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We investigate the entanglement dynamics of three-qubit states in a quantum-critical environment, which is
an Ising model in a transverse field. By using negativity as entanglement measure, we find that the entangle-
ment evolution depends not only on the system-environment couplings and the size of degrees of freedom of
environment but also on the strength of transverse field and the symmetry of quantum states of concern. In
particular, for the cases under study, our results imply that the entanglement decay can be enhanced by the
quantum phase transition of the environment under weak coupling. Our analysis implies that the entanglement
of any three-qubit quantum state will be completely destroyed by the decoherence under certain conditions,
that we detail below.
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I. INTRODUCTION

Quantum entanglement plays an important role in quan-
tum information processing �QIP�,1–3 and attracts much at-
tention from physicists. Much progress concerning quantum
entanglement both in theory and in experiment has been
achieved.4–7 As is known, the advantage of quantum com-
puter over classical counterpart lies in the use of the quantum
entanglement which has no classical analog. However, in the
real world, QIP will always inevitably be affected by the
decoherence8 induced by the external environment. The
evaluation of the extent to which the decoherence affects
quantum entanglement is an interesting problem and much
works have been done.9–13 In most of the these studies, re-
searchers usually considered the uncorrelated environment
modeled by a reservoir consisting of harmonic oscillators or
spin chains. However, particles of the environment always
have interaction with each other. What is the effect of deco-
herence induced by a correlated environment on quantum
states? To answer this question, researchers have made some
works14–16 where they analyzed the decay of Loschmidt
echo, universal decoherence, and quantum bipartite entangle-
ment. In particular, the authors in Ref. 16 analyzed the dis-
entanglement of a bipartite system in which the two parties
couple to the environment homogeneously. The effect of de-
coherence induced by a correlated environment on multipar-
tite entanglement has not been investigated so far, and mul-
tipartite entanglement dynamics is an interesting
problem.17,18 So, in this paper, we will study the time evolu-
tion of three-qubit states in a critical environment and inves-
tigate the factors which determine the entanglement evolu-
tion and decay. In our model, we will not assume that the
parties of system couple to the environment homogeneously
to get a comprehensive analysis of decoherence induced by a
critical environment on three-qubit states.

As is known, multipartite entanglement is crucial for
practical QIP and much progress, either in theory or in ex-
periment, has been made.19–25 In these works, the measure of
multipartite entanglement is a difficult problem which is far
from being understood. Fortunately, based on the positive
partial transpose criterion �PPT�5 for separability, Zycz-
kowski et al.26 proposed a quantity labeled as negativity by
Vidal and Werner27 as the entanglement measure to evaluate

the quantum entanglement. Negativity can efficiently calcu-
late multipartite entanglement of both pure and mixed quan-
tum states. It should be noted that the PPT criterion is nec-
essary and sufficient only for 2�2 and 2�3 quantum states,
so negativity has limitation in measuring the quantum en-
tanglement of multipartite quantum states with high dimen-
sions. Due to its operational and calculation properties, we
employ negativity to measure the entanglement of three-
qubit quantum states as the minimal multipartite quantum
states in this presentation. Our study of the entanglement
evolution of three-qubit quantum states under a correlated
environment may shed some light on the understanding of
multipartite entanglement dynamics.

Our paper is arranged as follows. In Sec. II, we introduce
the model of three-qubit system coupled to a transverse Ising
model and give the analytical expression of the time evolu-
tion of density matrix of the system. In Sec. III, the time
evolution of quantum entanglement and some discussions are
given. We conclude our results in Sec. IV.

II. HAMILTONIAN EVOLUTION

In this paper, we consider a three-qubit system coupled to
an environment consisting a transverse Ising model which
exhibits a quantum phase transition. In this model, to get a
general and comprehensive analysis of entanglement dynam-
ics and decoherence, the parties of the system are assumed to
couple to the correlated environment inhomogenously. The
corresponding Hamiltonian reads

H = �
i=−N0

N0

�i
x�i+1

x + �� + �
j=1

3

gjsj
z� �

i=−N0

N0 �i
z

2
, �1�

where � is the strength of the transverse field and gj�j
=1,2 ,3� characterize the coupling constants between the en-
vironment and the three qubits sj�j=1,2 ,3�. �i

���=x ,y ,z�
are the familiar Pauli operators representing the ith site in the
lattice. Obviously, the total site of the spin chain is Nt
=2N0+1.

In order to get the time evolution of the density matrix of
the system, we should follow the standard procedure of
Hamiltonian diagonalization28,29 by employing the Jordan-
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Wigner transformation and the Fourier transformation to the
momentum space. By using the following pseudospin opera-
tors �k���=x ,y ,z�:

�kx = �k
†�−k

† + �−k�k �k = 1,2, . . . ,N0�, �0z = 2�0
†�0 − 1,

�ky = − i�k
†�−k

† + i�−k�k, �kz = �k
†�k + �−k

† �−k − 1, �2�

where �k
† ,�k�k=0,1 ,2 , . . . � denote the creation and annihila-

tion operators of new fermions in the momentum space, we
get the new Hamiltonian as

H = �
k�0

ei��k/2��kx�Ek�kz�e−i��k/2��kx + �−
	

2
+ 1��0z, �3�

where 	=�+� j=1
3 gjsj

z and parameters Ek ,�k take the follow-
ing expressions, respectively:

Ek = �4 + 	2 − 4	 cos�ka� ,

�k = arctan	 2 sin�ka�
	 − 2 cos�ka�
 . �4�

In Eq. �4�, a denotes the lattice spacing and 	 is used as a c
number.

With these analytical expressions, we can go straightfor-
wardly to obtain the reduced density matrix of system via the
following equation:


s�t� = TrE�e−iHt
s�0� � ��E
��E�eiHt� . �5�

Here, the initial state of the system is separable with the
initial state of the environment, and the initial state of the
environment is assumed as the vacuum state ��E
= �0
k=0
�k�0�0
k�0
−k, which satisfies the relation �k�0
k=0.

Let the initial state of the system be in a general form like

��s�0�
 = a1�000
 + a2�001
 + a3�010
 + a4�011
 + a5�100


+ a6�101
 + a7�110
 + a8�111
 , �6�

where a1 ,a2 , . . . ,a8 are coefficients of the initial state ��s�0�

and they satisfy the normalization relation �a1�2+ �a2�2+ ¯

+ �a8�2=1. After a careful calculation, we obtain the time evo-
lution of the system density matrix. Here, it should be
pointed out that our calculation holds for mixed states,


s�t� = �
�a1�2 M12 M13 M14 M15 M16 M17 M18

M12
* �a2�2 M23 M24 M25 M26 M27 M28

M13
* M23

* �a3�2 M34 M35 M36 M37 M38

M14
* M24

* M34
* �a4�2 M45 M46 M47 M48

M15
* M25

* M35
* M45

* �a5�2 M56 M57 M58

M16
* M26

* M36
* M46

* M56
* �a6�2 M67 M68

M17
* M27

* M37
* M47

* M57
* M67

* �a7�2 M78

M18
* M28

* M38
* M48

* M58
* M68

* M78
* �a8�2

� ,

�7�

where M�
 , � ,
=1,2 , . . . ,8 are elements of the reduced
density matrix and � denotes complex conjugation. Now, we

write the matrix elements explicitly in the following equa-
tions:

M�
 = a�a

*F�
, �,
 = 1,2, . . . ,8. �8�

Due to symmetry, we need to know the moduli of F�
 in
order to get the time evolution of entanglement of quantum
states of concern by using negativity as the entanglement
measure. It should be noted that once the all the moduli of
F�
 are completely destroyed by decoherence, any state will
become a separable one. The moduli of F�
 can be obtained
in the following equation:

�F�
� = �
k�0

Fk = �
k�0

�1 − sin2�Ek
���t�sin2�Ek

�
�t�sin2��k
��� − �k

�
��

− �sin�Ek
���t�cos�Ek

�
�t�sin��k
����

− cos�Ek
���t�sin�Ek

�
�t�sin��k
�
���2�1/2, �9�

where Ek
��� ,�k

��� can be calculated by replacing 	 with 	� in
Eq. �4�. 	�, �=1, . . . ,8, take the following expressions:

	1 = � +
g1 + g2 + g3

2
, 	2 = � +

g1 + g2 − g3

2
,

	3 = � +
g1 − g2 + g3

2
, 	4 = � +

g1 − g2 − g3

2
,

	5 = � +
− g1 + g2 + g3

2
, 	6 = � +

− g1 + g2 − g3

2
,

	7 = � +
− g1 − g2 + g3

2
, 	8 = � +

− g1 − g2 − g3

2
.

�10�

Let us make some discussion concerning the above results
and define a quantity for entanglement decay when kc is
taken as a cutoff frequency similar to the procedure in Refs.
14 and 16,

Ec � �
k�0

kc

Fk � �F�
� , �11�

where Ec is defined to get a heuristic knowledge of the fea-
tures of the effect of decoherence induced by the quantum-
critical environment.

For small k, we get Ek= �2−	�, sin2��k
�−�
�=4�	�

−	
�2�ka�2 / �2−	��2�2−	
�2. As a result, if kc is small
enough, we obtain

ln Ec � − 2��kc���sin��2 − 	��t�cos��2 − 	
�t��2 − 	��−1

− sin��2 − 	
�t�cos��2 − 	��t��2 − 	
�−1�2

+ sin2��2 − 	��t�sin2��2 − 	
�t�
�	� − 	
�2

�2 − 	��2�2 − 	
�2� ,

�12�

where ��kc�=4�2Nc�Nc+1��2Nc+1� / �6Nt
2� and Nc is the in-

teger closest to Ntkca /2�.
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In the illustrations of Fig. 1, we have assumed that the
constant ��kc� take a value of 0.5. It should be noted that the
above demonstrations of quantity Ec in Fig. 1 has employed
the fact that 	�=	1, 	
=	8. The numerical results implies
that when g= �g1+g2+g3� /2 takes a small value, as shown in
Fig. 1, the decay of Ec is enhanced by the quantum phase
transition of the environment. However, when g takes a large
value such as g=1, the decay of Ec is complicated and no
enhancement of decay of Ec has been found as some recur-
rences appear near the critical line. When g=10, the quantity
of Ec shows a small oscillation. When g=100, the quantity of
Ec is almost stable and close to 1. Numerical calculation
implies that the decay of Ec will be enhanced by the quantum
phase transition of the environment when g takes a small
value such as g=0.01. Similarly, for the cases, namely, �a�
	�=	2, 	
=	7, �b� 	�=	3, 	
=	6, �c� 	�=	4, 	
=	5,
the decay of the corresponding quantity of Ec will be en-
hanced by the quantum phase transition of the environment
when �g1+g2−g3� /2, �g1−g2+g3� /2, and �g1−g2−g3� /2
take small values, respectively. Even though the calculation
of the decoherence factor has employed some approxima-
tions and thus the result cannot give an exact description of
the effect of the quantum-critical environment, the analysis

will be helpful in obtaining a heuristic knowledge of deco-
herence from the critical environment.

In the following content, we will carry out numerical
simulation of the exact expression of Eq. �9� to investigate
the entanglement dynamics of three-qubit states.

III. ENTANGLEMENT DECAY

In this section, firstly, we introduce the operational and
calculation entanglement measures. Secondly, we analyze the
entanglement dynamics of three-qubit states under decoher-
ence. Finally, a general discussion of entanglement decay in
a quantum-critical environment is given.

Due to good operational and calculation properties, nega-
tivity has been used to measure the multipartite entanglement
of quantum states with high dimensions. For a given quan-
tum state with density matrix 
, the negativity of 
 is defined
by

N�
� =
�
Ti�− 1

2
, �13�

where �
Ti� is the sum of the absolute values of the eigenval-
ues of 
Ti, and 
Ti denotes the partial transpose of density
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FIG. 1. �Color online� Decoherence factor Ec versus time t and � with a critical value of 2 is demonstrated for g=0.01,1 ,10,100 when
the momentum k takes small values, where g��g1+g2+g3� /2 and 	� ,	
 take expressions of 	1 ,	8, respectively.
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matrix 
 with respect to party i. As is known, the partial
transpose of a density matrix does not change the trace of a
density matrix, so we can easily find that the negativity of 

equals the sum of absolute values of the negative eigenvalues
of 
Ti. It was proved that negativity is a local operation and
classical communication entanglement monotone.27

Negativity can be applied to multipartite quantum state.
For example, a tripartite quantum state 
ABC can be splitted
into three bipartitions AB−C ,BC−A ,AC−B. Every biparti-
tion gives a negativity, so there are three negativities
NAB−C ,NBC−A ,NAC−B to measure the quantum correlation be-
tween one group with two parties and the other group with
one party. We also consider the residual entanglement of a
reduced density matrix, which can be obtained by tracing
one party off the density matrix 
ABC, and three reduced
density matrices appear. For the density matrix of 
ABC, label
the reduced density matrices by 
AB

r ,
BC
r ,
AC

r , and we can
analyze the residual entanglement with negativities
NA−B ,NB−C ,NA−C, respectively.

In practice, we are interested in some explicit examples.
Here, firstly, we consider the entanglement dynamics of two

types of initial pure states, the GHZ state and the W
state with expressions �GHZ
= 1

�2
��000
+ �111
� and �W


= 1
�3

��001
+ �010
+ �100
�, which are known to bear incom-
patible multipartite correlations, in the sense that they cannot
be transformed into each other by local operations and the
classical communication.30 Secondly, we discuss the en-
tanglement evolution of the Werner-like state31 as an ex-
ample of a mixed state under the environment.

Case 1. Let the initial state of the system be a three-qubit
GHZ state. ��s�0�
= 1

�2
��000
+ �111
�. Here, �0
 and �1
 are the

eigenstates of sj
z with corresponding eigenvalues of 1 /2 and

−1/2, respectively. From Eq. �7�, we obtain the time evolu-
tion of entanglement of the GHZ state,

NAB−C�t� =
1

2
�F18�t�� . �14�

For the symmetry of the GHZ state, the other two negativi-
ties of NAC−B ,NBC−A take the same expression as NAB−C.
Tracing one party off the GHZ state, we find that the reduced
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FIG. 2. �Color online� Negativity versus time t is plotted for different kinds of coupling: g=0.1,1 ,10,100 when � as the strength of the
transverse field of the environment takes different values, where g��g1+g2+g3� /2 and Nt=300.
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density matrix is separable, so the residual entanglement of
NA−C ,NB−C ,NA−B is zero.

To examine the effect of environment on the quantum
entanglement of the GHZ state, we numerically calculate the
exact expression of Eq. �9� and plot the entanglement evolu-
tion under different conditions in Fig. 2. Here and in the
following numerical simulation, we have used the fact that
the lattice spacing a takes the value of 2� /Nt. From Figs. 2
and 3, we can find that the entanglement evolution of the
GHZ state depends not only on the parameter of �, the cou-
pling constants gj �j=1,2 ,3�, but also on Nt, which is the
size of the degrees of freedom of the environment. Under
weak coupling �g=0.1�, there are revivals of entanglement
when ��2 seen from the cases of �=0.5,1, while the en-
tanglement will vanish monotonously with time when �
�2, and the decay of entanglement is enhanced by the quan-
tum phase transition at which �=2. For the case g=1 in Fig.
2, we can find that the entanglement will not be revived
anymore, but will vanish monotonously to zero with time
going long. However, when the coupling strength takes the

expression of g=10, some revivals occur in the time evolu-
tion of entanglement of the GHZ state; only when the time is
long enough can the entanglement vanish completely. Here,
even though the fluctuations for �=2 are smaller than the
other cases in short time, yet, near t=0.8, the fluctuations for
�=2 are bigger among all the cases. Compared to the cases
g=0.1 and g=1, one loses compelling evidence of any strong
enhancement of entanglement decay due to the phase transi-
tion. Taking a look at the final subfigure in Fig. 2 where g
=100, we find that the entanglement of the GHZ state fluc-
tuates initially and tends to a constant near 0.478 when the
time is long enough. This result is not surprising because the
size of degrees of freedom of the environment is assumed to
be finite. In fact, a practical environment has infinite degrees
of freedom and can vanish the quantum entanglement com-
pletely. The right subfigure in Fig. 3 can give a naive argu-
ment for such a claim, where we plot the entanglement evo-
lution of the GHZ state for the case g=100 under the
environment with different sizes of the degrees of freedom.
Such a result is consistent with our forehead analysis of the
evolution of decoherence factor Ec. It should be pointed out
that we numerically calculated the decoherence factor �F18�,
which involves the case 	�=	1, 	
=	8 with corresponding
parameter g= �g1+g2+g3� /2, and similar results should also
be applied to the decoherence factors �F27�, �F36�, and �F45�
with corresponding parameters �g1+g2−g3� /2, �g1−g2

+g3� /2, and �g1−g2−g3� /2, respectively. We now discuss
the decoherence factor �F27�. Under weak coupling, when
�g1+g2−g3� /2 takes small values, the decay of decoherence
factor �F27� will be enhanced. While �g1+g2−g3� /2 takes
large values, the evolution of decoherence factor �F27� will
take a similar behavior to that of �F18�. Similar conclusion
can also be applied to the decoherence factors �F36�, �F45�.

In order to examine the effect of the size of the degrees of
freedom of environment on the quantum entanglement, we
numerically calculated the entanglement evolution under dif-
ferent sizes and found that the entanglement vanishes at suf-
ficient time takes long enough for the case g=0.1 seen in the
left subfigure of Fig. 3. During the process of entanglement
evolution, there are some revivals of entanglement. With re-
gards to the revivals, the numerical results imply that the
larger the size is, the smaller the revivals of entanglement is.
For the case g=100, we can find that the entanglement will
decrease to a stable value for a finite size of the environment;
the larger the size of the degrees of freedom of the environ-
ment is, the smaller the stable value is. A practical environ-
ment has an infinite size of degrees of freedom, so it can
destroy the quantum entanglement completely even for large
g, which is a finite coupling constant. In fact, a true quantum
phase transition will not happen in a finite-sized environment
but in an infinite-sized environment. However, it is difficult
to carry out numerical simulation of the effect from an
infinite-sized environment on quantum states. Therefore, we
can say that our study can shed some light on the decoher-
ence induced by a quantum-critical environment on quantum
states to some extent.

Case 2. W state is one important quantum state like the
GHZ state in QIP. Here, we consider that the initial state of
the system under the environment is the W state ��s�0�
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FIG. 3. �Color online� Negativity of the GHZ state versus time t
is plotted under different sizes of the degree freedom of the envi-
ronment, where g��g1+g2+g3� /2=0.1,100 for the left and the
right subfigures, �=1.
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= 1
�3

��001
+ �010
+ �100
�. Similarly, we get the negativities
of the W state in the following expression:

NAB−C =
1

3
��F23�2 + �F25�2, NA−B =

1

6
��4�F35�2 + 1 − 1� ,

NAC−B =
1

3
��F23�2 + �F35�2, NA−C =

1

6
��4�F25�2 + 1 − 1� ,

NBC−A =
1

3
��F25�2 + �F35�2, NB−C =

1

6
��4�F23�2 + 1 − 1� .

�15�

Here, we make some comparison of the entanglement evolu-
tion of the GHZ state and the W state. Firstly, the entangle-
ment evolution of the W state is different from that of the
GHZ state in that the difference in coupling constants of gj
can be reflected by the time evolution of the negativities of
the W state from Fig. 4. Secondly, the residual entanglement

of the W state is not zero but takes a value; this fact is
familiar. Thirdly, when all the coupling constants take the
same value, we find that the W state will not perceive the
presence of the environment. In this sense, the W state is
called as a decoherence-free quantum state and can be used
to design noiseless quantum codes.32–34 Such a result can
also be applied to the W class states which read �W

=w1�011
+w1�101
+w3�110
, where w1 ,w2 ,w3 are complex
coefficients. From the above analysis, we can say that the W
state is more robust that the GHZ state in the context here.

To examine the effect of quantum phase transition on the
entanglement of the W state, we numerically calculate the
quantity of NAB−C under different couplings, either weak or
strong. Because of symmetry, the other quantities of en-
tanglement of the W state are omitted here. From Fig. 4, we
can find that the behavior of time evolution of the W state is
similar to that of the GHZ state under different couplings,
either weak or strong. Under weak coupling such as g1
=0.1, g2=0.2, g3=0.4, the decay of quantity NAB−C is en-
hanced by the quantum phase transition at which �=2. Un-
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FIG. 4. �Color online� Negativities of the W state under a fixed-transverse magnetic field �=2 and the quantity of NAB−C with different
kinds of coupling are plotted, where Nt=300.
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der strong coupling, as shown in the final subfigure of Fig. 4,
we do not find the enhancement of entanglement decay. Es-
pecially, numerical calculation implies that the entanglement
of quantity NAB−C tends to a constant near 0.38 under strong
coupling shown in the final subfigure of Fig. 4. Though we
just single out one quantity NAB−C to demonstrate the effect
of environment on the quantum entanglement evolution, the
results can be applied to other quantities of the W state be-
cause of symmetry.

Case 3. Beyond the pure quantum states, mixed states
should also be discussed. Here, we employ a Werner-like
state to investigate the effect of a critical quantum environ-
ment on mixed states. Werner-like state reads


Werner =
pI8�8

8
+ �1 − p���
��� , �16�

where p is a parameter characterizing the extent to which the
white noise exists in state ��
, and it ranges from 0 to 1.
Operator I8�8 is an identity matrix with rank of 8, and ��

= 1

�2
��000
+ �111
�. Due to decoherence, the time evolution of

the Werner-like state takes the following expression:

NAB−C =
1 − p

2
�F18� −

p

8
. �17�

Equation �17� holds under the condition that 1−p
2 �F18��

p
8 ;

otherwise, negativity NAB−C takes a zero value. Due to a high
symmetry, the other negativities of NAC−B ,NBC−A take the
same expression with NAB−C. The entanglement evolution of
the Werner-like state is illustrated in Fig. 5. From Fig. 5, we
find that the more noise applied to state ��
 is, the shorter the
time for entanglement persists. As one observation of Fig. 5,
for the case of p=0, the Werner-like state is reduced to the
GHZ state, and the time for complete disentanglement is
infinite; however, for the cases of p�0 including cases of
p=0.1,0.3,0.5,0.7, the entanglement of the Werner-like
state vanishes completely due to the decoherence induced by
the environment. Usually, researchers call this phenomenon
of finite-time disentanglement as “sudden entanglement
death” firstly observed by Yu and Eberly in the study of
spontaneous emission.35 To illustrate the effect of different
couplings on the quantum entanglement of the Werner-like
state when the transverse magnetic field takes the critical
value of �=2, we plot the right subfigure in Fig. 5 where the
cases g=0.1,1 ,10,100 are plotted. When the coupling takes
a large value such as g=1, the entanglement vanishes much
faster. Here, the result does not conflict with the conclusion
of the enhancement of entanglement decay for the GHZ and
W states under weak coupling. When the coupling g=10, the
time evolution of entanglement shows an oscillating behav-
ior. If the coupling takes a value large enough as g=100, we
find that the entanglement will be reduced quickly to a con-
stant near 0.418. Additionally, the entanglement evolution of
the Werner-like state is similar to that of the GHZ state due
to the similar expression, so the effect of quantum phase
transition of environment on the entanglement of the Werner-
like state can be obtained directly from the analysis of the
GHZ state.

With the above three cases, we analyze the effect of a
quantum-critical environment on the entanglement of three-
qubit states. From the above cases, we find that the entangle-
ment dynamics depends not only on the system-environment
coupling and the size of degrees of freedom of the environ-
ment but also on the strength of transverse magnetic field
and the symmetry of the state of concern. Furthermore, the
numerical results imply that the quantum phase transition of
the environment plays a positive role in enhancing the decay
of entanglement for these states when the system couples to
the environment weakly. Does such a conclusion apply to all
the entangled states? We cannot answer this question here
because such a question is difficult to prove. In principle, the
entanglement evolution of any state of a three-qubit system
can be discussed as well. Here, for convenience, the other
examples are omitted.

IV. DISCUSSION AND CONCLUSION

Getting a further insight into the decoherence factor
F�
�� ,
=1,2 , . . . ,8� which determines the effect of envi-

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

N
W

er
(t

)

p=0
p=0.1
p=0.3
p=0.5
p=0.7

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

N
W

er
(t

)

g=0.1
g=1
g=10
g=100

FIG. 5. �Color online� Negativities of the Werner-like state ver-
sus time t are plotted for �1� different values of p and a fixed value
of g��g1+g2+g3� /2=0.1 and �2� different values of g and a fixed
value of p=0.1, where Nt=300, �=2.
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ronment on quantum states of concern, we can find that
F�
=1 if 	�=	
, and thus the quantum states will remain
unchanged during the interaction process with the environ-
ment. In particular, when the coupling constants of gj�j
=1,2 ,3� take the same value of g, we find a linear
decoherence-free space32–34 SLDF consisting the following
basis: �000
�000�, �001
�001�, �010
�010�, �011
�011�,
�100
�100�, �101
�101�, �110
�110�, �111
�111�, �001
�010�,
�001
�100�, �010
�001�, �010
�100�, �011
�101�, �011
�110�,
�100
�001�, �100
�010� �101
�011�, �101
�110�, �110
�011�,
�110
�101�. Any state that can be expanded by the basis of
SLDF will remain under decoherence when all the coupling
constants take the same value; in contrast, any state that can-
not be expanded by the basis of SLDF will lose coherence.
When 	��	
 ���
�, F�
 will be a value less than 1 and
thus the coherence of quantum states will change. Especially,
when F�
��
� decays exponentially with time, then any den-
sity matrix will evolve into the final form like 
�t→��
=��c���
��� which is a separable quantum density matrix,
where c� are real and non-negative coefficients and ��
 are
the orthogonal basis of quantum states.

To conclude, we have investigated the entanglement dy-
namics of three-qubit quantum states in a correlated environ-
ment. Our results imply that the entanglement evolution de-
pends not only on the strength of the transverse field, the
coupling constants gj�j=1,2 ,3�, but also on Nt as the size of
degrees of freedom of the environment. Due to different
symmetries, the entanglement evolution of different quantum
states shows different behaviors. Specifically, we employ the
GHZ state, the W state, and the Werner-like state to investi-
gate their entanglement evolution with negativity as the en-

tanglement measure. Our results from the cases imply that
quantum entanglement decay is enhanced by the quantum
phase transition of environment under weak coupling, while
under strong coupling, the entanglement evolution is compli-
cated with the order of magnitude of the coupling strength
change. Specially, numerical calculation shows that the en-
tanglement tends to be a constant when the coupling strength
takes a large enough value. Furthermore, we have investi-
gated the effect of the size of degrees of freedom of the
environment on quantum entanglement and found that the
size affects the quantum entanglement too. In short time, the
larger the size is, the smaller the revival of entanglement is.
Finally, we have made a general discussion of the effect of
decoherence on the quantum entanglement. When all the
coupling constants take the same value, a linear
decoherence-free quantum space is identified; however,
when all the couplings satisfy some certain relations and the
relation of 	��	
 holds for all the cases of ��
, then any
entangled quantum state will become a separable one. In a
word, our results will contribute to a clear understanding of
entanglement dynamics of three-qubit quantum states in a
critical environment and can shed some light on the multi-
partite entanglement dynamics in a correlated environment.

ACKNOWLEDGMENTS

This work was funded by the foundation of Anhui Uni-
versity of Technology for Doctor and partially supported by
the National Natural Science Foundation of China under
Grant No. 60573008.

*Corresponding author; mxiaosan@mail.ustc.edu.cn
1 C. H. Bennett, Phys. Rev. Lett. 68, 3121 �1992�.
2 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and

W. K. Wootters, Phys. Rev. Lett. 70, 1895 �1993�.
3 M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information �Cambridge University Press, Cambridge,
2000�.

4 W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
5 A. Peres, Phys. Rev. Lett. 77, 1413 �1996�.
6 D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A.

Zeilinger, Phys. Rev. Lett. 82, 1345 �1999�.
7 A. Raschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.

M. Raimond, and S. Haroche, Science 288, 2024 �2000�.
8 W. H. Zurek, Rev. Mod. Phys. 75, 715 �2003�; A. Melikidze, V.

V. Dobrovitski, H. A. De Raedt, M. I. Katsnelson, and B. N.
Harmon, Phys. Rev. B 70, 014435 �2004�.

9 J. S. Pratt and J. H. Eberly, Phys. Rev. B 64, 195314 �2001�.
10 M. Lucamarini, S. Paganelli, and S. Mancini, Phys. Rev. A 69,

062308 �2004�.
11 A. Hutton and S. Bose, Phys. Rev. A 69, 042312 �2004�.
12 Xiao-Zhong Yuan, Hsi-Sheng Goan, and Ka-Di Zhu, Phys. Rev. B

75, 045331 �2007�.
13 Dmitry Solenov, Denis Tolkunov, and Vladimir Privman, Phys.

Rev. B 75, 035134 �2007�.

14 H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys.
Rev. Lett. 96, 140604 �2006�.

15 Fernando Martn Cucchietti, Sonia Fernandez-Vidal, and Juan
Pablo Paz, Phys. Rev. A 75, 032337 �2007�.

16 Z. Sun, Xiaoguang Wang, and C. P. Sun, Phys. Rev. A 75,
062312 �2007�.

17 A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Phys. Rev.
Lett. 93, 230501 �2004�; Florian Mintert, Andtre R. R. Car-
valho, Marek Kus, and Andreas Buchleitner, Phys. Rep. 415,
207 �2005�.

18 M. Hein, W. Dur, and H. J. Briegel, Phys. Rev. A 71, 032350
�2005�.

19 Dagmar Bruß, Nilanjana Datta, Artur Ekert, Leong Chuan Kwek,
and Chiara Macchiavello, Phys. Rev. A 72, 014301 �2005�.

20 C. M. Alves and D. Jaksch, Phys. Rev. Lett. 93, 110501 �2004�.
21 Gustavo Rigolin, Thiago R. de Oliveira, and Marcos C. de Ol-

iveira, Phys. Rev. A 74, 022314 �2006�.
22 F. G. S. L. Brandao and R. O. Vianna, Phys. Rev. Lett. 93,

220503 �2004�.
23 Akimasa Miyake, Phys. Rev. A 67, 012108 �2003�.
24 Xiaoguang Wang, Mang Feng, and Barry C. Sanders, Phys. Rev.

A 67, 022302 �2003�.
25 L. Lamata, J. Leon, D. Salgado, and E. Solano, Phys. Rev. A 75,

022318 �2007�.

MA, WANG, AND CAO PHYSICAL REVIEW B 76, 155327 �2007�

155327-8



26 Karol Zyczkowski, Pawel Horodecki, Anna Sanpera, and Maciej
Lewenstein, Phys. Rev. A 58, 883 �1998�.

27 G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 �2002�.
28 S. Sachdev, Quantum Phase Transition �Cambridge University

Press, Cambridge, England, 1999�.
29 Y. D. Wang, Fei Xue, and C. P. Sun, arXiv:quant-ph/0603014

�unpublished�.
30 W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314

�2000�.
31 Werner considered only the case p=1/2. These more general

states were introduced by J. Blank and P. Exner, Acta Univ.
Carolinae, Math. Phys. 18, 3 �1977�.

32 D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81,
2594 �1998�.

33 D. A. Lidar, D. Bacon, and K. B. Whaley, Phys. Rev. Lett. 82,
4556 �1999�.

34 D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev. A 60, 1944
�1999�.

35 Ting Yu and J. H. Eberly, Phys. Rev. Lett.. 97, 140403 �2006�.

ENTANGLEMENT EVOLUTION OF THREE-QUBIT STATES… PHYSICAL REVIEW B 76, 155327 �2007�

155327-9


