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A well-known self-assembled hybrid carbon nanostructure is a nanopeapod which may be regarded as the
prototype nanocarrier for drug delivery. While the investigation of the packing of Cg, molecules inside a
carbon nanotube is usually achieved through either experimentation or large scale computation, this paper
adopts elementary mechanical principles and classical applied mathematical modeling techniques to formulate
explicit analytical criteria and ideal model behavior for such encapsulation. In particular, we employ the
Lennard-Jones potential and the continuum approximation to determine three encapsulation mechanisms for a
Cyp fullerene entering a tube: (i) through the tube open end (head-on), (ii) around the edge of the tube open
end, and (iii) through a defect opening on the tube wall. These three encapsulation mechanisms are undertaken
for each of the three specific carbon nanotubes (10,10), (16,16), and (20,20). We assume that all configurations
are in vacuum and the Cg fullerene is initially at rest. Double integrals are performed to determine the energy
of the system and analytical expressions are obtained in terms of hypergeometric functions. Our results suggest
that the Cg fullerene is most likely to be encapsulated by head-on through the open tube end and that
encapsulation around the tube edge is least likely to occur because of the large van der Waals energy barriers

which exist at the tube ends.

DOI: 10.1103/PhysRevB.76.155411

I. INTRODUCTION

Carbon nanostructures such as carbon nanotubes and Cgj
fullerenes have received considerable attention for their po-
tential applications in many future nanoscale devices. This is
because of their underlying unique mechanical properties
arising from the van der Waals interaction force and their
electronic properties arising from the large surface to volume
ratio.”> The combination of a single-walled carbon nanotube
and a Cg fullerene chain, a so-called nanopeapod, also em-
bodies such properties and is a new hybrid nanostructure,
which might also be exploited as a component in nanoscale
devices. Nanopeapods were originally observed in 1998 by
Smith et al.® and later synthesized by Smith and Luzzi,* who
employ high-resolution transmission electron microscopy to
show the self-assembly of the hybrid structures. In particular,
nanopeapods may be regarded as the prototype nanocarrier
for drug delivery, where the carbon nanotube can be thought
of as the nanocontainer and the Cg, molecule chain can be
considered as the drug molecule.’

Several studies have proposed the actual assembly of
nanopeapods by utilizing either experimentation or computer
simulation. Qian et al.® employ molecular dynamics studies
and suggest that the (9,9) and (10,10) single-walled carbon
nanotubes will accept a Cq, molecule from rest but this be-
havior will not occur for the (8,8) carbon nanotube. From the
study of the energetics and electronic structures of nanopea-
pods, Okada et al.” propose that the smallest radius of a
nanotube which can encapsulate a Cq, molecule is approxi-
mately 6.4 A, which is approximately the radius of a (10,10)
carbon nanotube. This result compares well with Hodak and
Girifalco® and Cox ef al.,? but conflicts with Qian et al.® who
show that the fullerene can be accepted into a (9,9) nanotube
which has a radius of 6.102 A. Moreover, from Okada
et al.,” Hodak and Girifalco,® and others,>!%-13 it is con-
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firmed that the encapsulation energy of nanopeapods de-
pends only on the tube radius, and that it is independent of
the tube chirality.'?

There are three possible scenarios for Cg, molecules to
become encapsulated into a carbon nanotube and form a
nanopeapod. The first such scenario is that the C4y molecule
is sucked in through the tube open end when the Cyg,
fullerene is originally located outside the tube but situated on
the tube axis, and in a head-on configuration."* The encap-
sulation of the Cg fullerene around the edge of the tube is a
second possible scenario and the final possible scenario is the
absorption of the Cg, fullerene through a large defect open-
ing on the tube wall. These three encapsulation scenarios are
investigated by Berber et al.,'> who use the electronic Hamil-
tonian method, and Ulbricht and Hertel'* and Ulbricht
et al.,'® who utilize molecular dynamics calculations based
on the Lennard-Jones potential function. Berber et al.'3 sug-
gest that the encapsulation of the Cy, molecule is most likely
to occur at a defect opening of the tube wall. In contrast,
Ulbricht and Hertel'* and Ulbricht et al.'® propose that the
Cy fullerene is most likely to be encapsulated by head-on at
the tube ends. Moreover, they find that although encapsula-
tion around a tube edge and absorption at a defect opening
can occur, these outcomes are less likely.

To the authors’ knowledge, very little work has been un-
dertaken on the mathematical modeling to describe the en-
capsulation behavior of nanopeapods. The aim of this paper
is to utilize fundamental mechanical principles and conven-
tional applied mathematical modeling to determine the en-
ergy behavior for these three encapsulation scenarios of the
Cgp fullerene. In addition, the Lennard-Jones potential func-
tion for nonbonded atoms and the continuum approximation,
which assumes that the interatomic interactions can be mod-
eled by smearing the atoms uniformly across the surfaces,
are employed to determine the van der Waals energy for the
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Cyo fullerene encapsulated into a carbon nanotube. In par-
ticular, we investigate (10,10), (16,16), and (20,20) carbon
nanotubes whose radii are in the range 6.27—13.57 A follow-
ing Hodak and Girifalco'” who determine fullerene peapod
patterns. Carbon nanotubes with radii smaller than that of a
(10,10) nanotube are not studied here, since it has already
been shown that a Cy fullerene will not be sucked into such
tubes (see, for example, Cox et al.’). Generally, for (n,m)
carbon nanotubes, where n and m are integers, the corre-
sponding radius, denoted here as b, is determined from

[
b=oV3(n®+nm+m?)/2, (1)

where o is the C-C bond length and throughout this paper o
is taken to be 1.42 A. We comment that by adopting the
continuum approximation, the chirality effect of a carbon
nanotube is not taken into account, and the use of (n,m) in
this paper therefore refers only to a representative of the tube
size given by Eq. (1). In all cases, a vacuum environment
and an isothermal mechanical system are assumed, and the
Cy fullerene is assumed initially to be at rest. The Lennard-
Jones potential function is described in the following section.
In sections III and IV, the investigations for the C¢, molecule
encapsulated (i) head-on at the tube end and (ii) around the
tube edge are examined. Section V presents the absorption of
the Cg fullerene through a defect opening on the tube wall.
Finally, a summary is presented in Sec. VI.

II. POTENTIAL ENERGY FUNCTION

The Lennard-Jones potential function for nonbonded mol-
ecules and the continuum approximation are employed here
to determine the energy of the system. The total interaction
energy for two nonbonded molecules is obtained by perform-
ing two double integrals for the two molecules and is given

by
A B
E=771772ff (—_6"'?)07216{22, (2)
RN 0T

where 7, and 7, denote the mean atomic surface densities of
the first and the second molecules, respectively, and r is the
distance between two typical surface elements d3, and d2.,.
A and B are the attractive and the repulsive Lennard-Jones
constants, respectively.

The continuum approach using the Lennard-Jones poten-
tial has been successfully employed in a number of studies to
determine the van der Waals interaction energy and the force
between two carbon nanostructures. Girifalco'® determines
the interaction energy between two Cg, fullerenes, and then
Girifalco et al.' extend the study to find the energy between
two identical parallel carbon nanotubes of infinite length and
between a carbon nanotube and a Cg, fullerene. Further,
Hodak and Girifalco?® propose an energy formula for univer-
sal graphitic systems including the interaction of an ellipsoid
inside a single-walled carbon nanotube. Ruoff and
Hickman?' consider the interaction between a spherical
fullerene and a graphite sheet. Henrard et al.>? use a tech-
nique similar to that of Girifalco'® and obtain the potential
for bundles of single-walled carbon nanotubes. For spherical
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carbon onions Cy @Cy, (N,>N)), Iglesias-Groth er al.*
also adopt the Lennard-Jones potential and the continuum
approximation to determine the interlayer interaction. By us-
ing the formula of Iglesias-Groth et al.,”* Guérin®* obtains
the interaction energy between the interlayer of carbon on-
ions which is in excellent agreement to those obtained from
discrete atom-atom summation model given by Lu and
Yang.?> Further, it is also shown by Verberck and Michel?®
that for large carbon nanotubes (b=7.5 A), the continuum
approach agrees well with an atomistic model. We note that
it is possible to combine both the continuum and discrete
approaches to model an interaction between two nanostruc-
tures. As shown by both Verberck and Michel?® and Hilder
and Hill,”’ the single-walled carbon nanotube is modeled as a
continuum, while the fullerene is assumed to retain its dis-
crete atomic structure. Finally, we note that the validity of
using the continuum approach over the discrete atom-atom
model is discussed by Girifalco et al.'"® who point out that
from a physical point of view, both discrete (e.g., molecular
dynamical simulations) and continuum models make as-
sumptions that are incorrect, and perhaps it can be argued
that the continuum model is closer to reality.

To determine the interaction energy between a spherical
fullerene and a carbon nanotube for a typical point on the
carbon nanotube, we first perform the surface integral of the
Lennard-Jones potential over the sphere. Following the work
of Cox et al.®*® for a typical point on the tube, the potential
energy between the Cg, fullerene is given by

P_27]f7Ta|:é( . )
p [4\(pt+a)* (p-a)*

e
"0\ Gpra® (p-a®) ]’ G)

where 77, denotes the mean atomic surface density of the Cg
molecule, a is the radius of the Cg, fullerene which is
3.55 A, and p is the distance from the center of the Cg,
molecule to the surface of the carbon nanotube. Moreover,
Eq. (3) can also be rewritten as

P edn? [B( 5,804
=4ma*n| —
f 5 (p2—a2)6 (pz_a2)7
336a* 5124° 256a*
(0? - a)® + (0 —a)° + (02— )10

1 2a®
AN T ) | )

III. ENCAPSULATION OF Cg4, BY HEAD-ON
AT AN OPEN END

+

The encapsulation of a Cg, molecule into a single-walled
carbon nanotube by head-on at the tube open end, as shown
in Fig. 1, is determined here. We assume that the Cg,
fullerene is located on the tube axis and initially at rest. In
fact, this is the model of Cox et al.” for the acceptance con-
dition and suction energy of the Cg fullerene and the single-
walled carbon nanotube.
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(bcosb, bsing, z)

FIG. 1. Cgy fullerene encapsulated in carbon nanotube by
head-on at open end.

With reference to a rectangular Cartesian coordinate sys-
tem (x,y,z) with origin located at the tube end, a typical
point on the surface of the tube has the coordinates
(b cos 0,bsin 0,z), where b is the radius of the semi-infinite
tube. Similarly, with reference to the same rectangular Car-
tesian coordinate system (x,y,z), the center of the Cg, mol-
ecule has coordinates (0,0,Z), where Z is the distance in the
z direction which can be either positive or negative. Thus,
the distance p between the center of the Cg, fullerene and a
typical point on the tube is given by

pP=b>+(z-2)% (5)

Using the Lennard-Jones potential function together with the
continuum approximation, the total potential can be written

as
E=b77gj desz,
-7 Y0

where P is defined in Eq. (4), 7, represents the mean atomic
surface density of the carbon nanotube, and p is given in Eq.
(5). The integrals which need to be evaluated are all of the

form
G fﬂ J“’ ! dzd 6
n= NS
7 Jo (pz_az)

T ® 1
_f—w o [BP=a’+(z-2)T"

where n is a certain positive integer. It is clear that Eq. (6) is
independent of # so that we may deduce

* 1
G,= 27Tf0 TSRy —Z)z]”dz' (7)

The details for the analytical expression of Eq. (7) are pre-
sented in Appendix A and the numerical solution is now
evaluated as follows.

Using the parameter values in Table I, we show graphi-
cally in Fig. 2 the relation between the potential energy and
the distance Z for the Cgqy molecule encapsulated into the
(10,10), (16,16), and (20,20) carbon nanotubes by head-on.
The energetically most favorable location for the Cg
fullerene is inside the tube, in the positive direction of Z, for
all three cases, which is shown in Fig. 2. Furthermore, the
binding energies which are the energies required to separate
the two bodies are 3.222, 0.326, and 0.109 eV for the
(10,10), (16,16), and (20,20) carbon nanotubes, respectively.

dzdo, (6)
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TABLE 1. Values of constants [* denotes the data taken from
Girifalco et al. (Ref. 19)].

Radius of Cg (a) 3.55 A
Radius of (10,10) (b) 6.784 A
Radius of (16,16) (b) 10.846 A
Radius of (20,20) (b) 13.557 A
Attractive constant-Cgg-graphene (A) 17.4 eV A%

Repulsive constant-Cg-graphene (B) 29.0X10% eV A'>*
Mean surface density of Cg (7,) [60/ (4ma®)] 0.3789 A2

Mean surface density of carbon nanotube (7,) 0.3812 A2
[4V3/(90%)]

C-C bond length (o) 142 A

We observe that the lowest potential energy occurs for the
case of the (10,10) tube, since the preferred location of the
Cgo molecule is on the tube axis.'” As a result, offset loca-
tions from the tube axis for the (16,16) and (20,20) tubes are
required to give rise to the most stable configurations
and these details can be found in Girifalco et al.'® and
Cox et al.”®

IV. ENCAPSULATION OF C4 AROUND THE EDGE
AT AN OPEN END

In this section, the energy for a C4y molecule encapsulated
into a carbon nanotube by entering the tube around the tube
edge at the open end is investigated. With reference to the
same rectangular Cartesian coordinate system (x,y,z), a
typical point on the surface of the tube has the coordinates
(b cos 0,b sin 0,z), where b is the radius of the semi-infinite
tube. Similarly, with reference to the rectangular Cartesian
coordinate system (x,y,z), the center of the Cq, molecule
has coordinates (x,0,Z), where Z is the distance in the z
direction which can be either positive or negative. The dis-
tance Z and the coordinate x can also be described in terms
of an angle ¢ and the distance r in the radial direction which
are Z=rcos ¢ and x=rsin ¢+b, as illustrated in Fig. 3.

Distance Z (A)

‘ ““““ 5 10
o T
L
>
=y
g —(10,10)

i; ———————— (16,16)
-g (20,20)
°
~

-2.0-4

-2.54

-3.0-

FIG. 2. (Color online) Energy profile for Cg, encapsulated by
head-on at open end.
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(bcosb, bsinb, z)

FIG. 3. Cq fullerene encapsulated in carbon nanotube around
edge at open end.

Thus, the distance p between the center of the Cg fullerene
and a typical point on the tube is given by

p?=(bcos 0—x)+b*sin’ O+ (z - Z)?
= (b -x)>+4bx sin*(6/2) + (z - Z)°. (8)

The total potential energy is obtained by integrating P, which
is defined by Eq. (4), over the tube length and the angle 6.
Thus, there is one form of the integral which needs to be
evaluated and we may deduce

™ @ 1
H, - J f L, ©)
-7 Y0 (P2 - aZ)

where p is given by Eq. (8). Further, there are three possible
expressions for Eq. (9) and these details are presented in
Appendix B. Although the analytical expressions for Eq. (9)
are clearly complicated, numerical values may be readily
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evaluated using the algebraic computer package MAPLE. We
note that the total potential energy in terms of the distance r
and the angle ¢ can be obtained by replacing Z=r cos ¢ and
x=rsin ¢+b.

To confirm our results, the numerical evaluation for the
encapsulation of the Cg, molecule around the edge at the
tube end is determined using both the polar coordinate sys-
tem and the Cartesian coordinate system expressions for the
integrals. In terms of the polar coordinate system, we show
numerically the relation between the binding energy and the
groove site for different angles ¢, as presented in Table II.
We observe that the lowest binding energy occurs at ¢
=~ 165° for all three cases due to the edge effect. Conse-
quently, this value of ¢ is the critical value whether or not
the Cqy molecule is encapsulated into the tube. The termi-
nology “groove site,” refers to the cross-sectional location
adopted by the Cg fullerene in the carbon nanotube, and it is
defined as the distance between the tube edge and the center
of the fullerene at equilibrium. The groove sites are obtained
as 6.775, 6.540, and 6.550 A for $=270° and for each of the
(10,10), (16,16), and (20,20) tubes, respectively. These val-
ues are equivalent to 0.009, 4.306, and 7.007 A, respectively,
away from the tube axis to the center of the Cg, fullerene in
the x direction, which are in agreement with the work of Cox
et al.*8

In terms of the Cartesian coordinate system, the potential
energy of the system depends on both distances in the x and
z directions. We show graphically an example of the poten-
tial energy versus the distance Z for the encapsulation of the
Cy fullerene into the (10,10) tube. Primarily, our interest is
in the positive z direction where the Cy, molecule is located

TABLE II. Numerical values for binding energy (BE) in eV and the groove site (GS) in A for a Cgq
fullerene encapsulated in a carbon nanotube around the tube edge at the open end for different angles ¢.

(10,10) (16,16) (20,20)
BE GS BE GS BE GS
15° 0.53424 25.16055 0.58315 25.14903 0.60398 25.14903
30° 0.53026 13.01349 0.57883 13.00486 0.59953 13.00486
45° 0.51050 9.18529 0.55756 9.20351 0.57737 9.18603
60° 0.45467 7.53991 0.49675 7.56151 0.51479 7.54922
75° 0.35970 6.77549 0.39343 6.79463 0.40775 6.81484
90° 0.26722 6.47536 0.29169 6.51166 0.30211 6.51166
105° 0.20322 6.32529 0.22146 6.36167 0.22892 6.35916
120° 0.16640 6.30654 0.17929 6.32301 0.18476 6.32103
135° 0.14647 6.26761 0.15413 6.21275 0.15967 6.28291
150° 0.13894 6.26761 0.14378 6.21275 0.14722 6.28291
165° 0.14169 6.26761 0.14250 6.21275 0.14412 6.28291
180° 0.15563 6.26761 0.14998 6.21275 0.14929 6.28291
195° 0.18511 6.26761 0.16666 6.21275 0.16318 6.28291
210° 0.24079 6.30654 0.19779 6.30216 0.18779 6.28291
225° 0.34809 6.34427 0.24633 6.30216 0.22694 6.32103
240° 0.56623 6.44215 0.32206 6.34055 0.28746 6.32103
255° 1.01175 6.66655 0.43751 6.42551 0.38012 6.40225
270° 1.62119 6.77519 0.60665 6.53999 0.51827 6.55048
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Potential energy (A)

Distance x (A)

Distance Z (A)

FIG. 4. (Color online) Energy profile for C4, encapsulated into a
(10,10) tube.

above the tube. As shown in Fig. 4, the Cg fullerene will not
be encapsulated into the tube if its location is far away from
the edge of the tube. This is because of the lower energy
level at that position and the high energy peak near the tube
end. However, a nanopeapod might be formed if an initial
energy is given for the Cg, molecule to overcome the energy
barrier. The Cg, fullerene has a greater probability of encap-
sulation around the tube edge if it is initiated from rest closer
to the tube edge. If the value of x is greater than 13.034 A,
the Cg, fullerene has no chance of being sucked into the
carbon nanotube since the global minimum energy position
is located further along the tube in the positive z direction.
We note that for the Cqq molecule which can overcome the
energy barrier and located in the negative z direction, the
analysis for the suction by head-on applies for the encapsu-
lation.

V. ENCAPSULATION OF Cg, AT A DEFECT OPENING
ON THE TUBE WALL

In this section, we determine the potential energy for a
Cy fullerene encapsulated into a carbon nanotube at a defect
opening on the tube wall which is centrally located midway
along the tube length. Since the Lennard-Jones potential is
only effective at short range, the carbon nanotube is assumed
to be infinite in length. From Eq. (2), the total potential en-
ergy of the system is obtained by subtracting the total energy
for the Cg fullerene interacting with the defect pad from the
total potential energy for the Cg, fullerene interacting with
the infinite carbon nanotube, as illustrated in Fig. 5.

Again, with reference to the rectangular Cartesian coordi-
nate system (x,y,z), a typical point on the surface of the tube
has the coordinates (b cos 0,b sin 6,z), where b is the radius
of the infinite tube. Similarly, with reference to the rectangu-
lar Cartesian coordinate system (x,y,z) with origin located at
the center of the tube, the center of the Cqy, molecule is
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FIG. 5. Cg fullerene encapsulated in carbon nanotube at defect
opening on the tube wall.

assumed to have coordinates (x,0,Z), where Z is the distance
in the z direction which can be either positive or negative.
Thus, the distance p between the center of the Cg fullerene
and a typical point on the tube is given by

p*=(bcos 6—x)>+b*sin® 0+ (z - Z)?
=(b-x)%+4bx sin*(6/2) + (z - Z)%. (10)

Thus, the total potential energy for the entire tube interacting
with the Cg, fullerene is given by

Etubezbﬂgf J szda’ (11)

where 7, denotes the mean atomic surface density of the
carbon nanotube, P is defined by Eq. (4), and p is given in
Eq. (10). The defect pad is assumed occupied in the region
Ze(-L,L) and 6e(-6,,0,) so that the interacting energy
between the Cq, molecule and the defect pad is given by

6 L
Epaa=bn, f f Pdzd, (12)
—6p Y -L

where p is again given by Eq. (10). Thus, the total potential
energy for the Cg fullerene encapsulated in the carbon nano-
tube at the defect opening on the tube wall is obtained from

T s 0y L
E=b7]g<f f szdﬁ—f f szdﬁ). (13)
- v -0 -6y Y -L

By precisely the same analytical method as shown in Sec. IV,
we separately determine Eqgs. (11) and (12) and numerically
calculate the total potential energy (13) for the system.
Numerical solutions for the Cg, encapsulated into the
(10,10), (16,16), and (20,20) carbon nanotubes at the defect
opening on the tube wall are determined here. The defect pad
is arbitrarily chosen to be a square such that the length L is
the radius a of the Cg, fullerene plus the equilibrium inter-
spacing between the Cg, fullerene and the graphene which is
3.25 A" Using the arc length formula s=h#6, we adopt the
limit of the integration 6, to be determined from L=506,. We
note that varying 6, has only a minor effect on the energy
profile and that the overall properties of the system remain
the same when L is greater than the critical value 6.8 A.
We examine the relation between the potential energy and
the distance Z for the different values of x, which is the
interspacing between the Cqy molecule and the tube wall,
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Potential energy (eV)
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FIG. 6. (Color online) Potential energy profile along the (10,10)
tube.

and we obtain similar behavior for all cases. An example for
the energy profile for the interacting of the C4, molecule and
the (10,10) tube is shown in Fig. 6. In terms of the binding
energy, we concern such energy at both edges of the defect
pad because of the point force singularity effected from the
edges. In this case, we obtain an approximate value at
0.225 eV from both edges of the defect pad. Using the Boltz-
mann formula 3k7/2 for kinetic energy, this corresponds to a
temperature of approximately 1972 K, and therefore to
achieve the same effect at room temperature requires an en-
ergy of 0.039 eV. We also observe two potential energy
peaks near the edges of the defect pad for x<13.034 A so
that if the Cqy molecule is located outside the region of the
pad, an initial energy is required for the Cg fullerene to be
absorbed into the nanotube. However, the Cgy molecule is
spontaneously sucked in through the defect opening when its
position is directly above the defect. Furthermore, if the
value of x is greater than 13.034 A, the global minimum
energy position is always located outside the region of the
pad along the tube in the z position. Subsequently, the Cg,
fullerene will not be adsorbed through the pad and a nano-
peapod cannot be formed.

VI. SUMMARY

This paper considers three suction site scenarios for a Cg,
molecule entering a carbon nanotube, which are (i) by
head-on at the tube open end, (ii) around a tube edge at the
tube open end, and (iii) at a defect opening on the tube wall.
The Cg, fullerene is assumed to be initially at rest prior to
entering into the three specific carbon nanotubes (10,10),
(16,16), and (20,20) in a vacuum environment. We employ
the Lennard-Jones potential function and the continuum ap-
proximation, and double surface integrals are performed to
determine the potential energy which may be expressed in
terms of the hypergeometric function. Due to the compli-
cated analytical expressions, numerical evaluations are per-
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formed by using the algebraic computer package MAPLE.
The binding energies for the three encapsulation mecha-
nisms are compared and it is found that the Cg, molecule is
most likely to enter through the carbon nanotube by the
head-on configuration. This is because of the overall attrac-
tive force arising from the entire tube, and this mechanism
avoids the point force singularity acting at the tube edge.
Absorption at a defect is the second most likely mechanism
to form the nanopeapod. There is an effect from the edges of
the defect, but when the Cg, fullerene is directly above the
defect, it is a straightforward matter for the Cg fullerene to
be sucked into the tube. The least feasible mechanism to
encapsulate the Cq fullerene is entering around the edge of
the tube open end, since the Cgy molecule must overcome
strong repulsive forces at the tube end and change the mov-
ing direction to enter into the tube. As a result, the quantita-
tive investigation in this study is in agreement with previous
studies such as those by Ulbricht and Hertel'* and Ulbricht
et al.,'® but our predictions contradict those of Berber et al.'
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APPENDIX A: EVALUATION OF INTEGRAL (7)

Equation (7) is determined here. First, we define the inte-
gral G, which can be written as

G*—fo dz
n— 0 [b2_a2+(Z_Z)2]n'

On letting N>=h?—a” and making x=z—Z, we may deduce

G*—fx dx
n— . ()\2+x2)n’

where 7 is a certain positive integer. We are led to make the
substitution x=A\ tan s and we may deduce

& fw/z \ sec? i
! —tan_l(Z/)\) )\Zn SeCZn (v[/

1 /2
= _2n—1J cog2=D Pdifs. (A1)
A tan’l(Z/)\)

The evaluation for Eq. (A1) can be found in Gradshteyn and
Ryzhik?® (p. 149, No. 2.513 3) from which we may deduce

1 2(n—-1
f cos”"!) ydiy= 2z<n—1>[< (:1_ 1>) ) v

’g (2(n— 1))sin[(2n —2k—2)]
" k n-k-1) |’

=0
(A2)

where (:1) is the binomial coefficient. By evaluating Eq. (A2)
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at =/2 and = —tan™!(Z/\), an analytical expression for
G, may be obtained.

APPENDIX B: EVALUATION OF INTEGRAL (9)

In this appendix, we evaluate integral (9) where p’=(b
—-x)2+4bx sin(0/2)+(z—=2Z)>.  On letting AN*=(b-x)?
+4bx sin*(6/2)—a?, we obtain

w © 1
H, = S 555,dzd0,
! f_wfo N+ (-2

where n is a certain positive integer. On making the substi-
tution u=z—Z7, we may deduce

k ® l
H,= ———dudf
n f—wJ—Z ()\2+u2)n U

T /2 N SCC2 ¢
= 2n 2n d(ﬂdﬁ,
- —tan_l(Z/}\) A" sec lzb
where the final line is obtained by substituting x=N\ tan ¢.
Finally, we have

I_LF<£ L.
ST2b+x) \2727 T (b+x)?

o0

- s (1/2)(1/2);

Jor= 26 +x)[(b+x)*+ 22 (11)?

o  ®

X, T ) 72251

(1/2)5(6"/2)5
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1 T /2
] f f cos>"V ydyid 6.
A 7 J —tan™! (ZIN)

By using the formula given by Eq. (A2) and evaluating the
above equation at ¢=7/2 and =—tan"'(Z/\), there are
three forms for the integral for 6 € (0, 7/2) which need to be
determined and they are given by

H,=

/2 dv
Ie=| 5o
v fo NN+ 22

/2 1 O Z
K= S tan™| = |dv,
o N A

where \ is defined by N?>=(b—x)>+4bx sin*(v/2)—a®. The
integrals in Eq. (B1) are evaluated in Baowan et al.’° and
yield

(B1)

4bx )

F<1+. g ){ 4bx }
2 T T e 2) 2]

T 2(b+x)' 5 5 22K (k)2 2k + D[(b +x)% + 221

F<1 1 e 4bx ) 4bx |
PR S R :
(i1)? 2" Db+ 22| (b+x)?

where F(a,b;c;z) denotes the standard hypergeometric function.

'M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of
Fullerenes and Carbon Nanotubes, 1st ed. (Academic, Califor-
nia, 1995).

2p. J. F. Harris, Carbon Nanotubes and Related Structures, 1st ed.
(Cambridge University Press, Cambridge, UK, 2003).

3B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature (London)
396, 323 (1998).

4B. W. Smith and D. E. Luzzi, Chem. Phys. Lett. 321, 169 (2000).

SM. Otani, S. Okada, and A. Oshiyama, Phys. Rev. B 68, 125424
(2003).

5D. Qian, W. K. Liu, and R. S. Ruoff, J. Phys. Chem. B 105,
10753 (2001).

7S. Okada, S. Saito, and A. Oshiyama, Phys. Rev. Lett. 86, 3835
(2001).

8M. Hodak and L. A. Girifalco, Phys. Rev. B 68, 085405 (2003).

9B. J. Cox, N. Thamwattana, and J. M. Hill, Proc. R. Soc. London,
Ser. A 463, 461 (2007).

10A. Rochefort and CERCA-Groupe Nanostructures, Phys. Rev. B
67, 115401 (2003).

'E. Gonzilez Noya, D. Srivastava, L. A. Chernozatonskii, and M.
Menon, Phys. Rev. B 70, 115416 (2004).

I2M. Yoon, S. Berber, and D. Tomanek, Phys. Rev. B 71, 155406
(2005).

I3K. H. Michel, B. Verberck, and A. V. Nikolaev, Phys. Rev. Lett.
95, 185506 (2005).

%H. Ulbricht and T. Hertel, J. Phys. Chem. B 107, 14185 (2003).

158, Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. Lett. 88,
185502 (2002).

1. Ulbricht, G. Moos, and T. Hertel, Phys. Rev. Lett. 90, 095501
(2003).

7M. Hodak and L. A. Girifalco, Phys. Rev. B 67, 075419 (2003).

18L. A. Girifalco, J. Phys. Chem. 96, 858 (1992).

L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62, 13104
(2000).

155411-7



BAOWAN, THAMWATTANA, AND HILL

20M. Hodak and L. A. Girifalco, Chem. Phys. Lett. 350, 405
(2001).

2IR. S. Ruoff and A. P. Hickman, J. Phys. Chem. 97, 2494 (1993).

221, Henrard, E. Herndndez, P. Bernier, and A. Rubio, Phys. Rev. B
60, R8521 (1999).

33, Iglesias-Groth, J. Breton, and C. Girardet, Chem. Phys. Lett.
264, 351 (1997).

24H. Guérin, J. Phys. B 30, L481 (1997).

PHYSICAL REVIEW B 76, 155411 (2007)

25]. P. Lu and W. Yang, Phys. Rev. B 49, 11421 (1994).

26B. Verberck and K. H. Michel, Phys. Rev. B 74, 045421 (2006).

21T, A. Hilder and J. M. Hill, J. Phys. A 40, 3851 (2007).

28B. J. Cox, N. Thamwattana, and J. M. Hill, Proc. R. Soc. London,
Ser. A 463, 477 (2007).

1. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and
Products, 6th ed. (Academic, New York, 2000).

30D, Baowan, N. Thamwattana, and J. M. Hill (to be published).

155411-8



