
Interacting electrons in graphene studied under the renormalized ring diagram approximation

Xin-Zhong Yan1,2 and C. S. Ting1

1Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA
2Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China

�Received 18 May 2007; revised manuscript received 18 June 2007; published 1 October 2007�

Using the tight-binding model with long-range Coulomb interactions between electrons, we study some of
the electronic properties of graphene. The Coulomb interactions are treated with the renormalized ring diagram
approximation. By self-consistently solving the integral equations for the Green’s function, we calculate the
spectral density. The obtained result is in agreement with experimental observation. In addition, we also
compute the density of states, the distribution functions, and the ground-state energy. Within the present
approximation, we find that the imaginary part of the self-energy fixed at the Fermi momentum varies as
quadratic in energy close to the chemical potential and then shows a linear dependence at larger energies within
a certain range, regardless of whether the system is doped or not. This result appears to indicate that the
electrons in graphene always behave like a moderately correlated Fermi liquid.
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I. INTRODUCTION

Graphene is a single-layer honeycomb lattice of carbon
atoms coated on the surface of some materials.1,2 The Dirac
cone structure in the energy spectrum is responsible for some
of the unusual properties of the system.3–5 The study of the
behaviors of electrons in graphene is one of the currently
focused areas in the condensed-matter physics. In the theo-
retical investigations, most of the calculations are based on
the continuous model with simplified Dirac cone
dispersion,6–9 and the Coulomb interactions between elec-
trons are treated in the random-phase approximation �RPA�.
Since the interactions are correctly taken into account in the
long-wavelength limit, this approach should reasonably de-
scribe the low energy behaviors of the electrons within the
validity of RPA. In such a model, however, the lattice-
structure effect and the short-range part of the Coulomb in-
teraction have been completely neglected. Thus, it is desir-
able to explore this problem by a more realistic approach
including the effect of the graphene lattice and a self-
consistent scheme beyond the RPA.

In this paper, we use the tight-binding model defined on
the two-dimensional honeycomb lattice to formulate the
Green’s function theory of electrons in graphene. In the self-
energy of the Green’s function, the Coulomb interactions are
taken into account with the renormalized ring diagram ap-
proximation �RRDA�. This approximation is well known to
satisfy the microscopic conservation laws.10 Our recent in-
vestigation of the two-dimensional electron system11 shows
that the RRDA can accurately reproduce the result of the
fixed-node-diffusion Monte Carlo simulation for the ground-
state energy.12 It is therefore expected that the RRDA could
give a more reliable description of the behaviors of electrons
in graphene.

II. LATTICE STRUCTURE AND FOURIER TRANSFORM

For the readers’ convenience, we here briefly review the
structure of a honeycomb lattice and its reciprocal lattice.13,14

For the sake of numerical computation, we will also present

the mapping between coordinates defined on the basic vec-
tors of the honeycomb lattice and the orthogonal coordinates.

The graphene lattice is of the honeycomb structure, as
shown in Fig. 1. A set of basic displacement vectors of the
lattice is

a1 = �1,0�a , �1�

a2 = �1

2
,
�3

2
�a , �2�

where a is the lattice constant. We will chose a as the unit of
length, and thereby set a=1 hereafter. The area of the unit
cell is

S =
�3

2
�3�

in the unit of a2=1. The whole lattice can be viewed as a
tilted quadrilateral lattice consisting of the unit diamond
cells. There are two sites in each unit cell: black and green.
With a1 and a2, we then define the unit vectors of the recip-
rocal lattice shown in Fig. 2. They are given by

b1 = a2 � z/S = �1,−
1
�3

� , �4�

b2 = z � a1/S = �0,
2
�3

� , �5�

where z is the unit vector in the direction of a1�a2. The
basic displacement vectors of the reciprocal lattice are 2�b1
and 2�b2. The first Brillouin zone �BZ� is the hexagon. The
diamond enclosed by the red dashed lines in Fig. 2 is an
equivalent first BZ, which is a convenient choice for numeri-
cal calculation.

For the use of numerical calculation, we here write down
the transform between the coordinates on the basis of �a1 ,a2�
and the orthogonal axes in real space. Consider a vector r�
= �x ,y� in the representation of �a1 ,a2�. We denote this vector

in the orthogonal coordinate system as R� = �X ,Y�. Then, the
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correspondence between these two sets of coordinates is
given by

X = x +
y

2
, �6�

Y =
�3

2
y . �7�

The matrix T̂ of the transform R� = T̂r� is therefore given by

T̂ =�1
1

2

0
�3

2
	 , �8�

where the first and second columns are the coordinates of
vectors a1 and a2, respectively. Analogously, in the momen-
tum space, we obtain the transform between the coordinates

of a vector Q� defined in the orthogonal system and its pro-
jections q� on the basis �b1 ,b2�. Denoting the transform as

Q� =M̂q� , we have

M̂ = �
1 0

−
1
�3

2
�3
	 , �9�

where the first and second columns are, respectively, the vec-

tors b1 and b2. The two matrices T̂ and M̂ are related by

M̂ = T̂�−1, with T̂� as the transpose of T̂.
For later use, we here discuss the Fourier transform. The

function F�R� � defined on the honeycomb lattice sites can be
expanded as

F�R� � = 

BZ

dQ�

SBZ
F�Q� �eiQ� ·R� , �10�

where the Q� integral is over the first BZ with SBZ

=2�2��2 /�3 as its area, the components of R� and Q� are

given in the orthogonal coordinate system, and F�Q� � is the

Fourier component of the function F�R� �. �A function and its
Fourier component are distinguished by their arguments in
this paper. We also adopt the convention that a capital vector
implies its components defined in the orthogonal coordinate
system, while a lowercase vector means that its components
are given in the basis �a1 ,a2� in real space or �b1 ,b2� in the

momentum space.� In the basis �a1 ,a2�, the function F�R� � is

given by F�T̂r��� f�r��. From Eq. �10�, we get the expansion
for the function f�r��,

f�r�� = 

BZ

dq�

�2��2F�M̂q��eiq� ·r�. �11�

Therefore, the Fourier component of f is given by f�q��
=F�M̂q��. This relationship is useful for the Fourier transform
of the Coulomb interaction.

III. TIGHT-BINDING MODEL

For describing the electron system, we use the tight-
binding model in which the nearest-neighbor hopping and
the Coulomb interaction are taken into account. Firstly, we
consider the hopping term,

a1

a2

X

Y

FIG. 1. �Color online� The structure of a honeycomb lattice. The
basic vectors of the lattice are a1 and a2. There are two sites in each
unit cell enclosed by the red lines �solid and dotted�: black and
green.

b1

b2

FIG. 2. �Color online� Reciprocal lattice of honeycomb struc-
ture. The basic vectors of the lattice are 2�b1 and 2�b2. The first
Brillouin zone is the hexagon with the green boundary. The dia-
mond enclosed by the red dashed lines is the equivalent first Bril-
louin zone.
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H0 = − t �

ij��

ci�
† cj�, �12�

where t is the hopping parameter, 
ij� means the nearest
neighbors, and ci�

† �ci�� is the creation �annihilation� operator
of electrons at site i with spin �. With the basis of �a1 ,a2�,
we hereafter designate the coordinates of a unit cell as that of
the black site at the left lower corner of the cell, as shown in
Fig. 1. The position of a site can then be denoted as �j ,��,
where j implies jth unit cell and �=1�2� corresponds to the
black �green� site. The electron operator, for example, the
annihilation one, should be then denoted as cj�,�. Expanding
the operator with the plane waves, we have

cj�,� =
1

N
�

k�
ck��,� exp�ik� · r� j� , �13�

with N as the number of total unit cells of the lattice and r� j as
the position vector of the jth unit cell. Under such a conven-
tion, we can easily rewrite H0 in momentum space. The re-
sult is

H0 = �
k��

�k��
† ĥk��k��. �14�

Here, the electron operators are given by spinors, �k��
†

= �ck��,1
† ,ck��,2

† �, with the first and second components denoting
electrons, respectively, at the black and green sublattices,

ĥk� =�k�1	1+�k�2	2, with 	’s as the Pauli matrices and

�k�1 = − t�1 + cos kx + cos ky� , �15�

�k�2 = − t�sin kx + sin ky� , �16�

with kx and ky as the components of the electron momentum
k� in the basis of �b1 ,b2�.

The special feature of graphene is in the energy disper-

sion. The eigenvalues of ĥk� are ±��k��, with

��k�� = ��k�1
2 + �k�2

2 . �17�

In Fig. 3, we show the energy dispersion of an upper band.
Clearly, ��k�� depends on k� linearly only when k� is close to

±�1,−1�2� /3 where it vanishes. In the continuous model,
the energy dispersion is approximated by simple cones.

We next consider the Coulomb interaction. The interac-

tion V�
�R� i ,R� j� between two electrons at positions �i ,�� and
�j ,
�, respectively, is given by

V���R� i,R� j� = � e2

��R� i − R� j�
for R� i � R� j

U for R� i = R� j ,
� �18�

V12�R� i,R� j� =
e2

��R� i − R� j − L� �
, �19�

V21�R� i,R� j� =
e2

��R� i − R� j + L� �
, �20�

where R� i�j� denotes the position of the i�j�th unit cell, � is the
static dielectric constant due to the screening by the electrons

of the carbon core and the substrate, and L� is the vector from
the black site to the green site in a unit cell, as shown in Fig.
1. The on-site interaction U is the Coulomb repulsion be-
tween electrons of antiparallel spins, leading to the short-
range antiferromagnetic correlations �AFCs�. Since the AFC
is not significant in graphene, U should not be too large. In
our calculation, we set U=2e2 /�L, which is double of the
nearest-neighbor interaction. For the long-range Coulomb in-
teracting system, the final result should not sensitively de-
pend on such a small but reasonable U. By taking into ac-
count only the charge fluctuations �with the spin fluctuations
neglected�, the interaction term of the Hamiltonian in mo-
mentum space is given by

H1 =
1

2N
�

q�
nq�

†v̂q�nq� , �21�

where nq�
†= �nq�1

† ,nq�2
† � is the electron density operator and v̂q� is

the Fourier component of the Coulomb interaction. Since the
total charge of the electrons is neutralized by the background
of positive charges, the q� =0 term is excluded from the sum-
mation. The elements of v̂q� are given in Appendix A.

IV. GREEN’S FUNCTION

The Green’s function of electrons is defined as

Ĝ�k�,� − ��� = − 
T��k������k��
† ����� , �22�

where � is the imaginary time and 
T�¯ � means the statis-
tical average of the �-ordered product of the operators. In the

frequency space, Ĝ is given by

Ĝ�k�,i�n� = �i�n − 
̂k� − �̂�k�,i�n��−1, �23�

where 
̂k= ĥk−�, with � as the chemical potential, �n is the

fermionic Matsubara frequency, and �̂�k� , i�n� is the self-
energy. For brevity, we will hereafter use k��k� , i�n� for the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-1.0
-0.5

0.0
0.5

1.0

-1.0
-0.5

0.0
0.5

ε (
k)

/t

kx
/π

k
y /π

FIG. 3. �Color online� The energy of an electron in the upper
band of noninteracting electrons as function of k.
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arguments unless stated otherwise. Under the RRDA, which

is diagrammatically shown in Fig. 4, the elements of �̂�k� are
given by

��
�k� = −
1

N�
�

q

G�
�k − q�W�
�q� , �24�

where �=1/T, with T as the temperature �in unit of kB=1� of
the system, and W�
�q� is the element of the matrix of the
screened interaction,

Ŵ�q� = �1 − V̂�q��̂�q��−1V̂�q� . �25�

The element of the polarizability �̂�q� is given by

��
�q� =
2

N�
�

k

G�
�k + q�G
��k� , �26�

with q��q� , i�m�, and �m is the bosonic Matsubara fre-
quency. The chemical potential � is determined by the elec-
tron density �that is, the electron number per site�,

n =
2

N�
�

k

G11�k�exp�i�n0+� . �27�

From Eqs. �23�–�27�, the Green’s functions can be self-
consistently determined. Using the Padé approximation,15 we

obtain the retarded self-energy �̂r�k� ,�� and then the Green’s

function Ĝr�k� ,�� under the analytical continuation i�n→�
+ i0+.

In order to do an effective numerical calculation, it is
necessary to get a clear understanding of the symmetry of the
Green’s functions, and this is shown in Appendix B.

On the other hand, we need to pay attention to the behav-

ior of the screened interaction Ŵ�q�. Since it approaches the

bare Coulomb interaction v̂�q� in the limit i�m→�, Ŵ�q�
can be separated into two parts, Ŵ�q�= v̂�q�+ŴR�q�, where

ŴR�q� is the induced interaction from the ring diagrams. The
contribution of v̂�q� in the self-energy yields the exchange

part. Here, an important point is that the behavior of ŴR�q�
in the limit q� →0 by RRDA is very different from that by
RPA. For the sake of illustration, we use the descriptions for
v̂�q� and �̂�q� by their Pauli components. In the limit q� →0,
we have

v̂�q� →
�

Q
�1 + 	1� ,

�̂�q� → �0�0,i�m� + �1�0,i�m�	1,

where �=4�e2 /�3�a. For ŴR�q� in the same limit, we get

ŴR�q� → −
qm�

Q�Q + qm�
�1 + 	1� , �28�

with qm=−2���0�0, i�m�+�1�0, i�m��. In RPA, qm vanishes
for m�0. However, in RRDA, qm�0, it means the dynamic
screening effect in the long-wavelength interactions.

As is well known, the ring diagrams in the RPA include
the contribution of plasmon excitations. The plasmon fre-
quency �Q��Q is determined by the long-wavelength be-
havior of the charge polarizabilty �̃RPA�q� , i�m�
���0�q� , i�m�+�1�q� , i�m��RPA�Q2 at q� →0. This polariz-
ability is calculated in the absence of interactions. Under the
RRDA, the corresponding polarization diagram of
�0�q� , i�m�+�1�q� , i�m� is calculated with renormalized
Green’s functions, and it does not have such a behavior as in
RPA. The renormalized ring diagram summation does not
result in the desired plasmon excitations. The correct way to
obtain the plasmon excitations is to calculate the two-particle
Green’s function in which the vertex corrections need to be
considered. Under the RRDA that is a conserving approxi-
mation for the single-particle Green’s function, the kernel of
the equation for the two-particle propagator is generated
from the functional derivative of the self-energy diagrams
with respect to the Green’s function.10 The calculation of the
two-particle propagator needs a more complicated math-
ematical procedure and is beyond the scope of the present
approach.

V. NUMERICAL METHOD

Under the present approximation, the screening effect is
negligible only at sufficiently large Matsubara frequencies.
This requires a considerable amount of numerical calcula-
tions. To save computer time, the summations over the Mat-
subara frequencies in Eqs. �24� and �26� need to be per-
formed with a special method. We have developed a super-
high-efficiency algorithm for the series summations.16 In the
present calculation, we have used the parameters �h ,L ,M�
= �2,15,5� for the selection of the Matsubara frequencies
distributed in L successively connected blocks, each of them
containing M frequencies with h as the integer parameter so
that the stride in the �th block is h��−1�. The total number of
the frequencies selected here is L�M −1�+1=61. The largest
number Nc is about 2L�M −1�=217 for the cutoff frequencies
�Nc

=2Nc�T and �Nc
= �2Nc−1��T. For the lowest tempera-

ture considered here, T / t=0.01, we have �Nc
/ t�8235. At

the frequencies larger than the cutoff, ŴR�q� is negligibly
small. To illustrate the numerical method, an example of the
calculation of the element ����q� is given in Appendix C.

On the other hand, the momentum integrals in Eqs. �24�
and �26� are convolutions. These integrals can be efficiently

+

Σµν(k) =
k kk-q νµ

q

=

FIG. 4. The electron self-energy in the renormalized ring dia-
gram approximation. The solid lines are Green’s functions, the
single and double dashed lines are, respectively, the bare and renor-
malized Coulomb interactions, and the bubble is the electron
polarizability.
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carried out by Fourier transforms. Here, again, we should

pay attention to ŴR�q�. It should be carefully transformed
from q space to r space since it has a sharp peak at q� =0, as
indicated by Eq. �28�. This long-wavelength singular part

should be subtracted from ŴR�q� and be treated especially. It
saves computer time to perform the transform of this singular
part in the orthogonal coordinate system because there it is
isotropic and the Q integral within a circle close to the origin
can be reduced to a one-dimensional one. Only within this
circle do we need a very fine mesh for the integral. In the
remaining part of the hexagon Brillouin zone, one can use a
crude mesh for the two-dimensional integral because there

the integrand is not singular. The remaining part of ŴR�q�
should be a regular function, except that there may be some
undulations close to q� =0 due to the subtraction.

Another point we should consider is that the Green’s
function varies drastically around and close to the Fermi sur-
face at low temperatures. Since the band structure is not flat
at the Fermi energy, the mesh for the q-space integral should
be fine enough around and close to the Fermi surface. We
here give an example of sampling the points in momentum
space. This example is for the zero doping. Under the same
consideration, the sampling for finite doping cases can be
planned similarly. We divide the range �0,�� in each axis in
momentum space into four blocks, as shown in Fig. 5. There
are Ni equal meshes in the ith block and Ni’s are given by

�N1,N2,N3,N4� = �6,8,40,4� .

The finest mesh is for the third block � 7�
12 , 3�

4
� which is cen-

tered with 2� /3. In the Brillouin zone, this leads to a very
fine mesh around the Dirac points ±�1,−1�2� /3. The second
finest mesh is for the first block, which is designed for deal-

ing with the undulations of the remaining part of ŴR�q� �af-

ter the subtraction of the sharp peak� when it is Fourier trans-
formed from q space to r space. The remaining two blocks
have relatively crude meshes because the Green’s function is
smooth there.

Our numerical algorithm considerably saves computer
memory and time. A similar method and its accuracy have
been demonstrated by a recent study on the two-dimensional
electron system with an infinite bandwidth and a long-range
Coulomb interaction.11 With our numerical algorithm, we
have solved the above equations by iteration.

VI. RESULTS

The system is characterized by the coupling constant g
that is defined by the ratio between the overall-average inter-
action energy e2 /�a and the hopping energy t,

g =
e2

�at
. �29�

The parameters t=2.82 eV and a=2.4 Å are known from the
experimental observations.17 By choosing ��4, we have g
�0.5. Therefore, the graphene is a moderately coupled Cou-
lomb system.

Firstly, we present the result for the spectral density that is
defined by

A�k�,E� = −
1

�
Im Tr Ĝr�k�,E� = −

2

�
Im G0

r�k�,E� , �30�

where G0
r�k� ,E�=G11

r �k� ,E�=G22
r �k� ,E�. In the noninteracting

case, A�k� ,E� reduces to the � functions representing the en-
ergy dispersions of the two bands. In the present case, the
energy levels are broadened because of the many-body ef-
fect. Shown on the left panel in Fig. 6 is an intensity map of
the occupied spectral density F�E�A�k� ,E� �with F�E� as the
Fermi distribution function� in the energy-momentum plane
at the doping concentration c=n−1=0.02 and temperature
T / t=0.02. This map exhibits the energy distribution of the
states as a function of momentum along the high symmetry
directions �−M −K−� in the Brillouin zone. For compari-
son, the free-particle energy dispersion −��k��−�0 �with �0 as
the chemical potential of the noninteracting system� is also
depicted as the solid curve. Clearly, because of the Coulomb
effect, the energy distribution has a finite width, implying the

12

π
12

7 π
4

3 π π0

6 8 40 4

FIG. 5. For zero-doping calculation, the range �0,�� is divided
into four blocks with partition points � /12, 7� /12, and 3� /4. Each
number in the top line is the number of meshes in the corresponding
block.
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FIG. 6. �Color online� Left panel: Occupied
spectral density as a function of energy along the
high symmetry directions in the Brillouin zone.
Right panel: Spectral density at zero energy
showing the Fermi surface structure. The doping
concentration of the electrons is c=0.02, and the
temperature is T / t=0.02.
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finite lifetimes of a quasiparticle. In addition, the scale of the
energy band is enlarged. The dashed curve is a rescale of the
solid one. Comparing to the noninteracting dispersion, the
energy band is magnified with a factor of about 1.1. Actually,
the exchange self-energy results in an additional hopping of
the electrons, which renormalizes the kinetic energy.18 To see
this, we express the exchange self-energy in real space,

�ij
x = − 
cj�

† ci��vij , �31�

where vij is the Coulomb interaction between electrons at
sites i and j. �Here, i and j mean the positions of the lattice
sites.� With the quantity �ij

x , one can define the additional
hopping parameter, tij

x �−�ij
x . The most sizable additional

hopping is the one between the nearest neighbor �NN�. At
c=0.02 and g=0.5, we find tNN

x =0.22t, and the magnitude of
the next NN is 2 orders less than tNN

x . At a large distance, tij
x

is very small. As a total effect, such additional hopping terms
enlarge the original energy band. On the right panel of Fig. 6,
we show the map of the spectral density obtained by integra-
tion over the energy window of 0.06t around the chemical
potential. The orbits of strong intensity correspond to the
Fermi surfaces, which are apparently not circles as compared
with those from the simplified Dirac cone model. The struc-
ture of the Fermi surfaces is symmetrical under any rotation
of angle � /3 around the origin. All these results are compa-
rable with the angle resolved photoemission spectroscopy
experimental observations.17,19 For c=0.0, we expect that the
Fermi surfaces in Fig. 6 will shrink into Dirac points.

The broadening of the energy distribution of a quasi-
particle is described by the imaginary part of the self-energy.
To be specific, we analyze the Green’s function G11

r �k� ,E�.
This function can be divided into two parts, �Gu

r�k� ,E�
+Gl

r�k� ,E�� /2, with

Gu,l
r �k�,E� =

1

E + � − �0
r�k�,E� � S�k�,E�

,

S�k�,E� = ���k�,12 + �12
r �k�,E����k�,21 + �21

r �k�,E���1/2,

where �k�,12=�k�,21
* =�k�,1− i�k�,2, �0

r�k� ,E���11
r �k� ,E�=�22

r �k� ,E�,
and ��


r �k� ,E�’s are the components of the retarded self-
energy matrix. The two Green’s functions Gu and Gl can be
considered as for the electrons at the upper band and the
lower band, respectively. Corresponding to Gu,l

r �k� ,E�, we de-
fine the retarded self-energies for the electrons at the upper
and lower bands as

�u,l
r �k�,E� = �0

r�k�,E� ± S�k�,E� . �32�

In Fig. 7, the imaginary parts of the self-energies �u,l
r �k� ,E�

are presented as functions of E at a Fermi momentum k�
��−0.8� ,0.6�� for the system at doping concentration c
=0.02 and temperature T / t=0.02. At small energies,
Im �u

r�k� ,E� is a quadratic function of E. The value at E=0 is
very small and should vanish at zero temperature. At a region
of larger energy, Im �u

r�k� ,E� seems to be linearly dependent
on E. The magnitude of Im �l

r�k� ,E� is, however, small com-
pared with Im �u

r�k� ,E�. The reason is clear. At the Fermi

surface, the states of energy E is far from the corresponding
states of the same momentum k� at the lower band. Therefore,
the self-energy �l

r�k� ,E� is small. In Fig. 7, the RPA result for
the self-energy of the upper band is also shown for compari-
son. The magnitude of Im �u

r�k� ,E� by RPA is larger than that
by the RRDA. However, the quadratic E dependence of
Im �u

r�k� ,E� at small E is also reflected by the RPA calcula-
tion.

In Fig. 8, the results for Im �u
r�k� ,E� are depicted at low

temperatures and at zero-doping concentration. Since each
Fermi surface is a Dirac point in this case, the Fermi mo-
mentum in Fig. 8 is chosen as k� = �−2� /3 ,2� /3�. Firstly, at
the Dirac point, because the state is the common state of the
upper and lower bands, the self-energies of both bands coin-
cide. At small energies, apart from a small value at E=0 due
to the finite temperature effect, all the results for Im �u

r�k� ,E�
show a quadratic dependence on E. Out of the small energy
region, Im �u

r�k� ,E� linearly depends on E to a certain limit.
For the purpose of comparison, The RPA results obtained
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FIG. 7. �Color online� Imaginary part of the self-energy
�u,l

r �k� ,E� as a function of E at doping concentration c=0.02 and
T / t=0.02 for the upper and lower bands. The result from the RPA
for the upper band is also plotted here for comparison.
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FIG. 8. �Color online� Imaginary part of the self-energy �u
r�k� ,E�

as function of E at zero-doping concentration for several different
temperatures.
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from our approach at the zero doping concentration are ex-
hibited in Fig. 9. In the limit T→0, Im �u,l

r �k� ,E� appears to
be linearly dependent on �E�. This is in agreement with the
analytical result obtained from the continuous model based
on the RPA.7 Therefore, the system at zero doping is said7 to
behave like a marginal Fermi liquid,20 with the imaginary
part of the self-energy going linear in energy near the chemi-
cal potential.

However, our numerical results based on the RRDA dem-
onstrate that the imaginary parts of the self-energies fixed at
the Fermi momentum always vary as quadratic in energy
close to the Fermi level, regardless of whether the system is
doped or not. This feature indicates that the quasiparticle in
graphene behaves like a moderately correlated Fermi liquid.
We will discuss this problem later again.

With the retarded Green’s function, we can also calculate
the density of states �DOS� defined as

��E� = −
2

�N
�

k�
Im G11

r �k�,E� . �33�

Shown in Fig. 10 is the result for ��E� at zero-doping con-
centration and T / t=0.02. The noninteracting counterpart
�0�E� is also depicted for comparison. Since the energy lin-
early depends on the magnitude of the momentum near the
Dirac points, �0�E� is proportional to E at small E. The two
peaks come from the van Hove singularity because the en-
ergy bands are flat at E= ± t, as shown in Fig. 3. Under the
Coulomb interaction, the spectral density of the quasiparticle
is broadened. This results in lowering the density of states
and smearing the peaks. Comparing to �0�E�, the two peaks
in ��E� shift to larger energies because of the energy band
enlarged by the exchange interaction.

We next consider the distribution function n�k��. For the
graphene, n�k�� should be defined as

n�k�� =
1

�
�

n

Tr Ĝ�k�,i�n�exp�i�n0+� . �34�

As we have encountered in Eq. �30�, n�k�� is determined only
by G11�k� , i�n�. Furthermore, since the Green’s function

G11�k� , i�n� can be divided into parts of the upper and lower
bands, we therefore define the distribution functions for these
two bands as

nu,l�k�� =
1

�
�

n

Gu,l�k�,i�n�exp�i�n0+� . �35�

The total distribution function is given by n�k��=nu�k��
+nl�k��. In Fig. 11, we exhibit the result of the distribution
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FIG. 9. �Color online� RPA result for the imaginary part of the
self-energy �u,l

r �k� ,E� as a function of E at zero-doping
concentration.
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FIG. 11. �Color online� Distribution functions at doping concen-
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functions nu,l�k�� at temperature T / t=0.02 and doping con-
centration c=0.02. In the inner Fermi area, the upper band is
almost fully occupied with the electrons. The distribution
nu�k�� drops drastically at the Fermi surface. The occupation
at the lower band is not flat. Close to each Dirac point �the
corner of the hexagon Brillouin zone�, the behavior of nl�k��
looks like a sink. The depression of nl�k�� comes from two
aspects. One is the temperature effect. The distribution nl�k��
reaches its minimum at the Dirac points because there the
energy �Dirac energy� is the highest for states in the lower
band. Since the doping concentration is small, the Dirac en-
ergy is close to the Fermi level. Therefore, nl�k�� has an ap-
parent drop at the Dirac points. Another reason is due to the
many-body effect. Because of the Coulomb interaction, an
amount of electrons can be redistributed from the lower band
to the upper band.

At zero doping, each Fermi surface shrinks to a point. The
distribution functions are shown in Fig. 12. The distribution
nu�k�� at the upper band concentrates at the Dirac points. At
the lower band, there is an obvious depression of nl�k�� at the
point. To see the many-body and temperature effects in the
zero-doping case, in Fig. 13 we show the total distribution
n�k�� at and close to the Dirac points as functions of tempera-
ture. Very close to the Dirac points, n�k�� increases drastically
with decreasing temperature. At zero temperature, the total
distribution at the Dirac points 1�n�k�0��2 can be expected.
This is very different from the noninteracting distribution.
The latter is constant 1 because the zero-energy levels of

both bands are half occupied, and at a momentum different
from the Dirac points only the lower band is fully occupied.
Under the Coulomb interactions, some of the electrons
around each Dirac point in the lower band are gathered to the
upper band close to the Dirac point, resulting in a higher
distribution at and close to the point. From the increasing
tendencies of n�k�0� and n�k�0+�k�0�, we can infer that there is
an abrupt drop in n�k�� close to each Dirac point. Therefore,
the zero-doping distribution function at zero temperature is
consistent with the Fermi liquid behavior.

For the negative doping, the Fermi surface opens again. In
this case, the Fermi level is at the lower band. Since the
upper and lower bands are symmetric about the zero energy,
at zero temperature, the electron distribution at the upper
band corresponds to the hole distribution at the lower band,
and vice versa. Therefore, the distributions at negative dop-
ing can be obtained from that of positive doping. For ex-
ample, at c=−0.02, by flipping Fig. 11 upside down, we
obtain the image of distributions. The shape of each Fermi
surface is the same as that at c=0.02. However, the Fermi
area is outside of the surface where the lower band is nearly
fully occupied.

Finally, we give the ground-state energy per electron �0.
At low temperatures, T / t�0.1, the numerical results for the
energy per electron are almost a constant. By extrapolation,
we then obtain �0. The results for the two doping cases are
�0=−1.10t for c=0 and �0=−1.09t for c=0.02.

VII. DISCUSSION

As presented in Sec. VI, one of the interesting results is
that the undoped graphene behaves like a Fermi liquid. This
contradicts with the RPA prediction by which the system is a
marginal Fermi liquid. Here, we give a qualitative explana-
tion to this problem. We begin with the expression of the
imaginary part of the retarded self-energy �0

r�k� ,E�,
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FIG. 12. �Color online� Distribution functions at zero-doping
concentration and T / t=0.02.
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Im �0
r�k�,E� =

1

N
�
k��



−�

� d�

�
�F��� + B�� − E��

�Im G0
r�k��,��Im W0

r�k� − k��,E − �� , �36�

where F and B are, respectively, the Fermi and Bose distri-
bution functions, and W0

r is the 0th Pauli component of the
retarded potential �see Eq. �25��. Qualitatively, at low tem-
peratures, the spectral function A�k� ,��=−2 Im G0

r�k� ,�� /�

for the undoped graphene can be approximated as A�k� ,��
����−��k���+���+��k���. At zero temperature, for E�0, we
then have

Im �0
r�k�,E� �

1

2N
�
k��

��E − ��k����Im W0
r�k� − k��,E − ��k���� .

�37�

Here, we concentrate on the case at a Dirac point k� =k�0. At
this point, the unperturbed energy vanishes and the Green’s
function should be diagonal. Therefore, we need only to con-
sider the 0th Pauli component �0

r�k�0 ,E�. At small E, the k�
integral in Eq. �36� is within two small regions surrounding,
respectively, the two Dirac points. Each region is nearly a
circle. The radius of each circle is proportional to E. Within
the circle, with the origin different from k�0, W0

r�k� −k� ,E
−��k��� varies insensitively with k�. By regarding it as a con-
stant, the contribution to the integral can be estimated as �
the area of the circle �E2. The problem then is that the con-
tribution comes from the area surrounding k�0. Within this
circle, q� =k�0−k�� is small and W0

r�q� ,�� can be expressed as
�see the discussion in Sec. IV�

W0
r�q� ,�� �

�

Q − 2��r�q� ,��
, �38�

with �r�q� ,��=�0
r�q� ,��+�1

r�q� ,��.
To compare our RRDA result with the RPA prediction, we

first look at the noninteracting polarizability �RPA
r �q� ,�� by

the RPA,

�RPA
r �q� ,�� =

1

N
�

k�
� �� − ����F − F��

�� − ���2 − �+
2 �1 + cos ��

+
�� + ����F + F� − 1�

�� + ���2 − �+
2 �1 − cos ��� , �39�

where �=��k��, ��=��k� +q��, F=F���, F�=F����, �+=�+ i0+,
and cos �= ��k�,1�k�+q� ,1+�k�,2�k�+q� ,2� /��k����k� +q��. The first term
under the k� summation in Eq. �39� represents the intraband
transitions. At T=0, the lower band is fully occupied and no
states are available for transition. In the upper band, only the
two zero-energy levels at the two Dirac points, respectively,
are occupied and the other states are empty. However, the
transitions in the upper band give a contribution of order
1 /N, which is vanishingly small. The second term under the
k� summation in Eq. �39� representing the interband particle-
hole excitations can give the significant contributions to

�RPA
r �q� ,��. However, since 1−cos � vanishes at q� =0, we

have �RPA
r �0,��=0. �RPA

r �q� ,�� delicately depends on q� .
With the continuous model,7 one gets �RPA

r �q� ,��
=��̃�q� /��, where �̃�q� /�� is a function so defined by the
equation. Using this �RPA

r �q� ,�� in W0
r�q� ,��, one then ob-

tains Im �0
r�k�0 ,E��E from Eq. �37�.

By the RRDA, however, the polarizability �r�q� ,�� does
not show such RPA behavior. Especially, �r�q� ,�� �which is a
complex� does not vanish in the q� →0 limit. By regarding
�r�q� ,�� and thereby W0

r�q� ,�� in Eq. �37� as constants at
small q and small �, one immediately gets Im �0

r�k�0 ,E�
�E2.

The key point is the nonvanishing behavior of the polar-
izability bubble in the limits of q� →0 and then of �→0.
This is different from the RPA. If one inserts the RPA self-
energy to the Green’s is functions and calculates the bubble
again, one then gets a nonvanishing result for �r�q� ,�� in the
above limits. The RRDA is such a process that the Green’s
functions are corrected again and again until self-consistency
is finally satisfied. As a result, RRDA gives rise to the non-
vanishing polarizability bubble in the limits of q� →0 and
then of �→0.

Physically, because of the Coulomb interactions, the par-
ticle distributions are adjusted so that there are particles oc-
cupying the nonzero-energy states in the upper band and
holes in the lower band with a sizable k�-space area surround-
ing each Dirac point. In fact, this feature exists in all inter-
acting electron systems. Therefore, the interband transitions
can now happen and can give a sizable contribution to the
polarizability �r�q� ,��. Furthermore, there is no such strong
restriction factor 1−cos � for the interband particle-hole ex-
citations. As a result, �r�0,���0 can be expected.

Here, we need to indicate that the RPA calculation is
based on the Fermi liquid theory which uses the free-particle
Green’s function. However, the result is a marginal Fermi
liquid. Therefore, such a calculation is not based on a con-
sistent theory.

VIII. SUMMARY

In summary, using the tight-binding model with long-
range Coulomb interactions defined in a honeycomb lattice,
we have presented the Green’s function formulation for the
electron in graphene. The interactions between electrons are
treated with the renormalized ring diagram approximation.
The integral equations for determining the Green’s function
are solved self-consistently using our super-high-efficiency
numerical algorithm. The obtained spectral densities are
comparable with the experimental observations. Since the
imaginary part of the self-energy of the electron Green’s
function fixed at the Fermi momentum varies as quadratic in
energy near the chemical potential for both doped and un-
doped systems, we conclude that electrons in graphene fol-
low the Fermi-liquid-like behavior. In addition, we also cal-
culated the density of states and the distribution functions.
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APPENDIX A: FOURIER TRANSFORM OF COULOMB
INTERACTION BETWEEN ELECTRONS ON THE

HONEYCOMB LATTICE

In this appendix, we present the Fourier transform of the
Coulomb interaction between electrons on the honeycomb
lattice. Because it is long-range interaction, the accurate re-
sult cannot be obtained from a direct summation by defini-
tion with numerical calculation. We must seek a fast con-
verging scheme for the summation over the lattice sites. To
do this, we separate the interaction

V�R� = � e2

�R
for R � 0

U for R = 0
� �A1�

into short-range and long-range parts, V�R�=VS�R�+VL�R�,
with

VL�R� =
e2

��a2 + R2
, �A2�

where a is a free parameter of positive quantity and VS�R�
=V�R�−VL�R�. At R�a, VS�R�=O�R−3�; therefore, it is a
short-range interaction. Its Fourier transform can be obtained
by a direct summation,

ṼS�Q� � = �
j

VS�R� j�e−iQ� ·R� j . �A3�

On the other hand, VL�R� is long ranged. A direct summation
for its Fourier transform converges very slowly. However,
this function can be expressed as

VL�R� =
 dQ�

�2��2��Q�eiQ� ·R� , �A4�

where the Q� integral is over the whole momentum space and

��Q� =
2�e2

�Q
e−aQ. �A5�

The integral in Eq. �A4� can be written in a summation over
the integrals, each of them over a Brillouin zone. Shifting all
these Brillouin zones to the first Brillouin zone by the corre-

sponding reciprocal lattice vectors Q� n’s, we have

VL�R� = �
n



BZ

dQ�

�2��2���Q� + Q� n��ei�Q� +Q� n�·R� . �A6�

The order of the integral and summation can be changed.

Express R� as R� =R� j +Z� , where R� j is the position of the jth

unit cell of the honeycomb lattice and Z� is a vector within the
unit cell. We get

VL��R� j + Z� �� = 

BZ

dQ�

�2��2�
n

���Q� + Q� n��ei�Q� +Q� n�·Z�eiQ� ·R� ,

�A7�

where use of exp�iQ� n ·R� j�=1 has been made. From this equa-
tion, we recognize the Fourier transform of the function

F�R� j ,Z� ��VL�R� j +Z� � defined on the honeycomb lattice with

Z� as a parameter,

F̃�Q� ,Z� � =
2
�3

�
n

���Q� + Q� n��ei�Q� +Q� n�·Z� , �A8�

where the factor 2�3 comes from the ratio between the area
of the first Brillouin zone of the honeycomb lattice and that
of the square lattice �2��2. Since ��Q� decreases exponen-

tially at large �Q� n�, the n summation converges very fast.
We are now ready to express the elements of the interac-

tion matrix v̂�q��� v̂S�q��+ v̂L�q��. With the above functions,
we have

v11
S �q�� = v22

S �q�� = ṼS�M̂q�� , �A9�

v12
S �q�� = v21

S*�q�� = �
j

VS�R� j − L� �e−iM̂q� ·R� j , �A10�

v11
L �q�� = v22

L �q�� = F̃�M̂q� ,0� , �A11�

v12
L �q�� = v21

L*�q�� = F̃�M̂q� ,− L� � , �A12�

where M̂q� maps the vector q� under the basis �b1 ,b2� into the
one in the orthogonal coordinate system.

APPENDIX B: SYMMETRY OF THE GREEN’S FUNCTION
DEFINED ON THE HONEYCOMB LATTICE

In doing numerical calculation, it is necessary to under-
stand the symmetry of the Green’s function. We start the
discussion with the definition of the Green’s function in real
space,

G�
�r�i − r� j,� − ��� = − 
T�ci�,����cj�,

† ����� , �B1�

which describes a particle of spin � propagating from posi-
tion �j ,
� to �i ,��. Firstly, this function has the property

G�
�r�i − r� j,� − ��� = G
��r� j − r�i,� − ��� , �B2�

because of which the configuration for a particle propagating
from �j ,
� to �i ,�� is the same as in the inverse process.
Therefore, the diagonal Green’s functions are even under r�
→−r�. Denoting G0=G11=G22, we obtain

G0�r�,�� = G0�− r�,�� . �B3�

On the other hand, for the off-diagonal part, we get

G12�r�,�� = G21�− r�,�� . �B4�

Though the off-diagonal Green’s functions have no definite
parity, they can be separated into even and odd functions. For
G12�r� ,��, we have
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G12�r�,�� = G1�r�,�� − iG2�r�,�� , �B5�

where G1�r� ,�� and G2�r� ,�� are even and odd functions of r�,
respectively. Now, we can express the Green’s function ma-
trix in terms of the Pauli matrix,

Ĝ�r�,�� = G0�r�,��	0 + G1�r�,��	1 + G2�r�,��	2, �B6�

where the Pauli components as functions of r� have their defi-
nite parities. Obviously, in momentum space, as functions of
k�, they have the same parities. Using the property of parity,
the Fourier expansions of these components are given by

G0,1�r�,�� = 

H

dk�

2�2G0,1�k�,��cos�k� · r�� , �B7�

G2�r�,�� = i

H

dk�

2�2G2�k�,��sin�k� · r�� , �B8�

where the k� integrals are over the half Brillouin zone: 0
�kx�� and −��ky ��. Furthermore, in the half Brillouin
zone, we can separate the Green’s functions G	�k� ,��’s into
even and odd functions of ky, G	

±�k� ,��, with the superscripts
� denoting the parities,

G	
±�kx,ky,�� = �G	�kx,ky,�� ± G	�kx,− ky,���/2. �B9�

Correspondingly, in real space, G	�r� ,��’s are separated into
even and odd functions of ry. We have

G0,1
+ �r�,�� = 


I

dk�

�2G0,1
+ �k�,��cos�kxrx�cos�kyry� ,

G0,1
− �r�,�� = − 


I

dk�

�2G0,1
− �k�,��sin�kxrx�sin�kyry� ,

G2
+�r�,�� = i


I

dk�

�2G2
+�k�,��sin�kxrx�cos�kyry� ,

G2
−�r�,�� = i


I

dk�

�2G2
−�k�,��cos�kxrx�sin�kyry� ,

where the k� integrals are now over the first quadrant of the
first Brillouin zone: 0�kx�� and 0�ky ��.

We next consider the property of the Green’s functions
under the exchange of the coordinates �rx ,ry�→ �ry ,rx�.
Since the system is symmetric under this exchange, we have

G�
�rx,ry,�� = G�
�ry,rx,�� . �B10�

From the above definitions, one can obtain that the Pauli
components G0,1

± are symmetric about the exchange, but

G2
+�rx,ry,�� = G2

−�ry,rx,�� ,

G2
−�rx,ry,�� = G2

+�ry,rx,�� .

Making use of these symmetries in a numerical process, we
need to calculate these Green’s functions only in half of the
first quadrant in both real and momentum spaces.

Finally, the symmetry related to the time reversal is

G	
±*�k�,i�n� = G	

±�k�,− i�n� for 	 = 0,1,2, �B11�

which is obtained from the definition.
The above discussion of symmetries for the Green’s func-

tions applies to the Coulomb interactions, polarizabilities,
and self-energies as well.

APPENDIX C: AN EXAMPLE OF THE CALCULATION OF
���„q…

For the readers’ convenience, we here give an example of
calculation of ��
�q�. For briefness, we present only the re-
sult for ��
�q���0�q�. The results for other elements and the
method for the calculation of the self-energy elements ��
�k�
can be obtained immediately with the same consideration. As
has been mentioned in the main text, the momentum convo-
lution of two Green’s functions in �0�q� can be evaluated by
a Fourier transform. In real space, it is given by

�0�r�,i�m� =
2

�
�

n

G0�r�,i�n + i�m�G0�r�,i�n� , �C1�

where the n summation for the Matsubara frequencies is over
�−� ,��. Using the property of the Green’s function,
G0

*�r� , i�n�=G0�r� ,−i�n�, we take the summation only for n
�0,

�0�r�,i�m� =
4

�
Re ��

n=1

�

G0�r�,i�n + i�m�G0�r�,i�n�

+ �
n=1

�m/2�

G0�r�,i�m − i�n�G0�r�,− i�n�

+ ��G0�r�,i�n̄��2/2�if m is odd
n̄=�m+1�/2 � ,

where �m /2� is the integer part of m /2. Applying our rule for
the series summation,16 we get

�0�r�,i�m� =
4

�
Re��

p

wpG0�r�,i�p + i�m�G0�r�,i�p�

+ �
p

wp
�m/2�G0�r�,i�m − i�p�G0�r�,− i�p�

+ ��G0�r�,i�n̄��2/2�if m is odd
n̄=�m+1�/2 � + ��0�r�,i�m� ,

where the summation is over the selected points �p�, with wp

and wp
�m/2� as the corresponding weights,16 and the last term

is the contribution from terms beyond the cutoff Nc for the
Matsubara frequency,
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��0�r�,i�m� = �−
2�r0

m�2T
�

n=Nc+1

Nc+m
1

2n − 1
if m � 0

−
4�r0

�2T��2

8
− �

n=1

Nc 1

�2n − 1�2� if m = 0.�
The present expression for �0 is essentially the same as that
in Appendix B of Ref. 16, except for an additional factor 2
stemming from the degree of spin freedom in the present
case and a misprinting in Ref. 16. The notation of taking the
real part of the result should be assigned in the expression of
� in Appendix B of Ref. 16.
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