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I. INTRODUCTION

The systems of interacting bosons are the focus of experi-
mental and theoretical research at present. The interest in
these systems is stimulated by recent experimental demon-
stration of Bose Einstein condensation �BEC� of cold
atoms1–3 and exciton-polaritons in microcavities.4 BEC of
cold alkali atoms is characterized by extremely low critical
temperatures �in nanokelvin region�, while exciton-
polaritons can be condensed up to room temperature, in
theory.5 On the other hand, strictly speaking, BEC is forbid-
den in two-dimensional systems like planar microcavities, so
that the observed phenomena4,6 are related to the quasicon-
densation of the polaritons in a finite size system. In an ideal
infinite planar microcavity there is no BEC, but a superfluid
phase transition may take place,7 which obviously requires
polariton-polariton interactions.

The dynamics of condensation of interacting bosons is an
extremely complex process which is successfully treated
theoretically only in particular cases and using strong ap-
proximations. In such bosonic systems as cold atoms or con-
ventional superfluids, the static models using thermodynamic
limit provide quite reliable results. On the other hand,
exciton-polaritons are always out of thermal equilibrium due
to their finite lifetime. Successful attempts to account for the
polariton lifetime introducing some effective chemical poten-
tial have been done recently.8–10 However, an important class
of experiments done at resonant optical excitation of exciton-
polaritons requires theoretical treatment beyond the thermal
equilibrium assumption. This concerns especially the de-
scription of polariton parametric oscillators �PPOs� and
amplifiers.11–17 Here, we present a dynamical quantum model
allowing the description of various systems of interacting
bosons and apply it to the microcavity parametric oscillators.
Our model goes beyond existing theories as it relaxes the
Born-Markov approximation. It allows describing the transi-
tion between the quantum and classical limits for the micro-
cavity PPOs.

To be specific, we shall consider a system of nD interact-
ing excitons and assume that the following condition is sat-
isfied:

nDaB
D � 1, �1�

where D is the dimensionality of the system �D=1,2 ,3� and
aB is the exciton Bohr radius. We shall further assume that
this excitonic system is strongly coupled with light in a semi-
conductor microcavity, so that mixed exciton-photon quasi-
particles called exciton polaritons are formed. Being combi-
nations of quantum well excitons and cavity photons, the
cavity polaritons retain the properties of both. The presence
of the photonic component results in the extremely small
effective mass of cavity polaritons �10−4–10−5 of the elec-
tron mass�,5 while the excitonic component makes possible
effective polariton-phonon and polariton-polariton interac-
tions. These factors are crucial for polariton BEC, whose
critical temperature was predicted to be extremely high �tens
of kelvins for GaAs and CdTe microcavities, up to room
temperatures for GaN and ZnO cavities5�. Recently, BEC of
polaritons has been observed experimentally in a CdTe mi-
crocavity at about 20 K.4 Similar to the exciton condensate
as studied theoretically by Keldysh and Kopaev 42 years
ago,18 polariton condensate emits coherent light and, thus,
can be used for the creation of a new generation optoelec-
tronic device known as “polariton laser.”19

Investigation of the mechanisms of polariton redistribu-
tion �and bosons, in general� in the reciprocal space is crucial
for the comprehension of the formation of BECs. For the
cavity polaritons, two mechanisms are of major importance:
the polariton-phonon and polariton-polariton interactions.
The former is dominant at small densities, while the latter
becomes dominant in the nonlinear regime and especially at
the bottleneck region, where polariton relaxation with acous-
tic phonons is no more efficient.20 Polariton-polariton scat-
tering is even more important in the case of resonant optical
pumping that creates coherent macroscopic population of po-
laritons at their lower dispersion branch. In this case, two
main nonlinear mechanisms have been identified, which are
polariton parametric scattering13,14,17 and the blueshift of the
polariton dispersion.6 These two mechanisms often occur si-
multaneously, leading to the number of intriguing nonlinear
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phenomena such as bistability of the polariton system.21–24

The existing models of the PPO either consider all three
states involved in the parametric process as classical fields
coupled by a four-wave mixing process24 or consider the
case of cw pumping, neglecting the pump depletion.13,14 The
exception is the recent work of Glazov and Kavokin,25 where
the hyperspin formalism was applied for the analysis of the
parametric amplifier. The hyperspin formalism allows de-
scribing up to a certain point the quantum correlations in a
three-level system, while its extension to more complex sys-
tems would require extremely heavy analytics. Other
works22,23 are based on Gross-Pitaevskii equations. This al-
lows taking into account all states of reciprocal space, but the
decoherence or relaxation associated with phonons are com-
pletely neglected as well as processes of spontaneous
polariton-polariton scattering.

In the present paper, we derive quantum kinetic equations
for the system of interacting bosons. They describe the dy-
namics of the occupation numbers and of nonclassical off-
diagonal four-particle correlators. We argue that decoherence
process leading to the decay of the nonclassical correlators
leads to the transition between the quantum oscillatory re-
gime and semiclassical relaxation regime. We show that in
the limit of very fast dephasing, the system of quantum equa-
tions becomes similar to the semiclassical system of Boltz-
mann equations. These quantum kinetic equations are then
applied to describe the three state model corresponding to the
PPO.

The paper is organized as follows. In Sec. II, we present
the model and discuss the proposed set of kinetic equations
for the occupation numbers and nonclassical correlators. In
Sec. III, we discuss the mechanisms of decoherence and
study the transition from quantum limit to the classical limit.
In Sec. IV, we apply the developed formalism to a PPO.
Section V contains the conclusions.

II. QUANTUM KINETIC EQUATION FOR A SYSTEM OF
INTERACTING BOSONS

Here and further, we consider a system of spinless inter-
acting bosons, e.g., cavity polaritons. We address the readers
interested in the spin dynamics of exciton-polaritons to the
recent review paper.26 Here, we consider a model quantum
system described by the Hamiltonian

H = �
k

�kak
†ak + �

k,q
Uk,qak

†ak−q�bq + b−q
† �

+
1

2 �
k,k�,q

Vk,k�,qak
†ak�

† ak−qak�+q, �2�

where operators ak are the boson annihilation operators for
polaritons and bq the acoustic phonon annihilation operators.
The first term corresponds to the free particle motion, the
second term describes exciton-acoustic phonon scattering,
and the third term describes polariton-polariton scattering.
The latter arises from the Coulomb interaction between the
excitonic fractions of two colliding polaritons and plays a
major role in polariton relaxation. The matrix element of this
scattering is determined by the exciton binding energy EB,

exciton Bohr radius aB, and the area occupied by the conden-
sate S. Roughly, it can be estimated as

Vk,k�;k�,k� = �k,k��Vint�k�,k��

�
EBaB

2

S
Xk

*Xk�
* Xk�Xk��k+k�−k�−k�, �3�

where Xk is a Hopfield coefficient giving the percentage of
the excitonic fraction in the state k, and the delta function
ensures the momentum conservation during the scattering
act. An estimation of this quantity within the mean-field
approximation27 has given a prefactor of 6 in the left hand
side of Eq. �3�. We neglected in Eq. �3� the saturation
terms,28 assuming that condition �1� is satisfied.

When considering the dynamics of the polariton system
described by Eq. �2�, the phonon field can be treated classi-
cally. The usual way to deal with it is to use the Born-
Markov approximation for the Liouville–von Neumann
equation for the density matrix of the system. The resulting
system of kinetic equations is of the Boltzmann type. This
procedure is well described in literature �see, e.g., Ref. 29�
and we will not further consider the interaction with acoustic
phonons in the rest of the paper. We note, however, that a
strong advantage of the approach we use, with respect to the
models assuming the full coherence as the Gross-Pitaevskii
equations, is that it allows taking simultaneously into ac-
count the coherent and noncoherent aspects of the polariton
dynamics.

Let us now consider the term describing particle-particle
interactions �last term in Eq. �3�	. Formally, the Born-
Markov approximation can be applied also in this case.30 The
justification of this approximation is, however, less straight-
forward since there is no classical reservoir in the system. To
consider the dynamics of the system, we start from the
Liouville–von Neumann equation which reads

i�
d�

dt
= �H;�	 = �

k
�k�ak

†ak� − �ak
†ak	

+
1

2�
k,q

Vk,k�,q�ak
†ak�

† ak−qak�+q� − �ak
†ak�

† ak−qak�+q	 .

�4�

It yields the following dynamics of the occupation numbers
Nk=Tr�ak

†ak��:

dNk

dt
= Tr
ak

†ak
d�

dt
�

= −
1

�
�
k�,q

Im�Vk,k�,q�ak−q
† ak�+q

† akak��	

= −
1

�
�
k�,q

Im�Vk,k�,qAk,k�,q	 . �5�

The right part of Eq. �5� contains the fourth-order correlators
Ak,k�,q= �ak−q

† ak�+q
† akak��=Tr��ak−q

† ak�+q
† akak�	. It follows

from Eq. �5� that the total number of particles in the system
is conserved, �d /dt��kNk=0, as it should be in the absence
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of damping. Note that Eq. �5� is obtained from Eq. �4� with-
out any simplifying assumptions. In order to take into ac-
count the finite lifetime of exciton-polaritons, an additional
term −Nk /�k should be introduced into Eq. �5�.

To complete the set of kinetic equations, we derive an
expression for the temporal derivative of Ak,k�,q which reads

dAk,k�,q

dt
= Tr
d�

dt
akak�ak−q

† ak�+q
† �

=
i

�
Tr���;H	ak−q

† ak�+q
† akak��

=
i

�
��k�+q + �k−q − �k − �k��Ak,k�,q

+
i

�
�

k�,q�

�Vk,k�,q��ak�ak−q�
† ak�+q�

† ak�
† ak−qak�+q�

+ Vk�,k�,q��ak
†ak�ak�−q�

† ak�+q�
† ak−qak�+q�

− Vk−q,k�,q��ak
†ak�

† ak�
† ak−q−q�ak�+q�ak�+q�

− Vk�+q,k�,q��ak
†ak�

† ak−qak�
† ak�+q−q�ak�+q��	

=
i

�
��k�+q + �k−q − �k − �k��Ak,k�,q

+ F1 + F2 + F3 + F4. �6�

In Eq. �6�, we have expanded the sum of the sixth-order
correlators into four parts, F1+F2+F3+F4. At this stage, we
are going to break the hierarchy decoupling the sixth-order
correlators. Our goal is to write a closed system of equations
for the occupation numbers and the fourth-order correlators
Ak,k�,q.

Depending on the wave vectors, all the terms in Eq. �6�
can be collected into four distinct groups

�1� The term F1 corresponds to the correlators with q�
=0. It describes forward scattering and reads

F1 =
i

�
�
k�

�Vk−q,k�,0 + Vk�+q,k�,0 − Vk,k�,0 − Vk�,k�,0�

��ak�+q
† ak−q

† akak�ak�
† ak��

�
i

�
Ak,k�,q�

k�

�Vk−q,k�,0 + Vk�+q,k�,0

− Vk,k�,0 − Vk�,k�,0�Nk�, �7�

where in the passage from the first to the second line we have
used the mean-field approximation, i.e., we neglected the
correlations between the states inside and outside the cor-
relator. The term F1 is responsible for the energy renormal-
ization of the states coupled by polariton-polariton interac-
tions.

�2� The second term F2 contains the correlators, in which
the momenta of the three incoming creation operators coin-
cide with momenta of the three annihilation operators. It ac-
counts for the scattering of the states forming the correlator.

As we shall argue below, it is the most important correlator
for the polariton-polariton interactions in the limit of strong
dephasing. We have

F2 =
i

�
Vk,k�,q��ak

†akak�
† ak�ak�+qak�+q

† � + �ak
†akak�

† ak�ak−q
† ak−q�

− �ak�
† ak�ak−q

† ak−qak�+q
† ak�+q�

− �akak
†ak−q

† ak−qak�+q
† ak�+q�	

�
i

�
Vk,k�,q�NkNk��Nk−q + Nk�+q + 1�

− Nk−qNk�+q�Nk + Nk� + 1�	 , �8�

where we used the symmetry of the matrix element Vk,k�,q
=Vk�,k,−q=Vk−q,k�+q,−q=Vk�+q,k−q,q for the systems with time
inversion and again used the mean-field approximation to
pass from the first to the second line.

Equation �8� has a clear physical sense. The term in its
right hand side is the collision term of the classical Boltz-
mann equation �note, however, that the Boltzmann equation
does not contain fourth-order correlators�. We see that within
this assumption the dynamics of the fourth-order correlator is
governed by the dynamics of the occupation numbers. The
term F2 provides the spontaneous buildup of correlators,
which initially were absent in the system, and also takes into
account the effects of the final state bosonic stimulation.

�3� The term F3 contains the correlators, in which the
momentum of one creation operator coincides with the mo-
mentum of one annihilation operator. These correlators are
decoupled following the usual procedure used to decouple
the Bogoliubov chains,

F3 �
i

�
�
q�

Vk,k�,q���Nk−q + Nk�+q + 1�Ak,k�,q−q�

− �Nk + Nk� + 1�Ak−q�,k�+q�,q−q�	

+
i

� �
k��k�+q

Vk�,k−q,qNkAk�,k�,q

+ �
k��k−q

Vk�+q,k�,qNk�Ak,k�,q

− �
k��k�

Vk,k�,qNk−qAk�+q,k�,q

− �
k��k

Vk�,k�,qNk�+qAk,k�+q,q� . �9�

It should be noted once more that the procedure of the de-
coupling used in Eqs. �7�–�9� is not exact. In principle, a
more rigorous approach should consist of accounting for all
possible Wick contractions. This way a number of the non-
classical correlators of the new types will appear that
do not conserve kinetic momentum, such as
�ak

†ak�� , �akak�� , �akak�ak�ak�
† �, etc. These correlators, how-

ever, cannot appear spontaneously as a result of the particle-
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particle scattering. Their appearance is possible either due to
the strong Rayleigh scattering in the system or to the pres-
ence of the coherent excitation by two or more laser beams.

Both these processes are not considered in the present work.
�4� Finally, the term F4 involves six creation or annihila-

tion operators corresponding to six different quantum states:

F4 =
i

�� �
k�,q�

k�,k−q,k�+q

�k�,k−q�,k�+q�

Vk,k�,q��ak�ak−q�
† ak�+q�

† ak�
† ak−qak�+q� + �

k�,q�

k�,k−q,k�+q

�k,k�−q�,k�+q�

Vk�,k�,q��ak
†ak�ak�−q�

† ak�+q�
† ak−qak�+q�

− �
k�,q�

k−q−q�,k�+q�,k�+q�

�k,k�,k�

Vk−q,k�,q��ak
†ak�

† ak�
† ak−q−q�ak�+q�ak�+q� − �

k�,q�

k−q,k�+q−q�,k�+q�

�k,k�,k�

Vk�+q,k�,q��ak
†ak�

† ak−qak�
† ak�+q−q�ak�+q��� .

�10�

We assume that their contribution is negligible �F4=0�. Ne-
glecting the terms F4 means that the phase coherence be-
tween six distinct states is negligible because of some finite
amount of decoherence in the system. In the case of six-wave
mixing experiments, for instance, this approximation will
fail. Also, for the polaritons in a random external potential,
there are strong high-order correlations between the states
with different k, resulting in the inhomogeneous polariton
density. This means that the suggested approach cannot de-
scribe spatially inhomogeneous systems with induced or
spontaneous pattern formation.

The set of Eqs. �5�–�10� describes the dynamics of
bosonic systems accounting for particle-particle interactions
beyond the Born-Markov approximation. Equations �5�–�10�
allow for non-energy-conserving processes and may predict
a qualitatively different dynamics of the system with respect
to the Boltzmann equations. We remind that the Boltzmann
equations only contain the occupation numbers, while in the
system �5�–�10�, the correlations between different states in
the reciprocal space are described by means of the fourth-
order nonclassical correlators.

III. DECOHERENCE AND CLASSICAL LIMIT

The formalism derived in the previous section assumes
that decoherence is weak enough in order to allow for the
conservation of the fourth-order correlator. In this section,
we consider the regime of strong decoherence. The decoher-
ence processes are mainly governed by forward scattering of
polaritons with acoustic phonons which do not affect directly
the occupation numbers. Also, the polariton-polariton for-
ward scattering treated beyond the Born approximation31 can
contribute to the temporal decay of fourth-order correlators.
To treat the above mentioned process phenomenologically,
one can introduce a decoherence time �dec in Eq. �6�. This
approach allows one to describe a smooth transition between
the coherent regime described in Sec. II and the Boltzmann

limit. It allows the equation for Ak,k�,q to be rewritten in the
following form:

dAk,k�,q

dt
= � i

�
��k−q + �k�+q − �k − �k�� −

1

�dec
�Ak,k�,q + F1

+ F2 + F3. �11�

Though this is not always the case in the experimental situ-
ation, let us suppose that the decoherence time is short
enough, so that VNtot�1/�dec, where Ntot is the total number
of polaritons in the system and V is the mean value of the
matrix element. In this case, one can neglect in Eq. �11� the
terms corresponding to the energy renormalization F1 to-
gether with the terms F3. The latter terms can also be ne-
glected because they contain a sum of the fourth-order corr-
elators corresponding to different states in the reciprocal
space whose phases are more or less random so that together
they yield a zero contribution �random phase approxima-
tion�. Then, one can assume that due to the strong decoher-
ence the values Ak,k�,q reach their equilibrium much faster
than the occupation numbers, i.e., we divide the variables in
our system into the slow ones �occupation numbers� and the
fast ones �correlators�. Such an approach is frequently ap-
plied in chemical kinetics, where all the intermediate prod-
ucts of chemical reactions are considered to be in quasiequi-
librium �and in our case, the fourth-order correlator is indeed
an “intermediate product”�. Thus, one can write

dAk,k�,k−q,k�+q

dt
= � i

�
��k−q + �k�+q − �k − �k��

−
1

�dec
�Ak,k�,k−q,k�+q + F2 = 0,
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Ak,k�,k−q,k�+q =
F1

1

�dec
−

i

�
��k−q + �k�+q − �k − �k��

=
iVk,k�,q

��k−q + �k�+q − �k − �k�� + i
�

�dec

�NkNk��Nk−q

+ Nk�+q + 1� − Nk−qNk�+q�Nk + Nk� + 1�	 .

�12�

Substituting this expression for Ak,k�,q into the equation for
the occupation numbers �Eq. �5�	, one obtains a set of semi-
classical Boltzmann equations:

dNk

dt
= �

k�,q

Wk,k�,q�Nk−qNk�+q�Nk + Nk� + 1�

− NkNk��Nk−q + Nk�+q + 1�	 , �13�

where the scattering rates are given by the following for-
mula:

Wk,k�,q =
�Vk,k�,q�2

�

1/�dec

��k−q + �k�+q − �k − �k��
2/�2 + 1/�dec

2 .

�14�

One can see from Eq. �14� that the scattering rate is the
fastest for the energy-conserving processes, where it is sim-
ply given by the Fermi golden rule, Wk,k�,q= �Vk,k�,q�2�dec /�.
For the non-energy-conserving processes, the probability of
scattering is reduced by a standard Lorentzian factor.

IV. PARTICULAR CASE OF A POLARITON PARAMETRIC
OSCILLATOR

A. Formalism and parameters

The complete set of kinetic Eqs. �5�–�10� is extremely
complicated and, for the general case of nonresonant pump-
ing, requires hard numerical modeling. In the present section,
we consider the simple example of polariton parametric am-
plifier �PPO� involving only three quantum states. Due to the
strong nonparabolicity of the lower polariton branch, a pair
of exciton-polaritons created by the pump pulse at the so-
called magic angle scatters into nondegenerate signal and
idler states with both energy and momentum conserved as is
shown in Fig. 1. Our goal is to describe the transition from
the Boltzmann limit to the coherent regime. We do not con-
sider here in detail the selection of the signal-idler states
among the continuum of polariton states. The selection prob-
lem, however, is far from being trivial because of strong
renormalization of the polariton branches with the increase
of the pump intensity. At high polariton density, the conser-
vation of energy and momentum takes place for the states
essentially different from those in the low density limit.22,23

Bearing this in mind, we consider here the simplest model
based on the assumption that the PPO may be described by
only three quantum states, namely, the pump, signal, and
idler states. An advantage of our formalism with respect to

the precedent ones derived in the same spirit14,24 is that it
allows to take into account simultaneously signal-idler cor-
relation and pump depletion. The Hamiltonian of this system
can be written in the following form:

H = ��sas
†as + �iap

†ap + �iai
†ai� + U��Xs�2as

†as + �Xp�2ap
†ap

+ �Xi�2ai
†ai���Xs�2as

†as + �Xp�2ap
†ap + �Xi�2ai

†ai�

+ �Vap
†ap

†asai + V*apapas
†ai

†� , �15�

where the indices p, s, and i correspond to the pump, signal,
and idler, respectively. The first term describes free particles,
the second one describes energy blueshifts �X is the Hopfield
coefficient corresponding to the percentage of the exciton
fraction in each of the states�, and the third term corresponds
to the parametric process. Equations �5�–�9� reduce in this
case to

dNs

dt
= −

Ns

�s
+

2

�
Im�V�as

†ai
†apap�� = −

Ns

�s
+

2

�
Im�VA� ,

�16a�

dNi

dt
= −

Ni

�i
+

2

�
Im�VA� , �16b�

dNp

dt
= −

Np

�p
−

4

�
Im�VA� + P

�2�p
−2

�P
2 + �2�p

−2 , �16c�

dA

dt
= − 
 1

2�s
+

1

2�i
+

1

�p
+

1

�dec
�A +

i

�
�PPOA

+
iV

�
�Np

2�Ns + Ni + 1� − 4NsNi�Np + 1�	 , �16d�

where we have introduced the polariton lifetimes and exter-
nal pumping term P; E0 is the energy of the pump laser and
�dec is the decoherence time. If pump depletion and decoher-
ence are neglected, we recover the results obtained earlier by
Ciuti et al.14

One can see that there are two energy detunings that play
a crucial role. The first one, in Eq. �16c�, is the energy dif-

FIG. 1. �Color online� Polariton dispersion �blue� and schematic
parametric scattering of two pump polaritons into signal and idler
polaritons at the “magic angle.” The bare cavity and exciton ener-
gies are shown dashed.
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ference between the laser and the renormalized pumped po-
lariton state. It is responsible for the bistable behavior of the
PPO and will be referred to as the pump detuning in our
further consideration,

�p�Np� = E0 − �p − U�Xp�2��Xp�2Np + �Xs�2Ns + �Xi�2Ni� .

�17�

The second detuning, in Eq. �16d�, represents the dynamical
energy mismatch between renormalized signal, pump, and
idler states of the PPO:

�PPO�Ni,Ns,Np� = ��s + �i − 2�p� + U��Xi�2 + �Xs�2 − 2�Xp�2�

���Xi�2Ni + �Xs�2Ns + �Xp�2Np� . �18�

In our numerical simulations, we consider a realistic case
of a GaAs microcavity similar to that in Ref. 11. The Rabi
splitting is 6 meV and the cavity photon lifetime is �ph
=2 ps. The signal, pump, and idler lifetimes are respectively
given by

�s,p,i =
�ph

�1 − �Xs,p,i�2�
. �19�

The exciton-exciton matrix element of interaction is taken
as25 U=6Eb�ab

2 /S�, where Eb=10 meV is the exciton binding
energy, ab=100 Å the two-dimensional �2D� exciton Bohr
radius, and S the surface of the laser spot for which we take
a lateral size of 5 	m.

B. Single mode dynamics under the cw laser pumping

In order to separate the contributions of the two main
nonlinearities in the system, we first consider the case of a
single mode system with �p�0�
0. Figure 2�a� shows the
steady state polariton population versus cw pumping whose
energy lies above the bare energy of the pumped state. cw
pumping is adiabatically turned on �solid line� and turned off
�dashed line�. Figure 2�b� shows �p�Np� for the same pump-
ing conditions. One can see the typical hysteresis cycle of a
bistable system. At low pumping, Np depends superlinearly
on P. The absorption of light by the mode decreases the
value of ��p�Np��, which, in turn, results in the increase of the
absorption. This process finds its paroxysm at the turning
point of the curve where �p�Np� changes sign. In the model
case which we consider here, the pump population jumps by
a factor of 5 at this point. Above this point, Np depends
sublinearly on P since further increase of pumping provokes

an increase of ��p�Np��, which limits the increase of absorp-
tion. If P is decreasing, similar processes take place except
that the turning point is situated at lower P than in the case
of increasing pumping. All these processes result in the typi-
cal hysteresis cycle shown in Fig. 2. The hysteresis strongly
affects the dynamics of the PPO as has been first outlined in
Refs. 22 and 23, and as we shall see in the next sections.

C. Dynamics of three modes under steplike onset at
t=0

We first focus on the establishment of the steady state
regime under cw pumping switching at t=0. Figure 3�a�
shows the signal and the pump state populations versus the
pump laser intensity. The pump laser energy is now taken to
be resonant with the bare polariton energy so that no bista-
bility is expected. We also take �PPO�0,0 ,0�=0. The para-
metric process starts to be efficient for rather low pump in-
tensities and small polariton populations, so that the
corresponding value of �p remains smaller than the linewidth
�Fig. 3�b�	. Figure 3�c� shows the temporal dynamics of the
signal and pump states under cw excitation far above thresh-
old. The buildup time of the signal is about 50 ps and it is
longer than that of the pump state. However, the signal dy-
namics is quite smooth and shows no oscillations. In this
regime, we do not expect that the Boltzmann approach
would give qualitatively different results, except for the
weak maxima at about 25 ps for the pump and at 50 ps for
the signal. One can observe in Fig. 3�a� that Np continues to
grow even above the nonlinear threshold. This contrasts with
the results of the previous models, which neglect the pump
dynamics and fix the pump population above threshold.

The same quantities as in Fig. 3 are shown in Figs.
4�a�–4�d� for the pump detunings �p�0�=1 and 0.25 meV. In
Fig. 4�a�, the pump and signal populations show a nonlinear
dependence on the laser intensity. Two very different regimes
can be achieved depending on the value of the pump detun-
ing. If the detuning is large, the PPO threshold is reached
before the bistability threshold �solid lines�. In this case,
there are two jumps in the signal intensity as a function of
pumping intensity, as is shown by the black curve. On the
contrary, for smaller values of �p�0�, the bistable threshold
takes place before the PPO threshold �dashed lines�. In that
case, only one intensity jump is observed for both pump and
signal intensities. However, this result and the next one can
be altered if we would consider a realistic 2D microcavity.24
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FIG. 2. Single mode model for
a positive detuning �p�0�
=0.25 meV. �a� Pump population
versus pump intensity which is
adiabatically increased �solid line�
or decreased �dashed line�. �b� De-
tuning �p�Np� versus the pump in-
tensity adiabatically increased
�solid line� and decreased �dashed
line�.
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The time domain results are shown in Fig. 4�c� for
�p�0�=1 meV and in Fig. 4�d� for �p�0�=0.25 meV. The sig-
nal and pump intensities show abrupt jumps once the thresh-
old is reached for both detunings. The populations show os-
cillations after reaching the threshold, demonstrating the
important role played by the correlations between signal,
pump, and idler states in this regime. These oscillations are
damped because of the continuous filling of the pump state
by the external laser beam. For moderate pumping and at
large detuning, two successive thresholds can be seen in Fig.
4�c� �solid lines� for the signal and pump populations. The
dotted lines show the population numbers for pumping be-
low threshold. In the case of high laser intensities, these two

thresholds take place simultaneously �not shown�. In Fig.
4�d�, the PPO starts after passing the bistable threshold and
leads to a jump of the signal intensity. For pumping below
the threshold, the signal state is filled only by spontaneous
scattering and remains weak for the two detunings.

D. Kick effect

In this section, we consider the effect of a short kick pulse
resonant with the pump mode which comes after the estab-
lishment of the steady state. We consider the case �p�0�
=1 meV. The intensity of the cw pumping laser is chosen in
order to maintain the system just below the bistable thresh-
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FIG. 3. �Color online� Three
modes model with resonant exci-
tation of the pump state ��p�0�
=0	. �a� Steady state signal
�black� and pump populations
�blue� versus the cw pump inten-
sity which is adiabatically en-
hanced. �b� Detuning �p�Np� ver-
sus the pump intensity
adiabatically enhanced. �c� Time
dependence of the signal �black�
and pump populations �blue� for a
pumping intensity of
1014 particles/ s. The correspond-
ing particle density in the steady
state is 2.3�109 cm−2.
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FIG. 4. �Color online� Three
modes model for the positive
pump detuning �p�0�. �a� Steady
state signal �black� and pump
populations �blue� for �p�0�
=0.25 meV �dashed� and �p�0�
=1 meV �solid�. The cw pump in-
tensity shown on the y axis is
adiabatically increased. �b� Detun-
ing �p�Np� versus the pump inten-
sity for �p�0�=0.25 meV �black�
and �p�0�=1 meV �blue�. �c�
�p�0�=1 meV. Time dependence
of the signal �black� and pump
populations �blue� for a pumping
intensity of 2�1016 particles/ s
�dashed� and 7�1016 particles/ s
�solid�. �d� �p�0�=0.25 meV.
Time dependence of the signal
�black� and pump populations
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1014 particles/ s �dashed� and
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old. The intensity emitted by the signal is, therefore, rather
weak. Then a 1 ps long kick pulse is sent to the pump state.
It induces the increase of the pump intensity sufficient to
pass the bistable threshold, as Fig. 5 shows. Consequently,
after the arrival of the kick, the signal intensity increases by
almost 1 order of magnitude. Remarkably, the system does
not go back to its initial state after the kick pulse has passed,
but it stabilizes to a new equilibrium state characterized by
an intense signal emission. This effect can be used for the
realization of low threshold optical switches.

E. From quantum to classical limit

Figure 6 shows the impact of the decoherence on the

dynamics of the PPO. It can be clearly seen that the decrease
of the decoherence time leads to the increase of both bistable
and PPO thresholds. In the time domain, it leads to the wash-
ing out of the oscillations in pump and signal intensities due
to the suppression of the nonclassical correlations between
them. It is also seen that the decoherence makes longer the
time needed for the pump and signal states to reach station-
ary values under cw excitation. It is clearly seen from Fig.
6�c� that in the limit of the small decoherence times, the
system recovers the Boltzmann-limit dynamics.

V. CONCLUSIONS

In conclusion, we have derived a closed set of kinetic
equations describing a system of interacting bosons beyond
the Markovian approximation. The dynamics of the occupa-
tion numbers is shown to be strongly altered by the buildup
of the nonclassical four-particle correlators. The decoherence
process leading to the fast suppression of these correlators is
shown to provoke the transition from the quantum to the
classical limit. This system of kinetic equations is applied to
the dynamics of a three state polariton parametric oscillator.
The general equation set which is obtained by us is quite
heavy, and its solution requires great numerical effort. How-
ever, this formalism has an important advantage of taking
into account the incoherent phonon dynamics and the coher-
ent nature of the polariton-polariton scattering process in the
presence of macroscopically occupied polariton modes. It
represents a bridge between the fully coherent picture
�Gross-Pitaevskii equations� and the fully incoherent picture
�Boltzmann approach�.
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FIG. 5. �Color online� Kick effect for the three modes model.
Time dependence of signal �black� and pump state populations
�blue�. The pumping is composed of a cw laser ��p�0�=1 meV, 1
�1016 particles s−1	 and a short kick pulse at t=100 ps �2.5
�1017 particles s−1�. The dashed lines correspond to the popula-
tions without kick.
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