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The thermal conductance by phonons of a quasi-one-dimensional solid with isotope or defect scattering is
studied using the Landauer formalism for thermal transport. The conductance shows a crossover from localized
to Ohmic behavior, just as for electrons; however, the nature of this crossover is modified by delocalization of
phonons at low frequency. A scalable numerical transfer-matrix technique is developed and applied to model
quasi-one-dimensional systems in order to confirm simple analytic predictions. We argue that existing thermal
conductivity data on semiconductor nanowires, showing an unexpected linear temperature dependence, can be
understood through a model that combines incoherent surface scattering for short-wavelength phonons with
nearly ballistic long-wavelength phonons. It is also found that even when strong phonon localization effects
would be observed if defects are distributed throughout the wire, localization effects are much weaker when
defects are only at the boundary, as in current experiments.
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I. INTRODUCTION

The transport of heat by phonons in quasi-one-
dimensional structures is sensitive to quantum confinement
effects once the phonon wavelengths that dominate thermal
transport are comparable to the structure dimensions. Strong
quantum confinement in thermal transport has been demon-
strated in the observation1 of the thermal conductance
quantum2–4 at temperatures T�1 K and also in recent ex-
periments on semiconductor nanowires5,6 and nanotubes7 at
higher temperatures �down to �10 K�.

Experiments on the thinnest nanowires are not well ex-
plained by current models of independent scattering events at
the boundary,8 even though such models describe thicker
wires quite well �see Fig. 1�. In particular, data on a 22 nm Si
nanowire5 show thermal conductivity scaling with tempera-
ture up to temperatures of order 200 K, well above the tem-
perature where higher transverse modes should be occupied;
linear temperature dependence1 is expected when only the
four gapless modes are occupied. This paper studies the ef-
fect of coherence between different scattering events in
quasi-one-dimensional systems of variable transverse dimen-
sion, using a large-scale numerical transfer-matrix approach
to check simple analytic models. The differences between
bulk and boundary disorder are studied,9–11 and linear tem-
perature dependence at high temperature is found to depend
on having boundary disorder rather than bulk disorder.

The study of quantum effects on electrons in quasi-one-
dimensional systems has developed steadily since the obser-
vation in 1988 of quantized electrical conductance in ballis-
tic quantum point contacts.12 The electrical conductance as a
function of gate voltage shows plateaus at multiples of Ge
=2e2 /h, where h is Planck’s constant and e the electron
charge, and the factor of 2 results from spin. Hence Ge is a
universal conductance quantum for fermions and insensitive
to material properties. The corresponding thermal conduc-
tance quantum has recently been measured in low-
temperature heat transport through small insulating
structures:1 at the lowest energies the only modes accessible

in this system are four phonon modes, and the observed ther-
mal conductance at the lowest temperatures is

G = 4g0 = 4
�2kB

2T

3h
, �1�

where T is temperature and kB the Boltzmann constant. This
thermal conductance quantum is also insensitive to material
properties, and is, in addition, independent of the statistics of
the particles transporting the heat.13,14

This paper studies how scattering and localization by dis-
order appear in the thermal conductance of long quasi-one-
dimensional structures. We restrict ourselves only to low
temperatures and coherent processes: phase-breaking pro-
cesses such as inelastic scattering are neglected. Previous
work on coherent scattering in phonon transport has concen-
trated on the strictly one-dimensional limit;15 as explained
below, there are fundamental aspects of phonon confinement
even in the clean case that are not well captured by a purely
one-dimensional �1D� chain. We find several important dif-
ferences between scattering and localization effects in 1D
phonon transport and the corresponding effects in electrical
transport. As in the electronic problem, transport in quasi-1D
systems can be ballistic, diffusive, or localized, but unlike
the electronic problem, the lowest four harmonic modes are
protected from scattering as T→0 by fundamental properties
of rigid bodies �in the same way as the three acoustic modes
of bulk solids�. In order to access very large system sizes,
many of our numerical calculations are carried out in two
rather than three spatial dimensions; however, two-
dimensional systems already include some important fea-
tures absent in one dimension, e.g., different dispersion rela-
tions for the lowest-lying modes ���k for torsional and
longitudinal, and ��k2 for transverse�. This paper presents
two separate approaches to understanding the thermal con-
ductance of these thin nanorods. Firstly, we use a scalar
model to study the mean free path of different phonon
modes. We find that the gapless mode �which has no trans-
verse wave vector� has a mean free path significantly longer
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than the length of the system; when combined with the con-
tribution of the other modes, the resulting thermal conduc-
tance for very thin rods �of order 20 nm� is approximately
linear.

We also obtain the thermal conductance at low tempera-
ture by numerical transfer-matrix calculations on systems of
small transverse dimension and an analytic theory that makes
standard mesoscopic assumptions about the nature of scatter-
ing. Calculations are done using the Landauer formalism
valid at low temperatures.2,16–18 The analytic results for
boundary scattering build on the scalar approximation are
introduced in Ref. 19. The coherent multiple scattering dis-
cussed in this paper is much more important in long nano-
wires and nanotubes, where the ratio of length to width may
be 100:1, than in the suspended membrane devices studied in
Ref. 1, where nonuniform width and individual scattering
effects have been shown to explain the experimental data.3,17

The results obtained here suggest that the experimentally
observed dip in G /T at moderate temperatures, discussed in
detail for the experimental geometry of Ref. 1 in Ref. 3, will
appear generically in one-dimensional systems as a conse-
quence of delocalization of phonons at low energy and 1D-
three-dimensional �3D� crossover at high energy. Our theo-
retical predictions are also compared to experiments on
semiconductor nanowires at relatively high temperature as a
function of diameter.5 We find that, while the linear tempera-
ture dependence on the smallest nanowire in this experiment
is a robust phenomenon, the coefficient does not need to be
close to 4g0, although it happens to be remarkably close to
this value in that experiment.

We use the term “phonon” to describe both long-
wavelength bulk modes of the nanowire and conventional
short-wavelength phonons as there is no sharp distinction
between these two limits. Note that phonon localization by
strong local scattering can occur also in dimensions D�1 �a
review is Ref. 20�, but considerably more disorder is re-

quired. The following section discusses the basic theory of
mesoscopic thermal transport in harmonic quasi-one-
dimensional systems: localization is described by the DMPK
�named for Dorokhov, Mello, Pereyra, and Kumar�21–23

model with appropriate modifications. In Sec. III we argue
for the relevance of Anderson localization and mode in-
equivalence for thin nanowires. Section IV contains numeri-
cal studies of a two-dimensional �2D� model to understand
the key differences between phonon and electron mesoscop-
ics and test the DMPK model, and Sec. V applies this model
to three-dimensional nanowires at low temperature.

II. MESOSCOPIC THERMAL TRANSPORT

Our approach is based on the thermal analog of the Lan-
dauer formalism for electronic transport. The net thermal
current in a wire from a reservoir at temperature T+�T to
one at temperature T is the difference between that for the
phonons traveling to the right minus that for the phonons
traveling to the left as follows:

J = �
i
� dk

2�
��i�k�vi�k�

1

e��i�k�/kB�T+�T� − 1
Ti��i�k��

− �
i
� dk

2�
��i�k�vi�k�

1

e��i�k�/kBT − 1
Ti��i�k�� . �2�

Here the summation index i runs over all propagating pho-
non modes and Ti��� is a transmission probability of
phonons in mode i at frequency �, defined more precisely in
terms of the heat flux below. The boundary condition is that
a possibly disordered segment of finite length is connected at
both ends to infinite reservoirs with no disorder. Note that the
distribution in the center of the wire is not a thermal distri-
bution, and has no well-defined temperature: the Landauer
approach hence does not apply if dissipation within the wire
leads to thermalization.24,25 The wire is assumed to be per-
fectly harmonic unless otherwise stated; reduction of thermal
transport by anharmonic scattering is exponentially damped
below the Debye temperature.26

The thermal conductance G of a nanowire with perfect
transmission �Ti=1� of harmonic vibrational modes from a
thermal distribution at temperature T is G=J /�T, or

G =
1

2��
�

0

�

N���
�3�2

kBT2

e��/kBT

�e��/kBT − 1�2d� . �3�

Here N��� is the number of propagating modes at frequency
� and kB is Boltzmann’s constant. For a 3D elastic rod, such
as a semiconductor nanowire, there are four modes that sur-
vive down to zero frequency: one torsional and one longitu-
dinal mode, each with linear dispersion ��k, and two flex-
ural models with quadratic dispersion ��k2.

Note that this conductance is finite even if there is a per-
fect transmission of heat from one end of the wire to another:
this is the thermal equivalent of the well known “contact
resistance” in 1D electronic systems. If N��� is constant, so
that N���=N��=0�, we obtain in this ballistic limit

FIG. 1. �Color online� The thermal conductance as a function of
temperature for various wire diameters. The fit �solid lines� matches
the data to a Boltzmann equation treatment including impurity, sur-
face, and umklapp scattering. Note that the 22 nm wire is anoma-
lous. These data are taken from Ref. 5; the fit �except for d
=22 nm� is from Ref. 8; figure courtesy of A. Majumdar.
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G = N�0�
�2kB

2T

3h
. �4�

The same formula gives the leading behavior for small tem-
perature T even if N��� is not constant, because in this limit
the Bose-Einstein factor in the integral becomes concentrated
near �=0.

Elastic scattering is included in the Landauer approach
through the “throughput” T���=�iTi���, which gives the
fraction of incident energy flux on the left end that is trans-
mitted through to the right end �hence T���=N���, the num-
ber of modes, for clean systems with no scattering�. The
conductance is then

G =
1

2��
�

0

�

T���
�3�2

kBT2

e��/kBT

�e��/kBT − 1�2d� . �5�

The numbers Ti��� for disordered 1D systems become
exponentially small once the length of the 1D wire is larger
than a “localization length” 	 that is determined by disorder
strength and wire geometry. The analytic model of Maynard
and Akkermans15 on a pure 1D chain �N���=1 for all al-
lowed �� with random masses can be summarized as fol-
lows: assume the throughput T��� is unity for L
	 and zero
for L�	, where the localization length 	 for the 1D linear
chain follows from the results of Dyson27 as follows:

	��� =
8�D

2

�M
2 �2�2 . �6�

Here �M
2 is the variance of the random mass distribution and

�D is the Debye frequency. Note that the frequency depen-
dence of 	 means that the same wire can be in the localized
regime �i.e., L�	� for high frequencies, while in the ballistic
regime �i.e., L	� for low frequencies.

There are three regimes in a quasi-one-dimensional �mul-
timode� wire. Let ���� be the mean free path averaged over
the modes that propagate with frequency �. At a given �, if
N��L then

T��� =
N���

1 + L/����
+ O�N0� . �7�

This equation describes ballistic behavior for �����L, and
for N��L��, Ohmic behavior in which the thermal con-
ductance of a long wire decreases as the reciprocal of the
length. If N�L, then the phonons at frequency � are effec-
tively localized and

T � e−L/	, �8�

where the localization length is 	=N�. The number of propa-
gating modes N clearly plays an important role in determin-
ing the crossover from Ohmic to localized transport.

These conclusions follow from noting that the same
DMPK equation approach valid for electronic systems is ap-
propriate for phonons, except that the dependence of the
mean free path l on frequency is modified. The connection
between T and the observed transport coefficient, expressed
in the Landauer formula, is also different for electrons and
phonons, since in the phonon case all frequencies with ��

�kBT contribute significantly, while in the electronic case
only frequencies within kBT of the Fermi level contribute
significantly.

The DMPK equation is valid as long as phonon transfer
matrices on scales longer than some mean free path become
described by the orthogonal random matrix ensemble for
one-dimensional systems.23 While we cannot prove the va-
lidity of random-matrix theory assumptions for this problem,
Sec. V verifies that the Ohmic �7� and localized �8� limits for
T correctly describe thermal transport in a model system with
bulk impurity scattering, while strongly localized transport in
models with boundary scattering is not observed. Section IV
explains how microscopic transmission coefficients are cal-
culated via a transfer-matrix approach. In the next section we
analyze the case of surface scattering.

III. STRONGLY DISORDERED SURFACE

It is typically assumed that the mean free path of a pho-
non due to surface scattering is on the order of d, the width
of the material. In this section we show that this is not true
for all phonon modes. Consider, for instance, the gapless
modes �i.e., those that have vanishing wave vector perpen-
dicular to the long direction of the rod�. It is possible to
estimate the mean free path of these modes using the follow-
ing model. Consider a thin three-dimensional rod of length L,
of square cross section with each edge of width d. Allow
scalar waves to propagate on the strip, with Neumann bound-
ary conditions. The dispersion relation is then

� = c�k2 + k�
2 , �9�

where k�=�nx
2+ny

2�� /d�, and nx ,ny =0,1 ,2 , . . .. We seek to
calculate the mean free path due to surface scattering of the
nx=0, ny =0 mode.

It can be shown using the methods of Ref. 19 that, for this
mode, the mean free path is given by

�0
−1��� = 4�3�2�2/3h2

d3	 �

�D

2

+ 6��3�2�1/3 �h/a�2

d
	 �

�D

4

,

�10�

where h is the mean width of the disordered surface layer. c
is the velocity of the gapless mode, and the correlation length
scale for the surface disorder has been set to a, the lattice
spacing. The first term comes from scattering back into the
gapless mode, and the second into all other modes, and so
involves a factor of the density of states, which scales like
�2. The frequency dependence here is what one expects for
scattering from pointlike impurities. The gapless mode, then,
does not sense that the disorder is at the boundary: it sees the
disorder as a collection of pointlike impurities. This fre-
quency dependence ensures that at low temperatures the
mode will be scattered weakly, and so will “reflect” almost
specularly from the boundary.

This weak scattering of the gapless mode agrees with
Rayleigh’s criterion on the condition for specular reflection
from a boundary. Rayleigh considered the following simpli-
fied model of a disordered surface: suppose the clean surface
is a straight line at y=0. Let the surface be at either y=h /2 or
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y=−h /2. An incident wave then reflects from the disordered
boundary as from two Bragg planes, a distance h apart. De-
fine � as the angle the incident wave makes with the surface.
The phase difference between different parts of the reflected
wave is then given by

�� = 2�
2h sin �

�
= 2hk�, �11�

where k� is the component of the incoming wave vector
perpendicular to the surface. If this phase difference �� is of
order 1, then the reflected wave is destroyed through destruc-
tive interference, and the so wave must have been reflected
diffusely. On the other hand, if ��1, the reflection will be
specular.

Consider now the phonon modes of the quasi-one-
dimensional rod we considered above. One expects then that
the modes with lower k� will scatter more weakly from the
boundary than those with a larger value. As we increase k�

through the value 1/h, one expects a transition from modes
with a long, frequency-dependent mean free path to modes
with a mean free path of order d.

We can make an ansatz for the total throughput in the case
of strong mode inequivalence, assuming that only the gapless
mode has the frequency-dependent mean free path, and all
others have a mean free path of d as follows:

T��� = �
i

1

1 + L/�i
, �12�

where �i=�0 for the gapless mode and equals d for all other
modes. This formula gives the DMPK form in the case of
mode equivalence ��i=��, and gives ballistic behavior if one
of the mean free paths is much longer than the length of the
system. We have assumed that the strongly scattered modes
give an Ohmic contribution. In detail then, the throughput for
the rod is

T��� =
1

1 + L�0
−1 +

d

L

�3�2�2/3

8�

d2

a2	 �

�D

2

. �13�

This is plotted for various widths in Fig. 2. This function can
also be numerically integrated using Eq. �5� to find the cor-
responding thermal conductance as a function of frequency,
G�T�. This is shown in Fig. 3.

The throughput is the sum of two contributions: the gap-
less mode gives a term that scales like 1/ �1+C�4�, the other
modes a term that scales like �2. Together, for a sufficiently
thin rod, the dip in the throughput is somewhat smeared out
by the exponential factors in the integral for G�T�, with the
result that the thermal conductance is approximately linear in
T up to about TD /5.

It is also interesting to consider whether localization ef-
fects might be relevant. Let us assume that, at a frequency �,
there are of order N��� modes with a mean free path of d
�we ignore for the moment the quasispecular modes�. For
this given mean free path, the localization length becomes
	����N���d. For low frequencies, the number of modes is
small, and so 	 should be of order the width of the system,
which by assumption is much shorter than the length L.

Hence all the low-frequency modes should be localized. As
we increase the frequency, the number of modes increases
like

N��� � 	 �

v/d

2

� 	 �

�D

2	d

a

2

�14�

and so at some value �* we will have N��*��d=L, or

�* � �D� L/a

�d/a�3 � 0.24�D	22 nm

d

3/2

, �15�

where we have set a=0.543 nm, the lattice constant of sili-
con, L=2 �m, a typical value for the length of a nanowire,
and 22 nm was chosen as a comparison scale, since this is
the width of the wire with anomalous thermal conductivity as
observed by Li et al.5 The frequency scale �* corresponds to
a temperature scale of

T* � 0.24TD	22 nm

d

3/2

. �16�

Under the assumption then these phonons have a mean free
path due to boundary scattering of order d, one should ob-
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FIG. 2. �Color online� The throughput as a function of fre-
quency for a surface-disordered rod, as suggested by Eq. �12�. The
length was chosen to be 2000 nm, a typical length for a nanowire.
Here we have assumed that only the gapless mode has a frequency-
dependent mean free path, and all others have a mean free path of
order the width of the system, d. The label “1BM” stands for “one
ballistic mode.”

0 0.05 0.1 0.15 0.2 0.25
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FIG. 3. �Color online� The thermal conductance associated with
the throughput functions shown in Fig. 2. The scale for G�T� is set
by the curve for one ballistic mode �1BM�. We have also included
the correction due to umklapp scattering using the form suggested
by Mingo �Ref. 8�, but this correction is very small in the tempera-
ture range of interest.
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serve an exponentially small contribution to thermal trans-
port at temperatures less than T*.

These considerations are of course greatly complicated by
the mixing with the quasispecular modes. The DMPK theory
assumes that the transmitting channels are equivalent, and it
is not known how the localization length changes when a
quasiballistic mode is added to a number of strongly scat-
tered modes. As an ansatz we approximate the quasiballistic
mode as having decoupled from the strongly scattered
modes. The resulting throughput is

T��� =
1

1 + L/�0
+

N���
1 + L/d

e−L/„N���d…. �17�

The throughput and corresponding thermal conductances are
shown in Figs. 4 and 5. Localization significantly reduces the
thermal conductance below the incoherent limit.

A full understanding would require a theory that incorpo-
rates inequivalent channels, something that is not available at
this time. Our numerical work described later sheds much
light on this problem.

Note that in the high-frequency limit where it is possible
to make a wave packet of phonons much smaller than the
width of the wire, and this wave packet scatters like a par-
ticle, boundary scattering allows wave packets directed along
the rod axis to pass through: this implies that true exponen-

tial length dependence is not expected with boundary scat-
tering, even when most thermal phonon modes are localized.

IV. DYNAMICAL TRANSFER-MATRIX APPROACH

First recall the definition of scattering and transfer matri-
ces for waves. Let the amplitude in mode i that is incoming
from the left be ai, incoming from the right be di, outgoing to
the left be bi, and outgoing to the right be ci. The index i
ranges from 1 to N���.

The S matrix then maps the incoming amplitudes to the
outgoing amplitudes

S�
]

ai

]

]

di

]

 =�
]

bi

]

]

ci

]

 . �18�

The matrix elements are given by

S = 	r t�

t r�

 , �19�

where r, t�, t, and r� are all N����N��� matrices. The ma-
trix elements have the following interpretation: rij is the am-
plitude for a left moving wave in mode i to be reflected to
mode j, rij� is the amplitude for a right moving wave in mode
i to be reflected into mode j, tij is the amplitude for a left
moving wave in mode i to be transmitted into mode j, and tij�
is the amplitude for a right moving wave in mode i to be
transmitted into mode j.

For our purposes, the transfer matrix R will prove more
useful. It is defined by

R�
]

ai

]

]

bi

]

 =�
]

ci

]

]

di

]

 . �20�

It has the property that if there are two regions in series
labeled 0 and 1, then the total transfer matrix is given by R
=R1R0. It is not difficult to express R in terms of the trans-
mission and reflection amplitudes as follows:

R = 	t − r�t�−1r r�t�−1

− t�−1r t�−1 
 . �21�

The total transmission coefficient is obtained by taking the
22 element of R1R0, and inverting it: t0+1� = t0��1−r1r0��

−1t1�.
This formula has a simple interpretation: write it as t0+1�
= t0�t1�+ t0�r1r0�t1�+ t0�r1r0�r1r0�t1�+¯. It is evident that the total
amplitude for transmission �from right to left� is given by the
amplitude to get through the second obstacle and then the
first obstacle; plus the amplitude to get through the second
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�Ω
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d�20nm �with LOC�

d�20nm �without LOC�

1BM

FIG. 4. �Color online� The throughput as a function of fre-
quency for a surface-disordered rod, to illustrate the relevance of
localization, based on the formula �17� in the text. As before,
“1BM” stands for “one ballistic mode;” the “with loc” curve is
based on the formula �17� in the text, and the “without loc” curve is
identical to that of Fig. 2.
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FIG. 5. �Color online� The thermal conductance associated with
the throughput functions shown in Fig. 4. Again, the scale for G�T�
here is set by the one ballistic mode �1BM�.
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obstacle, bounce off the first obstacle, bounce off the second
obstacle, and then get through the first, ad infinitum.

Thermal transport by vibrational modes in a multimode
wire requires a few modifications to the above equations:
starting from coupled linear equations of motion for many
ionic coordinates, we derive the form of the dynamical trans-
fer matrix R that describes a longitudinal step along the wire.
As an example, first consider a purely one-dimensional chain
of balls connected by springs of constant strength C and
mass m. Let ui be the deviation, assumed small, of the posi-
tion of ball i from its equilibrium location. The equation of
motion for site i in the chain is

müi = C�ui+1 − ui� + C�ui−1 − ui� . �22�

The equation of motion at frequency � can be written as
follows:

	ui+1

ui

 = 	2 − m�2/C − 1

1 0

	 ui

ui−1

 . �23�

Hence the matrix that corresponds to adding a single site in
this coordinate basis is

M = 	2 − m�2/C − 1

1 0

 . �24�

Now we convert this matrix to the basis of eigenmodes in
order to obtain the transfer matrix R defined above.

An eigenmode of wave vector kz satisfies �here a is the
lattice spacing�

M	 ui

ui−1

 = �	 ui

ui−1

, � = eikza. �25�

M is a real matrix and its eigenvalues form a time-reversed
pair: they are either complex conjugates of each other
�propagating modes in opposite directions� or reciprocal to
each other �evanescent modes in opposite directions�. The
eigenvalues are

� = 1 −
m�2

2C
±

m���2 − 4C/m

2C
�26�

describing propagating modes with kz real if m�2
4C and
evanescent modes with kz imaginary if m�2�4C. Consider
the regime of propagating modes: in this basis the transfer
matrix becomes just

R = 	� 0

0 �* 
 , �27�

which gives a unitary S matrix since

S = 	 0 �

�* 0

 �28�

and �� � =1.
The same procedure applies in a multimode wire except

that now r, t, r�, and t� are matrices. There is one technical
difference that appears between the vibrational case and the
standard electronic case. In the vibrational case, it is the en-
ergy flux rather than the probability flux that satisfies a con-

tinuity equation. Hence the basis in which the S matrix is
�almost� unitary is one in which incoming and outgoing ex-
citations are normalized to unit energy flux, rather than unit
probability flux. Actually the whole S matrix is not unitary,
but only the portion made up of modes with nonzero energy
flux.28

Note that the transfer-matrix approach used in this paper
to make contact with mesoscopic electron physics works at a
fixed frequency � �equivalent to fixed energy in the elec-
tronic case�. The extension of the above to an extended 1D
wire with random masses or spring constants is as follows:
First, the eigenmodes in the absence of disorder are obtained
from the transfer matrix above. Then the transmission coef-
ficients for these modes through a disordered system are ob-
tained by combining many individual segments �with differ-
ent transfer matrices�. After the transmission coefficients for
a fixed disorder realization are obtained as a function of �, a
final integration step gives the thermal conductance for that
realization as a function of temperature. �Note that the first
step of this approach, obtaining the eigenmode spectrum
without disorder, is different computationally from typical
dynamical matrix calculations in which kz is fixed and the
frequencies � of different phonon bands are obtained but
obtains the same spectrum of propagating modes.�

In the multimode case, the transfer matrix R describes
how incident and outgoing modes at the left edge of a region
are matched to incident and outgoing modes at the right edge
of the region. Once there is disorder in the system, energy
flux incident in mode i will be distributed over reflected
modes, other transmitted modes, and the original mode, with
conservation of energy flux. The Landauer expression for the
thermal conductance in Sec. II contains a sum over Ti; Ti is
defined as the fraction of the incident energy flux in mode i
that reaches the other end of the sample, i.e., Ti=� j�tij�2. In
the next section we show numerical results on the thermal
conductance of two-dimensional disordered strips.

V. THERMAL CONDUCTANCE OF QUASI-ONE-
DIMENSIONAL SYSTEMS: NUMERICAL RESULTS

A. Two-dimensional strip

This section applies the transfer-matrix approach outlined
in the previous section to a simple harmonic “ball-and-
spring” model system with ions moving in two dimensions.
Considerable previous work29 has shown in the absence of
disorder that similar models, possibly including next-
neighbor and bond-angle terms, can describe the phonon
spectra of quasi-one-dimensional systems �including carbon
nanotubes� with ions moving in three dimensions. The justi-
fication for studying a model system with only two-
dimensional motion is that already in two dimensions both
linearly and quadratically dispersing modes are present, as in
3D, and the analytic predictions in Sec. II can be checked
comprehensively by going to very large wire sizes. The fol-
lowing section �Sec. V B� sets out experimental predictions
for semiconductor nanowires in 3D based on the analytic
picture outlined in Sec. II and checked below.

The existence of gapless modes in a vibrational system is
related to the Euclidean motions of a rigid body: the gapless
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vibrational modes are those that become symmetries, typi-
cally translations, in the long-wavelength limit. There are
four gapless modes in a rod, rather than three as in a bulk
solid, because rotation around the rod axis guarantees a gap-
less “torsional” mode in addition to flexural and compres-
sional modes that become translations along the three axes.
For a rigid wire moving in two dimensions, there are two
gapless modes: using ẑ to denote the rod axis, there is a
linearly dispersing longitudinal mode with displacements
along ẑ in the long-wavelength limit, and a quadratically dis-
persing flexural mode with displacements along x̂. Additional
modes begin to propagate as the frequency is increased.

The simplest rigid body in two dimensions is the triangu-
lar lattice with springs connecting lattice points. �The square
lattice has vanishing rigidity in 2D if the potentials are
purely length-dependent nearest-neighbor springs.� The lon-
gitudinal mode for this system is shown in Fig. 6 and the
flexural mode is shown in Fig. 7.

A simple model for the number of propagating modes
agrees qualitatively with the numerical results for this quan-
tity. The system has two modes as �→0—the longitudinal
and flexural acoustic modes. As we increase � to ��v /2d,
where d is the width, we expect to encounter modes that
have a finite wavelength in the transverse direction. If we
assume, in a simplified picture, that at each �=n�v /2d we
add two more modes to N���, and that every mode has the
same velocity, then the number of modes is approximately
given by

N��� = 2 +
4d

�v
� . �29�

For ���D, where �D is the Debye frequency, the lowest-
lying modes are no longer propagating, and so one expects
the number of modes to decrease, with approximately the
same slope.

In what follows we will assume that N��� has the form

N��� = 2 + c
d�

�D
, �30�

where c is a constant of order unity, and d, the width, is now
measured in units of the lattice spacing.

1. Bulk disordered

Consider the case where the isotopic disorder extends
throughout the material �in a later section we will constrain
the disorder to be at the edge of the strip�. The rate at which
waves scatter from pointlike defects is determined by the
Rayleigh-Klemens formula as follows:30

����−1 = �2�2	D�D−1

�D
D 
 , �31�

where D refers here to the dimension of the space, and �2 is
the fluctuation in a single mass. The DMPK formalism sug-
gests a formula for the total throughput of a quasi-one-
dimensional system in the ballistic and Ohmic regimes as
follows:

T��� =
N���

1 + L/����
. �32�

As the length of the system L extends belong the mean free
path �, the throughput �and hence the contribution of that
frequency to the thermal conductance� scales like 1/L; this is
a feature characteristic of Ohmic systems.

From the Rayleigh-Klemens formula, one anticipates a
mean free path of

1

����
�

1

v
�2�2N��� . �33�

In the Ohmic limit this suggests a length and frequency scal-
ing in the throughput of

T��� �
N�������

L
�

N���
L

1

�2N���
�

1

L�2 . �34�

As an example of the throughput of a bulk-disordered
system, see Fig. 8. The strip chosen was of width 32 sites,
and of varying lengths as shown in the legend. In each case,
the probability that a given site was replaced by an disor-
dered site is 1 /32. Here the disordered sites were chosen to
have mass 1+�2, whereas the original masses are 1. Note
that this can be used to model any substitutional disorder,
since the effects of a change in spring constants or a strain
field can be absorbed into �2 �see Ref. 30�.

The general shape of the curves in Fig. 8 is consistent
with the DMPK formula for the throughput, with the
frequency-dependent mean free path given by the Rayleigh-
Klemens formula. For small frequencies, the phonon scatter-
ing rate is small, and so the total throughput tracks the num-
ber of modes. As the frequency increases, the phonons are
more strongly scattered; the mean free path decreases faster
than the density of states increases, and so the throughput
decreases with increasing frequency.

FIG. 6. �Color online� The acoustic longitudinal mode of a strip
of triangular lattice.

FIG. 7. �Color online� The acoustic flexural mode of a strip of
triangular lattice.
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The thermal conductance as a function of temperature
corresponding to the L=1000 throughput is shown in the
inset of Fig. 8.

The dependence of the throughput on L and � is consid-
ered in Fig. 9. In the inset the throughput multiplied by the
length is plotted as a function of frequency. The throughput
clearly scales like 1/L in the frequency regime shown. The
line shown in the figure demonstrates the scaling with fre-
quency, which is of the form ��−2.6.

The throughput for the localized regime is illustrated in
the main figure of Fig. 9. As the Ohmic throughput T
�N� /L decreases to a value less than 1, the throughput de-
creases faster than any power law.

2. Edge disordered

We consider in this section the throughput of the two-
dimensional strip with only the boundary of the strip disor-

dered. Recall that in the case of bulk disorder, the throughput
shows a strong frequency dependence—essentially because
the mean free path is set by Rayleigh-Klemens formula for
scattering from pointlike defects. In contrast, when the dis-
order is present only at the edge, a more appropriate model is
that the phonons are scattered, specularly or diffusively, at
the boundary.

The throughput is shown as a function of frequency for
various lengths in Fig. 10. The throughput was calculated by
disordering a region of thickness 1 site at both edges of the
strip. The mass of these edge sites was chosen at random to
be either 1 �the mass in the clean case� or 1+�2, each with
probability 1 /2. The throughput was then calculated numeri-
cally as described earlier. The figure shows the throughput
averaged over 40 implementations of the disorder.

From the figure one can see that once the phonon fre-
quency is no longer in the ballistic regime, the throughput
levels off to approximately a constant. A throughput that is
constant as a function of frequency can be seen experimen-
tally as a thermal conductance that is linear in temperature: if
the throughput is equal to, say, c, then the thermal conduc-
tance is cg0, where g0 is the quantum of thermal conduc-
tance. Again the inset shows the thermal conductance as a
function of temperature for the L=1000 throughput. The
throughput has been rescaled to remove the length depen-
dence. Note that the throughput scales like 1/L�, where � is
less than 1: the system is not in the Ohmic regime.

To illustrate the reason for the frequency-independent
throughput, we show the mode-resolved throughput in Fig.
11. Here, for each mode, a unit flux was incident on the
disordered region. The total flux that is transmitted into any
mode �corresponding, for the ith mode, to Ti� was recorded.
For the bulk-disordered case, all modes are equivalent. How-
ever, for the edge-disordered case, the throughput is domi-
nated by two modes in the frequency range in which it is
constant. These modes happen to have a small displacement
at the boundary. Their contribution is approximately con-
stant.

When the disorder is exclusively at the boundary, the
boundary displacement of the different modes will obviously
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FIG. 8. The throughput as a function of frequency for a two-
dimensional strip of width 32 sites. The various lengths are shown
in the legend. The throughput shown has been averaged over 40
implementations of the disorder, as described in the text. The inset
shows the thermal conductance corresponding to the throughput for
L=1000 shown in the main figure. This was found by numerical
integration using Eq. �5�. The quantity � is a dimensionless tem-
perature defined by �= �kBT� / ���C /m�, where C is the spring con-
stant; A is a constant defined as A= �kB /2���C /m.
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determine how strongly they are scattered—a mode with
vanishing boundary displacement will pass through the ma-
terial ballistically.

In addition, these boundary displacements can vary dra-
matically for different modes at the same frequency. For in-
stance, when � is such that ��v /d, the ungapped longitu-
dinal and flexural modes become surface waves. This occurs
because a surface wave must decay exponentially into the
bulk. Its dispersion must then be ��v�kz

2−kx
2. Therefore for

a given �, these surface modes have the largest kz among all
the propagating modes: this identifies them as a linear com-
bination of the flexural and longitudinal modes.

By contrast, the first set of gapped modes tend to have an
anomalously small displacement at the boundary. This is il-
lustrated in Table I. For a frequency of �=0.57�C /m �C is
the spring constant�, and a width of 32 sites, the kz values of
the various propagating modes along with the amount of
displacement at the boundary is shown. By boundary dis-
placement we mean the displacement summed over the two
sites at the edge of the strip. The modes here are normalized
to 1/2: a mode with boundary displacement squared 1/2
would exist exclusively at the top and bottom sites of the
strip.

B. Three-dimensional rod

In this section we consider numerical data for a three-
dimensional rod. The system we study has 127 atoms in a
cross section, as shown in the inset of Fig. 12. The atoms are
arranged in a triangular lattice, with springs connecting near-
est neighbors and next-to-nearest neighbors. At small fre-
quencies there are four normal modes: longitudinal, tor-

sional, and two flexural. The longitudinal and torsional
modes disperse linearly, while the flexural disperse quadrati-
cally.

The rods are disordered in the same way as described for
the strip. In the clean case each atom has mass 1; for a
disordered system each atom is replaced by an atom of mass
1+�2 with a certain probability, the alloy fraction. As before,
we will consider both bulk �i.e., each atom in a given cross
section can be replaced� and boundary �i.e., only those atoms
at the outer edge of the cross section can be replaced� disor-
der.

We find the throughput using the transfer-matrix method.
In Fig. 12, we show the disorder-averaged throughput for a
rod of length 100 sites. Both bulk- and boundary-disordered

TABLE I. Boundary displacements ��� �2 for the 14 propagating
modes at frequency �=0.57�C /m for a strip of width 32 sites. The
wave vectors are measured in units of the inverse lattice spacing.
The units of ��� �2 are arbitrary: we wish to point out only that some
modes have almost vanishing boundary displacement.

kzj ��� �2

1.059383 0.189611

1.059383 0.189612

0.929791 0.002395

0.904105 0.008771

0.854861 0.016750

0.773922 0.024001

0.657264 0.033273

0.558262 0.088231

0.526373 0.087008

0.525994 0.025183

0.447062 0.076678

0.442868 0.038433

0.275598 0.062901

0.293598 0.045720
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FIG. 11. Mode-resolved throughput of a strip of width 32 sites
as a function of frequency for the case where the disordered is
distributed throughout the bulk �top�, or at the edge �bottom� of the
material. The length of the strip in both cases is 1600 sites.

FIG. 12. Disorder-averaged throughput for a rod of length 100
sites as a function of frequency. Both the bulk- and boundary-
disordered cases are shown. On the top right a cross section of the
nanowires considered is shown. There are, in fact, springs connect-
ing next-to-nearest neighbors �spring constant 0.4� as well as near-
est neighbors �spring constant 1.0�, although they are not shown
here.
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cases are shown. The alloy fraction for the bulk case was
chosen to be 0.1; for the boundary case it was chosen to be
12.7/36: this ensures that the number of disordered atoms in
a cross section is the same for the bulk- and boundary-
disordered cases.

The data show that the throughput in the case of boundary
scattered rods is noticeably less than the bulk-disordered
case. This is because phonon modes in a rod tend to have
more displacement at the edge than at the center, since at the
edge the masses have greater freedom to vibrate.31

One feature which is not apparent is the presence of
modes which have a displacement at the boundary orders of
magnitude smaller than that of the other modes �recall that
these modes dominated the throughput of the edge-
disordered strip�. This may be due to the relatively small
diameter of the rod considered here: in the data shown, we
have not, in fact, reached the limit where the surface waves
have formed.

Finally, it is interesting to note that the reflection and
transmission matrices for a short system can be used to find
the incoherent limiting conductance. If the transmission and

reflection matrices for a system of length �L are T̃ and R̃,
then the transmission and reflection matrices for a system of
length n�L �denoted Tn and Rn� are

Tn = T̃�1 − Rn−1R̃�−1Tn−1, �35�

Rn = Rn−1 + Tn−1R̃�1 − Rn−1R̃�−1Tn−1. �36�

This may prove useful to isolating the incoherent signal in
future studies.

VI. CONCLUSION

In conclusion, we have studied the thermal conductance
of insulating nanowires at low temperatures. For the thinnest
wires, with diameters of order 20 nm, it was argued that
frequency-dependent surface scattering is relevant. In par-
ticular, modes with a small k� �i.e., the component of the
wave vector in the direction perpendicular to the long direc-
tion of the wire� should scatter almost specularly from the
boundary, whereas those with a larger k� presumably have a
mean free path of order d, the width of the wire. The result-
ing thermal conductance is shown in Fig. 3, for a number of
diameters. For a width d=20 nm, the thermal conductance is
almost equal to that of a single ballistic mode. This can be
understood as follows. There are two contributions to the
thermal conductance: that of the quasispecular modes, whose
number is fixed but whose contribution decreases with in-
creasing frequency; and the diffusively scattered modes,
whose mean free path is fixed but whose number increases
with frequency. These decreasing and increasing terms to-
gether give an approximately constant throughput for low
frequencies �Fig. 2�.

These considerations also suggest strongly that localiza-
tion effects are relevant to transport in nanorods of transverse
dimension d�20 nm. This was demonstrated by applying
the DMPK formalism, which at certain frequencies is not
valid—DMPK requires mode equivalence, and at small fre-
quencies the quasispecular mode has a mean free path much
longer than the other modes. Nevertheless, it would be of
great interest to explore experimentally localization phenom-
ena in these nanowires. For instance, a different temperature
dependence in the thermal conductance and heat capacity,
with the heat capacity measured through a bulk contact to a
reservoir, would be strong evidence that some of the phonon
modes are localized.

In order to understand the relevance of coherence effects,
we have also simulated phonon transport using a dynamical
transfer-matrix method. Our simulations show a mode in-
equivalence for the case of scattering from a disordered sur-
face that is not present when the impurities are placed at
random throughout the strip. The total throughput of the
surface-disordered strip is approximately constant in fre-
quency, consistent with a linear thermal conductance.

If the ballistic and strongly scattered modes were decou-
pled, one would expect some modes to have a throughput of
approximately 1, and others to have an exponentially small
throughput. Although the mode inequivalence we observe
numerically is not that strong, the total throughput is consis-
tent with the picture that some modes are quasiballistic, and
the rest are strongly scattered. Also, the throughput for the
surface scattering case shows a non-Ohmic behavior ap-
proximately described by a power law: T����1/L� with �

1. This is consistent with the presence of quasiballistic
modes.

An additional effect brought to light by our simulations is
the highly variable displacement that phonon modes can
have at the boundary of the nanowire. We found that whereas
the gapless modes acquire a large boundary displacement,
other modes acquire anomalously low values. These were the
modes that gave a quasiballistic contribution to transport.
Our dynamical transfer-matrix method could be applied to
specific crystal structures and materials of interest by using
parameters from full ab initio simulations of nanowires, in-
cluding boundary effects.

Note added in proof. In a forthcoming paper, Ref. 32, we
use a slightly simplified form of the theory presented here to
fit thermal conductance data for silicon nanowires.
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