� . �3�

Here we use the same convention for the Klein factors as in
Ref. 15. Subscripts 1–4 have the standard g-ology meaning
and labels a to d refer to processes involving the 0 and/or �
bands. The two g1d terms, e.g., describe events where one
right- and one left-moving fermion, both belonging to the
same �0 or �� band, backscatter within that band. g1 and g2
correspond to the sum and to the difference of these
“1d”-type processes, respectively, and g2�0 when the O at-
oms are included. The g4a term has a nonzero conformal spin
so that additional interactions Gp�t��cos�4�s−��s−�� are gen-
erated during the flow. They are included in our calculations.

Since we are concerned with a priori incommensurate values
of � we drop all umklapp terms. We renormalize the cou-
plings in Eq. �3� following the usual RG procedure, where
one integrates out high energy states. This sequence is
straightforward when the quadratic part �1� is expressed in
the B0 basis, since one deals with simple Gaussian integrals
but when we express Hint

NL in the B0 basis this involves Pi and
Qi coefficients. Each RG step then generates cross terms in
H0, which implies a rotation of B0 with respect to the B+−
basis. It is thus important to include the change in S during
the flow. After the nth iteration, we denote by ��n ,n� the
angles between B0 and B+− and by K


�n� the parameters in the
B0 basis. We perform the �n+1�th RG step in the B0 basis,
which changes K


�n� �see Eq. �1�� and introduces cross terms.
We apply S−1��n ,n� to H0, which takes us back to the
�fixed� B+− basis. Finally we determine the new angles
��n+1 ,n+1� which are required to make H0 diagonal again,
with new parameters K


�n+1�.
Proceeding in incremental steps gives the additional RG

equations for the rotation of the B0 basis,

d cot 2���
dl

=
��dK1�3� − dK2�4��tan 4� + dB12�34��

K1�3� − K2�4�
dl−1.

�4�

The equations for the off-diagonal terms dB12�34� are

dB12

dl
= P1Q1��g1a

2 + g�c
2 + Gt

2� − K1K2�g1a
2 + g1c

2 + g2c
2 + Gp

2��

− K1K2h�P1�g1g2

dB34

dl
= P2Q2�g1c

2 + g2c
2 + g�c

2 � �5�

with h�P1�= ��P1Q1�2+0.25�P1
2−Q1

2��−1. Details of the RG
equations for the various g, K and for the ratio of the Fermi
velocities in the 0 and � bands will be given in a forthcom-
ing publication.16

Using the above equations we establish the phase diagram
for the ladder. In agreement with Ref. 3 we find that �̃

=
VFo+VF�

2VFo
�a ratio of Fermi velocities in the 0 and � bands�

controls the behavior of the differential equation system.
When

t�

t is constant, �̃ depends only on �. Two main factors
may significantly affect the phase diagram that was predicted
for two leg Hubbard ladders with a single orbital per site:
one is the asymmetry in the g terms due to the fact that the
projections of the Cu and O orbitals onto the 0 and � bands
have unequal amplitudes and one is the influence of the extra
parameters UO, VCu-O, and tpp. We first investigate the impact
of the asymmetry, so we set UO=VCu-O= tpp=0 and we
choose small initial values for UCu �in the range 10−6–10−1�.

�a� Small doping range. For small � ��̃�, cot 2�→0 and
cot 2→0 as the flow converges towards the fixed point,
thus B0→B+−. In this case, g2 ,g4a ,Gp ,Gt are irrelevant
while �c− and �s+ are ordered ��c−=0, �s+=0 mod 2��. This
is the C1S0 phase3 where only the total �+� charge mode is
massless. For the s− �spin-transverse� mode, terms involving
the canonically conjugated fields �s− and �s− are relevant and
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competing. d-type superconducting fluctuations �SCd� domi-
nate if �s− is locked at 0, while OAF is favored if �s−=0.
Here, SCd is always more stable for repulsive UCu. This
property holds only for ���c1=0.2, where the spin and mass
gaps go to zero.

�b� Large doping range. For ���c2=0.28, cot 2� and
cot 2→� �with opposite signs�, so B0→B0�. In this regime
only g1�−g2 are relevant and they lead to a state with one
massive spin mode �in the 0 band�. This is the C2S1 phase.
The slowest decay of correlations is observed for the CDW
operator in the 0 band. Fluctuations in the � band favor a
SDW state �when logarithmic corrections due to a marginal
operator proportional to g1+g2�0 are included� but they are
subdominant. If � is just above �c2, g1 and g2 increase very
slowly during the flow and one needs to choose larger values
for the bare UCu �still much smaller than t� to reach the
asymptotic regime with a gap in the spin mode. In contrast
with the case of a single orbital per site, the C2S1 phase is
stable, even for dopings such that EF is close to the bottom of
the � band where �̃ is very large �in that limit, we cannot
linearize the energy spectrum, but we use diagrammatic
techniques�.3 This comes from the fact that for unit cells with
Cu atoms only, g2 is accidentally equal to zero. When O
atoms are included �or when VCu-O�0� the initial g2 is non-
zero and g2 is always relevant. The nature of this C2S1 phase
is discussed in the next paragraph.

�c� Massless regime in the ��c1 ,�c2� range. As � ap-
proaches the critical end points �c1 and �c2, respectively,
from below �in the C1S0 phase� and from above �in the
C2S1 phase�, gaps in the spin and/or in the charge sectors go
to zero. All spin and charge modes are massless in the entire
range of dopings �� �0.2;0.28�. d�

dl and d
dl are very large and

the fixed point values of  ��� just below and just above �c1

��c2� are significantly different. So we approach the critical
points from the massive phases at both ends; we discard
couplings which flow to zero and thus obtain a simpler set of
equations. Next we single out terms in Eqs. �4� and �5� which
produce large values of the derivatives in this range and de-
termine the fixed point value of cot 2���. It allows us to
write down a minimal set of differential equations for the
couplings and to determine those which are relevant in the
doping range ��c1 ,�c2�. We first consider dopings close to
�c2. This corresponds to an initial value of cot 2� equal to
one. The signs of �dK1−dK2� and dB12 are the same and
positive whereas the sign of �K1−K2� is negative so that,
according to Eq. �4�, �cot 2�� decreases to zero below �c2
while above it increases to infinity. Below �c2, g1 and g2 are
not relevant and the system flows to the C2S2 phase while
above they are relevant, leading to the C2S1 phase. For �
close to �c1=0.2, �dK3−dK4� and dB34 have opposite signs.
Depending on which of the two terms dominates, �cot 2�
goes to zero or to infinity. At �c1 they are exactly equal.
�cot 2 � →� for ���c1, but, since 0.5�K4�1, one finds
that all interband couplings �as well as higher order cos�b�c�
terms with b=4,6 , . . .� are irrelevant. For �� �0.2;0.28�, all
interaction terms are irrelevant and B0� �B+−� is the eigenba-
sis for the charge �spin� modes. A numerical solution of the
full set of RG equations confirms this statement. The exis-
tence of this massless regime is essential to maintain spin

rotational symmetry in this doping range. The nature of the
C2S2 phase can be determined in the framework of the
Luttinger liquid description. In that phase, K4�K3� which cor-
responds to the 0 ��� band is smaller than �around� one.
Dominant fluctuations occur in the 0 band, and this case is
equivalent to treating a single chain problem. The only mar-
ginal couplings are g1 and g2 �g1�g2�. Including logarithmic
corrections allows us to identify the slowest decaying corre-
lation function and we find that in the ��c1, �c2� doping
range, a SDW in the 0 band �SDW�o�� is favored. In the
C2S1 state, g1�−g2�0 are relevant which gives a gap in
the spin sector of the 0 mode. In that regime, fluctuations in
the 0 band dominate, and one finds that the CDW�o� state is
the slowest decaying one.

Next, we “turn on” the parameters UO, VCu-O, and tpp and
we examine their impact on the phase diagram. In the doping
range covered by case �a�, SCd becomes less dominant over
OAF when we increase the �positive� bare value of UO or
VCu-O at fixed tpp but it is still the phase with the lowest free
energy. One would need to assume a very large attractive
bare VCu-O to cause a transition12 to an s-type SC phase
��s−=0, �s+=0, �c−=� /2�,15 which persists even as EF ap-
proaches the bottom of the � band. As far as case �b� is
concerned, we observe a reduction in the size of the gap for
positive UO and VCu-O, while for very large attractive VCu-O
the s-SC phase reenters. In case �c�, increasing VCu-O has
little effect on �c2 but it shifts �c1 to higher values. An un-
physically large ratio VCu-O /UCu�5 would be required to
suppress the massless phase and to observe a reentrant C1S0
phase with superconducting fluctuations so that in the rel-
evant case VCu-O�UCu the intermediate massless phase does
exist.

The interoxygen hopping has a more significant effect.
Increasing the value of tpp causes a concomitant decrease of
�c1 and �c2. For tpp=0.5—a value pertaining to Cu-O
ladders13—their values are about half that quoted for tpp=0.
If tpp� tpp

min, a new phase is favored when ���c1. This state
has both orbital current and DW fluctuations �DW�SDW
�CDW� for the C2S2 �C2S1� regime� and it shows similari-
ties with one of the patterns advocated by Varma8 �see Fig.
1�b��. This current phase is an eigenstate of the B0� basis �it
is invariant under the exchange of the two legs� in contrast
with the other Varma pattern or with the usual OAF. The
pattern has an incommensurate spatial periodicity �kF0

−1. The
amplitude of this order parameter is a sum of current opera-
tors between links of the Cu-O loops, of the form
tij Im�
i0

* 
 j0�, where tij is the hopping parameter from site i
to site j within the same unit cell and 
i0 is the overlap
between the �Cu or O� wave function at site i and the 0 band
eigenfunction. These quantities are of order one16 and change
by only a few percent when � increases from �c1 to the
bottom of the band. Due to current conservation, the weakest
link between atoms determines the maximal current, and we
find that, for tpp

min�0.3, the “Varma” state dominates the
DW�o�. The presence of the O sites insures that
Im�
i�

* 
 j���0��=0,��; otherwise, the current operator be-
tween Cu atoms has the usual interband form: co�

† c��.
Our predictions could be tested by performing NMR mea-

surements on the Sr14−xCaxCu24O41 compound1 where the
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hole content can be somewhat varied, as we find very differ-
ent responses of the spin modes for the Cu and O sites.16

Knight shifts K and relaxation rates T1
−1 can be evaluated in

all three regimes. For low doping we find an activated be-
havior of K �and also T1

−1� and K�T=0�=0; for high doping
the temperature dependance is similar but K�T=0��0; fi-

nally, at intermediate dopings the usual high temperature be-
havior K�T0 �saturation to the LL value� extends to T→0.
For instance, Figure 2 shows the Knight shift predicted for
the “outer” O sites �i.e., interladder bridges�.

In conclusion, we have developed a RG method to handle
correlation effects in the weak coupling limit for two leg
Hubbard ladders at generic filling, when oxygen atoms are
included in the unit cell. We have found a ground state phase
diagram where the C1S0 and C2S1 phases are present at
small and large dopings, as for the single orbital ladder, but
also an intermediate phase C2S2 which is completely mass-
less. Dominant fluctuations in the C2S2 and C2S1 states cor-
respond to orbital currents preserving the mirror symmetry
of the ladder structure on top of a SDW�o� and CDW�o�,
respectively. The stability of this phase to an interladder cou-
pling and/or to large values of the bare U are under current
investigation.
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FIG. 2. �Color online� Knight shift on the outer O sites calcu-
lated for different phases: solid line C1S0 dashed line C2S2, and
dash dotted line C2S1.
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