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The electrical conductivity in doped semiconductors in the strongly localized variable range hopping regime
is currently explained as phonon-assisted electron hopping. While investigating the non-Ohmic behavior of
doped silicon at temperatures of 0.05–1 K, we found strong evidence for the existence of separate tempera-
tures for the electron and phonon systems analogous to the hot-electron effect in metals. This behavior cannot
easily be explained by phonon-assisted hopping and seems to favor instead a direct electron-electron interac-
tion at low temperature. A hot-electron model makes definite predictions for the dependence of the electrical
conductivity on the bias power, the frequency dependence of the resistance nonlinearities, and for an additional
noise term. We have made a systematic investigation of these quantities, and find all of them in good agreement
with the model predictions over a wide range of parameters.
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I. INTRODUCTION

Doped silicon and germanium have long been employed
in the strongly localized variable range hopping �VRH� re-
gime to make sensitive thermometers for low-temperature
bolometers and calorimeters. The performance of these de-
vices is severely limited by the electrical nonlinearity, or
voltage dependence, of the resistance. Hopping conductivity
is expected to be nonlinear, with an exponential dependence
on the electric field.1,2 However, it has been noted for some
time that for most combinations of temperature and doping
density of interest for detectors, the functional form of this
nonlinearity is quite different from these theoretical predic-
tions. It can instead be well described by a hot-electron
model, where the resistance is a function only of the “elec-
tron temperature,” and the bias power must reach the phonon
system through an electron-phonon thermal resistance with a
well-defined power law temperature dependence.3,4 This be-
havior is quite analogous to that expected and observed for
diffuse conductivity in metallic systems, but it would in fact
be quite remarkable if this were more than a convenient em-
pirical description for these VRH systems, which are far on
the insulating side of the metal-insulator transition and have
strongly localized electrons. Long-range Coulomb interac-
tions shift the energy of individual local states depending on
which others are occupied, but there is still a discrete set of
possible energies. In VRH theory, the arbitrary amounts of
energy required to shift electrons to a new set of discrete
locations are provided by the delocalized phonon system,
which has an essentially continuous energy distribution. En-
abling the electrons to establish their own equilibrium inde-
pendent of the phonon system requires that electron energy
be available from a continuous, and therefore presumably
delocalized, system.

A similar behavior has been observed in two-dimensional
�2D� systems5,6 in the VRH regime. It has been recently sug-

gested that in such 2D systems diffuse conductivity of elec-
trons is, in fact, relevant over a much larger range of elec-
trical conductivities than previously thought, due to
interference between electron channels.7,8 However, the 2D
systems investigated have significant differences compared
with more traditional three-dimensional VRH conductivity
and the combination of localized electrons and delocalized
electron energy would not appear to be explained by any
current theory. For such a departure from accepted theory,
one would like to have better evidence than the perhaps for-
tuitous fit to a particular functional form for R�T ,E�. Marni-
eros et al.9 have made simultaneous measurement of the
apparent electron-phonon thermal conductivity Ge-ph, the
electron-phonon coupling time �e-ph, and the total heat capac-
ity C in amorphous NbxSi1−x. They find that the derived heat
capacity of the electron system, Ce=Ge-ph��e-ph, agrees well
with the total measured C after subtracting the lattice heat
capacity, provided that the resistance is a function only of the
electron temperature. This led them to question the assump-
tion of phonon-assisted hopping, and to suggest that direct
electron-electron assisted hopping might dominate at low
temperatures.

We have made similar independent measurements of
Ge-ph, �e-ph, and Ctotal−Clattice for Si:P:B, and also find good
agreement of Ge-ph��e-ph and C−Clattice for this doped crys-
talline semiconductor system. We go one step farther, and
note that if we can indeed regard this as a two-bath thermo-
dynamic system, then we expect fluctuations of the electron
temperature Te caused by random exchange of energy be-
tween the electron and phonon systems, which should in turn
produce fluctuations in the resistance R�Te�. Measurements
of the voltage noise indeed show an excess above Johnson
noise. Over a wide range of bias power and temperature, this
excess is in good agreement with the predictions of standard
bolometer theory when the effects of electrothermal feed-
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back are included.10,11 This appears to support the physical
reality of a distinct electron temperature, with whatever im-
plications this might have.

II. EXPERIMENT

The devices tested in this experiment are ion implanted
and diffused n-type Si:P:B, 50% compensated, with doped
dimensions 100�120�1.4 �m3. The devices have been
fabricated using the deep implant and oxide-bounded diffu-
sion technique12,13 that guarantees good uniformity of the
implant and a well defined doping volume.

Several Si:P:B devices with net doping density ranging
from 2.4�1018 to 2.8�1018 cm3 have been fabricated and
tested.13 The critical density for this 50% compensated sys-
tem is estimated to be14 2.85�1018 cm−3. The thermistors
are implanted in the 1.4 �m device layer of a 60 ohm cm
silicon on insulator �SOI� wafer, then annealed at 1175 °C in
dry N2 for 12 h while the buried oxide and a capping oxide
layer confine the dopant diffusion. This high-temperature an-
nealing step diffuses the implant throughout the depth of the
top layer of the SOI wafer. Degenerate contact bars are then
implanted across the 120 �m width on two sides of the ther-
mistor extending through most of the 1.4 �m thickness. Nar-
row degenerate traces are implanted between these contact
bars and the bonding pads. The capping oxide is removed
and a deep reactive ion etch �DRIE� through the device layer
is used to sharply define the edges of the thermistor. More
fabrication detail can be found in Brekoski et al.13

For this and the following measurements �unless other-
wise specified�, the devices are heat sunk to the cold plate of
an adiabatic demagnetization refrigerator �ADR� using GE
varnish. The devices are biased through 90 M� load resis-
tors mounted on the ADR cold plate and the voltage across
the devices is read through junction field effect transistor
�JFET� source followers located nearby and operating at
120 K, then amplified by a room-temperature stage.15 The
total noise of the readout system is less than 4 nV/�Hz
across the 1 Hz to 10 kHz frequency range. The load resis-
tors are composed of three 30 M� nichrome thin film chip
resistors manufactured by Mini-Systems, Inc.15

The resistance versus temperature data in the low-
frequency, low-power limit show the behavior expected for
VRH with a Coulomb gap

R = R0e�T0/T, �1�

with the usual upward deviation16 for T0 /T�2.4. Values of
T0 range from about 3 to 20 K. More extensive data on R�T�
of similar, but thinner, devices can be found in Ref. 16.

III. THERMAL CONDUCTIVITY BETWEEN
ELECTRON AND PHONONS

To measure the thermal conductivity between electron and
phonon systems, we measure the current versus voltage
curves at various values of the cold plate temperature. The
analysis assumed that the electron system has its own tem-
perature, Te, decoupled from the lattice phonon system with
temperature Tph, and that the resistance is a function only of

Te �the resistance depends also on the electric field E, but this
can be neglected for the range of doping densities and fields
used here4�. Bias power is assumed to be dissipated in the
electron system distributed among the electrons involved in
conduction to establish a temperature independent of the lat-
tice phonon system. In steady state, this power is then con-
ducted to the lattice through a thermal conductivity Ge-ph that
is assumed to have a power-law temperature dependence

Ge-ph = G0T�. �2�

This apparent thermal conductivity is easily evaluated by
measuring the resistance of the samples as a function of the
electrical power. The strong heat sinking keeps the phonon
system at the temperature of the cold plate. The electron
system is heated by the applied electrical bias power and, as
a consequence, the resistance should drop at higher powers.11

Starting from the definition of thermal conductivity �G
�dP /dT� and Eq. �2�, we can integrate the differential equa-
tion between the phonon temperature and the electron tem-
perature to obtain a relation between the electron tempera-
ture, the phonon temperature, and the electrical bias

�Te
�+1 − Tph

�+1� =
� + 1

G0
P , �3�

where P= IV is the dissipated power. From Eq. �3� we can
then obtain an expression for the electron temperature as a
function of the phonon temperature and the electrical power,
which can be used in Eq. �1� to obtain an expression for the
device resistance as a function of the phonon temperature
and the electrical power R�Tph, P�.

Since the R�Te� function can be measured directly in the
low-power limit where Te is very close to Tlattice, this model
has only two free parameters, which are the G0 and � of the
electron-phonon “thermal conductance.” The resistance of a
second doped region on the same small silicon die can be
monitored with low bias power to ensure that the lattice tem-
perature does not increase as power is applied to the test
device.

Figure 1 shows a typical measurement of the resistance as
a function of the applied power for several heat sink tem-
peratures and the corresponding fit using a hot-electron
model. The results of such fits over a wide range of lattice
temperature and power are consistent with those of Zhang et
al.4 with a uniform decrease of about 40% in the conduc-
tance per unit volume, which is probably due to the uncer-
tainty in determining the effective volume in their much thin-
ner implanted devices. All these devices show a rather
precise power-law behavior of the apparent thermal conduc-
tivity. The exponent � is constant with temperature, but
changes from about 4.3 to 5.8 as the doping density is varied
over a wide range.14

In standard VRH theory, an exponential dependence of
the device resistance on the electric field in the samples is
expected.1,2 It was, however, impossible to obtain a good fit
of the data with such a field effect model. The best fit �2 is
systematically at least an order of magnitude larger than for
fits with the hot-electron model. The dotted lines of Fig. 1
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represent the best fit of the data to the field effect model. For
this fit we varied Ca in the expression derived in Zhang et
al.:16

R�Te,E� = R�Te,0�exp� e

k

Ca�T0

2

E

Te
3/2� , �4�

where E is the electric field, e is the electron charge, k is
Boltzmann’s constant, C is a constant of the order of unity,
and a is the localization radius.

IV. ELECTRON HEAT CAPACITY

The hot-electron model makes additional predictions that
can be investigated experimentally.11 First, if we assume that
the electron system has a finite heat capacity Ce, we expect
to see a characteristic time constant �e-ph=Ce /Ge-ph associ-
ated with the electron system. Standard bolometer theory10,11

predicts a frequency dependence of the device impedance
Z�dV /dI:

Z�	� = R

1 +
P


Ge-phTe
+ j	�e-ph

1 −
P


Ge-phTe
+ j	�e-ph

= Z0

1 + j	�e-ph
Z0 + R

2Z0

1 + j	�e-ph
Z0 + R

2R

,

�5�

where 
=d ln R /d ln T is the thermometer sensitivity, �e-ph
=Ce /Ge-ph is the thermal time constant, and

Z0 = Z�	 = 0� = R

1 +
P


Ge-phTe

1 −
P


Ge-phTe

. �6�

At low frequencies, the impedance must simply follow
the local slope of the I-V curve, i.e., Z�0�=dV /dI, while for
	�1/�e-ph, the temperature and therefore the resistance will
not change appreciably, and Z=R��V / I�. At intermediate
frequencies, there will be a phase shift, and the impedance
should follow a semicircle in the complex plane,10 as shown
in Fig. 2.

We measure Z�	� by adding a small ac voltage to the dc
bias voltage at the top of the load resistor and observing the
relative magnitude and phase of the voltage across the ther-
mistor. Details of the technique and the information provided
by Z�	� can be found in Vaillancourt.17 Improved methods
for correcting for stray circuit impedances that allow good
measurements to be made up to higher frequencies are given
in Lindeman et al.18

In these measurements, we find the high-frequency limit-
ing value of Z�	� to be systematically somewhat less that R.
This is expected if there is an additional nonlinearity that has
a much shorter characteristic time than �e-ph.

11,19 Earlier stud-
ies of nonlinearity in VRH conductivity have found that there
are regimes of doping density and temperature where the
standard exponential field-dependence models fit well over a
wide range of field values, other regimes where the hot-
electron model fits very well, and intermediate areas where
both effects must be included.4,20 It seems reasonable that
both effects always exist, but dominate under different con-
ditions. Measurements of Z�	� should provide a better way
to separate these effects than simply observing the functional
form of the nonlinearity with applied field or power density
as long as the characteristic time scales are very different.
The time scales associated with VRH field dependence
should be much shorter than those observed here. We have
not investigated an adequate range of doping densities to
verify the postulated behavior. For the present range of inter-
est, the apparent field effects are small and do not apprecia-
bly affect the derived values.

We have measured R�Tsink , P� and Z�	� for a number of
devices cemented directly to a heat sink �see, e.g., Figs. 1
and 2�. We find good fits to the hot-electron model for both
quantities, and can use the fitted values of �e-ph and Ge-ph to
find the apparent Ce at each temperature.
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FIG. 1. Typical resistance versus power curves for an implanted
silicon thermistor cemented directly to a heat sink, so that the lattice
temperature is equal to the heat sink temperature �given on the left�.
For this device the net doping density is 2.6�1018 cm−3. The elec-
tric field is about 600 V/m for a power of 10−14 W at 60 mK. The
data have been acquired at different heat sink temperatures, ranging
from 60 to 160 mK. The solid lines are the best fit to the hot-
electron model. The dotted lines are the best fit to the field effect
model �see Eq. �4��. The best fit parameters are R0=320 �, T0

=8.55 K, G�0.1 K�=1.43�10−10 W K−1 �hot-electron model�, �
=4.68±0.03 �hot-electron model�, and Ca=7.72�10−8 m �field-
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FIG. 2. Typical impedance as a function of frequency for a
thermistor cemented directly to the heat sink. �a� Re�Z�	�� and
Im�Z�	�� versus 	, �b� Im�Z�	�� versus Re�Z�	��. The solid line is
the fit using Eq. �5�. For this device the net doping density is
2.45�1018 cm−3. The data have been acquired at a heat sink tem-
perature of 80 mK and a bias power of 1.5�10−12 W.
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We also made independent measurements of the total heat
capacity of the impurity system using isolated structures on
the same silicon dice that contained the heat sunk devices
used above. These monolithic structures contained a doped
region used as a thermometer with extra silicon areas next to
it, with the combined structure isolated on thin silicon beams
�see Fig. 3�. The thermal conductivity of the silicon support
beams was measured by fitting I-V or R vs P curves for the
thermistor similarly to what has been done for Fig. 1. The
beams were assumed to have conductivity of the form G
=G0T�, while the electron-phonon conductivity was calcu-
lated using parameters fixed by analyzing the I-V curves of
an identical thermistor tied directly to the heat sink as in Sec.
III. This could be combined with measurements of the dy-
namic impedance Z�	� to determine the total heat capacity.
The suspended devices were measured in pairs, where the
only difference between the pair was that in one the addi-
tional areas were pure silicon, and in the other they contained
the same doping as the thermometer. The difference in total
heat capacity for these devices was taken to be the heat ca-
pacity of the impurity system for the added doped regions.

Both measurements of heat capacity were normalized to
the doped volume and plotted against temperature in Fig. 4.
The hot-electron measurements of different devices at vari-
ous temperatures and bias conditions are consistent with
each other and show no significant dependence on doping
density over the small range observed. The hot-electron heat
capacity is essentially identical to the total excess heat ca-
pacity of the impurity system measured on the suspended
devices, with differences less than the measurement uncer-
tainties. It is not obvious that one should expect the entire
heat capacity of the impurity system to be coupled to the
conducting electrons, but this seems to be the case, as was
also observed by Marnieros et al.9 for amorphous NbxSi1−x.
The temperature dependence is quite flat below 0.1 K and
steepens to about T0.6 between 0.1 and 0.2 K. A less-than-

linear temperature dependence is expected theoretically due
to the presence of spin-exchange-coupled clusters.21 Very
similar temperature dependences with absolute values of C
about 35% higher have been measured for uncompensated
Si:P �Refs. 22 and 23� �see Fig. 4�. The difference in magni-
tude could be due to our measurement of 50% compensated
Si:P:B versus their measurement of uncompensated Si:P, al-
though we do not know of any simple argument to suggest
this.

V. THERMAL NOISE DUE TO THE DECOUPLING
BETWEEN ELECTRONS AND PHONONS

Pressing the hot-electron picture yet further, we would
expect fluctuations in the energy content of the electron sys-
tem due to random transport of energy between it and the
lattice.11 For a thermistor tied directly to the heat sink, the
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FIG. 3. Photo of a free standing device used to measure the heat
capacity of the implanted region. This device has a central ther-
mistor suspended on four silicon beams. The electrical signal from
the thermistor is read out through degenerate contact implants and
two traces of shallow degenerate implant that do not contribute
appreciably to the thermal conductivity. The extra 120�120 �m2

“wings” can be undoped or doped silicon. The difference between
the total heat capacity in the two cases is used to estimate the heat
capacity of the impurity system in the doped wings. The central
thermistor has the same geometry as the ones used in the Ge-ph and
Ce measurements, but in those cases it was not isolated from the
thick backing or “handle” wafer.
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thermal conductivity Ge-ph determined from R vs P curves �Sec.
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the product of �A� and �B�, which corresponds to the electronic heat
capacity in a hot electron description of the system. The filled sym-
bols are the result of a “conventional” measurement of the total heat
capacity introduced by the impurity system �see Fig. 3 and text�.
Different symbols correspond to different devices. For comparison,
the lines show published data for total impurity heat capacity for
uncompensated Si:P at similar donor densities 1.8�1018 cm−3 �LL-
1.8� �Ref. 22�, 3.3�1018 cm−3 �LL-3.3� �Ref. 22�, and 2.5
�1018 cm−3 �MP-2.5� �Ref. 23�.
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magnitude of the transported power density spectrum should
be �4kBT2Ge-phW /�Hz, with small corrections for the steady-
state temperature difference between the electrons and
lattice.24 In the low frequency limit, the relative temperature
fluctuations depend only on Ge-ph, which is determined from
the observed R�Tsink , P�. The transduced response to these
temperature fluctuations can be calculated from standard bo-
lometer theory10,11 and results in a white spectrum in the
limit of low frequencies. This excess noise and the thermistor
Johnson noise are both affected by electrothermal
feedback,11 so the relative magnitude of the load resistor
must be taken into account. A derivation of this spectrum and
the feedback corrections can be found in Galeazzi et al. and
McCammon.11,25

To test this hypothesis, we made noise measurements on
heat-sunk thermistors that are biased through 90 M� load
resistors mounted on the ADR cold stage. The noise spec-
trum is measured at the output of the amplifier using a real
time spectrum analyzer. The results show a white noise com-
ponent in excess of the Johnson noise. This excess is plotted
in Fig. 5 as a function of the calculated noise expected from
these thermodynamic fluctuations, for a wide variety of bias
currents and temperatures. There is rather good agreement
with the predictions of the hot-electron model.

To verify that the apparent excess was not simply due to
an underestimate of the Johnson noise, we have plotted our
measured excess against the calculated Johnson noise after
corrections for least resistor effect and electrothermal feed-
back. As shown in Fig. 6, there is little correlation between

the measured excess and the expected Johnson noise, consis-
tent with their having independent origins.

VI. CONCLUSIONS

We have investigated the non-Ohmic behavior of doped
Si at temperatures of 0.05–1 K. The results strongly support
the existence of an electron temperature established by direct
electron-electron interactions in strongly localized Si:P:B,
analogous to the hot-electron effect in metals. In particular,
we measured the dependence of the device resistance on the
bias power, the time constant associated with the non-Ohmic
behavior of the devices �that in the hot-electron picture leads
to the electron heat capacity�, and the excess noise deriving
from power fluctuations in the thermal link between elec-
trons and phonons. All of these quantities agree well with the
predictions of the hot electron model over a wide range of
temperatures and power density. If we accept the direct mea-
surements of the heat capacity of the electron system, there
are only two free parameters used for all the data: G0 and �
for the electron-phonon thermal conductance. These results
provide strong quantitative support for the physical validity
of the hot-electron model and seem to indicate that direct
electron-electron interactions can dominate electron-phonon
interactions in 3D VRH conductivity.
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