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The thermoelectric properties of PbTe within the NaCl �B1� and the orthorhombic Pnma phases are exten-
sively studied by ab initio calculations using the full-potential linearized augmented plane-wave method and
the semiclassical Boltzmann theory. The calculations of n- and p-type Seebeck coefficients for the B1 structure
suggested that the energy band gap plays an important role in determining the thermoelectric properties, but
only at lower carrier concentrations. We found that the n-doped Pnma phase at 6.5 GPa has a larger Seebeck
coefficient than that of the n-doped B1 phase at zero pressure, but has a comparable electric conductivity. This
fact could be well understood by the large density of states in the conduction band and the large anisotropy in
the band structure and constant energy surface. Our calculations also predicted that the largest n-type ZT values
at 300 and 600 K of the Pnma phase at 6.5 GPa can reach up to 0.9 and 1.59, respectively, which are two times
larger than those in B1 phase at zero pressure. The current theory strongly suggests that the Pnma structure of
PbTe is an excellent thermoelectric material. It is desirable to synthesize the Pnma phase of PbTe at ambient
pressure by making use of its high performance.
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I. INTRODUCTION

The search for high-performance thermoelectric materials
is a hot subject of current research. The performance of ther-
moelectric materials depends on the dimensionless figure of
merit �ZT� given by ZT=S2�T /�, where S, �, T, and � are
the Seebeck coefficient, electrical conductivity, absolute tem-
perature, and thermal conductivity. High-performance of a
thermoelectric material requires a high ZT with an effort to
maximize the power factor S2� and minimize �. PbTe is one
of the best thermoelectric materials used for thermoelectric
generators for temperatures ranging between 400 and
800 K.1 Previously, many attempts were made to improve its
ZT value since the middle of the past century. Its alloys with
SnTe and PbSe, and related compounds called TAGS �alloys
of AgSbTe2 and GeTe�, were for many years the best ther-
moelectric materials at temperatures �700 K.2 Moreover,
PbTe doped with Ag and Sb became quaternary compounds
AgSbPb2n−2Te2n �n=9 and 10�, and the nanosized minority
phase which is richer in Ag and Sb makes the PbTe matrix
exhibit a high ZT of 2.2 at 800 K.3,4 Recently, quantum wells
of PbTe/Pb1−xEuxTe and PbSe0.98Te0.02/PbTe superlattices5,6

have also attracted considerable attention because their ZTs
are all considered breakthrough in the decade-long ZT=1
barrier at room temperature.

PbTe is a narrow gap semiconductor �groups IV-VI�,
which crystallizes at ambient conditions in the NaCl �B1�
phase.7 Under high pressure, PbTe was found to transform to
an intermediate phase at 6.0 GPa, and then to the CsCl phase
at 13.0 GPa.8,9 In 2005, the structure of the intermediate
phase was solved by Rousse et al.10 to be an orthorhombic
Pnma. This structure corresponds to a distortion of the low-
pressure B1 structure with a sevenfold coordination interme-
diate between the sixfold B1 and the eightfold CsCl �B2�
structures.10 Very recently, the experimental measurements
suggest that high pressure could result in a significant en-
hancement of S2� for PbTe-based thermoelectric materials,11

particularly at the transition to the Pnma structure. However,

up to now, the physical origin for the enhancement of ther-
moelectric efficiency in the Pnma phase remains unclear. In
an effort to pursue a high ZT material, the understanding of
the Pnma structure in PbTe is, thus, considered as essential.
Also, it would be interesting to establish a direct link be-
tween its band structure and the thermoelectric properties.
This ab initio approach not only rationalizes and predicts the
optimal performance and doping level of the p- and n-type
Pnma structures, but also predicts enhanced thermoelectric
performances within the Pnma phase.

In this paper, we use the full-potential linearized aug-
mented plane-wave �FP-LAPW� method based on density
functional theory �DFT� to characterize the electronic struc-
tures, from which the thermoelectric properties were ana-
lyzed using the Boltzmann theory and the rigid band ap-
proach. Our calculations show that for n-type PbTe, the
orthorhombic Pnma phase at 6.5 GPa has nearly two times
larger ZT than that for the B1 phase at zero pressure. The
high ZT in the n-type Pnma phases is mainly due to its large
anisotropy in electronic structure and the large density of
states �DOS� in the conduction band.

II. COMPUTATIONAL METHOD

The calculations were performed using the FP-LAPW
method12 within the DFT13 through WIEN2K code.14 The muf-
fin tin radii were chosen to be 2.5 a.u. for both Pb and Te.
The plane-wave cutoff was defined by min�RMT�max�kn�
=10.0, corresponding to approximately 391 and 6268 plane
waves for the B1 and Pnma phases, respectively. We include
the relativistic and spin-orbit coupling effects to account for
Pb and Te due to their large atomic mass. An additional
Pb 6p1/2 LO was added for a more accurate treatment of
spin-orbit coupling. Convergence test gave the choices of 56
and 240 irreducible k points for the B1 and Pnma phases,
respectively, in the electronic integration of the Brillouin
zone �BZ�. The transport properties were calculated using
very large k point sets with 1240 and 1836 irreducible k
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points. The exchange-correlation functional was described
using both the Perdew-Burke-Ernzerhof15 �PBE� and the
Engel-Vosko16 �EV� generalized gradient approximations
�GGAs�. The PBE-GGA15 is the standard parameter-free
GGA, while the EV-GGA has been designed by optimizing
the exchange potential16 rather than using Exc. The reason for
performing calculations using both GGAs is that a correct
band gap is important for an accurate description of the ther-
moelectric properties. Standard GGA functionals are known
to underestimate the band gap, and the EV-GGA has been
shown in several cases to give band gaps in good agreement
with experiment.17

The transport coefficients were calculated from the analy-
sis of band structure calculations using the semiclassical
Boltzmann theory18 and the rigid band approach. This ab
initio approach has been successful in rationalizing and pre-
dicting the optimal doping level of known compounds.17,19–25

The rigid band approach to conductivity is based on the
transport distribution
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1
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where N is the number of k points sampled. The k-dependent
transport tensor is given as
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and �i,k is the relaxation time �it is also called the momentum
relaxation time�. The ���i ,k� is a component of the group
velocities
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The transport coefficients as a function of temperature and
chemical potential can be calculated by integrating the trans-
port distribution
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where f is the Fermi-Dirac distribution function. The bands,
and hence ����, are left fixed �thus “the rigid band ap-
proach”�, and therefore, only one band structure information
is needed per compound. The carrier concentrations can be
represented by the chemical potential 
 in Eqs. �4� and �5�.
Well, the conductivity can only be calculated with respect to
the �i,k. The �i,k should be included as a parameter; for sim-
plicity and convenience, it is taken as direction
independent26 and a constant27 in this work. So the Seebeck
coefficient, S=�−1�, is then independent of �i,k and can thus
be calculated on an absolute scale.

In general, the relaxation time �i,k in Eq. �2� comes from
the ratio of the carrier energy �i,k �which is dependent on
both the band index and the k vector direction� and the av-
erage energy of vibration of an atom, which is of the order of
kBT.28 So choosing a constant for �i,k in Eqs. �4� and �5� is an

approximation for the real scattering mechanism and an av-
erage over the total relaxation time. There is a large depar-
ture in the value of Eqs. �4� and �5� between this approxima-
tion and real scattering if all the �i,k are different
significantly. So this approximation is only suitable for the
carrier scattering which does not depend significantly on the
wave vector �carrier energy29� and temperature, and this de-
mands that the values of all �i,k are approximately equal to
each other. Although being a constant for �i,k is an approxi-
mation to the real mechanisms of scattering, this approxima-
tion has been widely used in many cases17,19,25,30,31 to calcu-
late the transport coefficients successfully.

Figure 1 shows the integrand factors of the Pnma phase in
Eqs. �4� and �5� at T=300 K. It can be clearly seen that the
distribution is quite broad and the transport coefficients are
thus a sum over several Fermi surfaces. It is, therefore, very
important that the energy band is correctly calculated.27

For the calculation of the transport tensors, the BOLTZ-

TRAP code was used,27 which is based on a well tested
smoothed Fourier interpolation to obtain an analytical ex-
pression of the bands.27 The original k mesh was interpolated
onto a mesh five and ten times denser than the original for
the B1 and Pnma structures, respectively.

It is important for thermoelectric materials to find an op-
timal ZT value, and one simple consideration can be made:
thermal conductivity � has both a lattice, �l, and an elec-
tronic, �e, component. �l is not available from the band
structure calculations, but it is included as a constant in this
work. The ratio between T and �e is, to a good approxima-
tion, given by the Wiedemann-Franz relation: �e=L0�T. In-
serting the Lorentz number, L0=
2 /3�kB /e�2

= �156 
V/K�2, ZT is seen to be expressed by the following:

ZT =
S2�T

�e + �l
=

S2

L0 + �l/��T�
. �6�

The Seebeck coefficients for PbTe at zero pressure and

FIG. 1. Integrand factors �f /�� and ��−
��f /�� of PbTe within
the Pnma phase at 6.5 GPa in Eqs. �4� and �5� at T=300 K.
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300 K were also calculated using the “classical” approach28

to compare with those obtained from the semiclassical Bolt-
zmann method. Unlike the use of the constant relaxation
time approximation in the Boltzmann method, this classical
approach deals with the real mechanism of scattering28 and
adopts the average momentum relaxation time �which de-
pends on all the momentum relaxation time, all the carrier
energy, and temperature� to calculate the S. If the momentum
relaxation time �i,k obeys a power law

�i,k � �i,k
r , �7�

where the exponent r varies between −1/2 �for acoustic de-
formation potential scattering� and +3/2 �for ionized impu-
rity scattering�, the thermoelectric power of p- and n-type
nondegenerate semiconductors �whose upper limit carrier
concentration is in the order of magnitude of 1024 or
1025 carrier/m3�,29 deduced from this classical method,28 can
be expressed as

S = �kB/�e��	r +
5

2
+


 − �v

kBT

 �8�

and

S = − �kB/�e��	r +
5

2
−


 − �c

kBT

 , �9�

where kB is the Boltzmann constant, �e� is the elementary
charge, kB / �e� is 86.16 
V/K, the �v is the valence band
edge, and �c is the conduction band edge.

III. RESULTS AND DISCUSSION

A. Transport properties

The considerations of PBE-GGA and EV-GGA in the
band structure calculation of the B1 phase at ambient pres-
sure gave the band gaps of 0.099 and 0.116 eV, respectively,
which are much smaller than the experimental value of

0.19 eV,32,33 as expected. The underestimation of the band
gap is a well-known problem of the Kohn-Sham theory.34–36

Experience suggests that the shape of the band structure is
correct and that most of the problem can be amended by a
rigid shift of the conduction band. So we adopted the three
different energy gaps to calculate S of the B1 phase at dif-
ferent carrier concentrations at 300 K, and the results are
shown in Fig. 2 to compare with the experimental
measurements.37–42 It is found that for the n-doped system
�Fig. 2�b��, the agreement between theory and
experiments39–42 is excellent within the carrier concentration
ranging from 4�1024 to 4�1025 m−3, without considering
the kinds of dopants. Furthermore, by taking the experimen-
tal band gap of 0.19 eV, the measured data by Orihashi et
al.39 �the square dots�, in which S shows a parabolic in-
creased trend with decreasing carrier concentrations, can be
well reproduced as shown in Fig. 2�b�. Instead, with the
smaller band gaps of 0.099 and 0.116 eV given by PBE-
GGA and EV-GGA, the theoretical calculation deviates
largely with the experimental data by Orihashi et al.,39 at the
carrier concentration region below 3�1024 m−3. Note that
the larger band gap by the EV-GGA gives better results than
that by the PBE-GGA. For the p-doped system �Fig. 2�a��,
the calculated S correctly reproduced the experimental trend,
which shows a near linear increase with lowering concentra-
tion, but significantly overestimated the experimental value
by about 200 
V/K. From the calculations for both n- and
p-doped systems, it is obvious that the choice of band gap
plays an important role in the calculation of S, but only at
lower carrier concentration, while the effect is negligible at
concentrations larger than 8�1024 and 2�1025 m−3 for n-
and p-doped samples, respectively. Consequently, for a much
reliable calculation, the experimental band gap of 0.19 eV
was adopted for further calculation in the B1 structure. The
arrow marked experimental values agree best with the calcu-
lated S, and then the experimental conductivity values of
these dots are used to obtain the average relaxation time
��4.48�10−14 s� for all the �i,k through the calculated � /�.

FIG. 2. �Color online� The calculated Seebeck coefficients for �a� p-type and �b� n-type PbTe within the B1 structure at zero pressure as
a function of carrier concentration at 300 K. The dash-dot line, the dash line, and the solid line are the calculated results using energy gaps
of 0.099, 0.116, and 0.19 eV, respectively. The experimental data �solid symbols� are also shown for comparison. The arrow marked
experimental data in �b� are the selected experimental data to obtain the relaxation time �. The dash-dot-dot line in �a� is the calculated
Seebeck coefficients using the classical method with r=−1/2. The dash-dot-dot line and the short-dot line in �b� are the calculated Seebeck
coefficients using the classical method with r=−1/2 and 1, respectively. The dopants in PbTe are shown in brackets.
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In order to find the physical origin of the large overesti-
mation in the calculated S for p-type B1 PbTe shown in Fig.
2�a�, we also employ the classical method28 to calculate S at
zero pressure and 300 K. For p-type B1 structure, it is
previously43 suggested that the lattice acoustic phonons
dominate the carrier scattering at 300 K. Thus, the carrier
scattering in the p-type B1 PbTe can be treated as the acous-
tic deformation potential scattering with a choice of r=
−1/2.28,43 It is remarkable that the p-type experimental S
values are well reproduced in the whole range of carrier con-
centrations in this classical calculation with r=−1/2, as
shown in Fig. 2�a�. It is known that the classical method
deals with the real mechanism of the carrier scattering.28

Therefore, it is suggested that the constant relaxation time
approximation, which cannot deal with the real scattering
mechanism, is the main cause for the large overestimation of
S in the semiclassical calculations for the p-type B1 structure
�Fig. 2�a��. However, for n-type PbTe at 300 K, the carrier
scattering can only be described by complex combinations of
the short-range potential of vacancies, the polar potential of
the optical phonons, and the deformational potentials of op-
tical and acoustic phonons.44 While only the deformational
potential of acoustic phonons obeys the power law in Eq.
�7�,28 so it is difficult to find an appropriate r value in the
classical calculation. Here, the calculations with a random
choice of r=−1/2 result in a large deviation from the experi-
mental values shown in Fig. 2�b�. However, if we choose r
=1, the experimental data can be well reproduced below the
carrier concentration of 8�1024 m−1, but an obvious dis-
crepancy is evidenced at a higher concentration. It is note-
worthy that the different optimal choices in r imply different
scattering mechanisms for p- and n-type B1 PbTe. In view of
the good agreement between the calculated results by the
semiclassical method and the experimental data for n-type S
in Fig. 2�b�, it is suggested that the constant relaxation time
approximation is appropriate to describe the carrier scatter-
ing in the n-type PbTe. Its scattering mechanism is thus not
dependent significantly on the wave vector �electron energy�
and temperature. For the Pnma phase of PbTe, due to the
lack of information on the mechanism of carrier scattering,
the classical calculation cannot be properly performed.
Therefore, the semiclassical calculation is the last resort to
rely on, which is the most often used in practice17,19,25,27,30,31

to study the transport properties.
There is no clear band structure information reported in

the literature for the high-pressure Pnma phase. The current
calculations by PBE-GGA and EV-GGA give the indirect
band gaps of 0 and 0.166 eV, respectively, at 6.5 GPa. Here,
we choose the more reliable band gap of 0.166 eV calculated
by EV-GGA to evaluate the S, � /�, and S2� /� of the Pnma
phase. The calculated results at 300 K are presented in Fig.
3. Transport coefficients of the B1 structure at zero pressure
and 300 K are also shown for comparison. Compared to the
B1 phase, the Pnma phase shows strong anisotropic behav-
iors in � /�, S, and S2� /�, especially for the � /� �Figs. 3�c�
and 3�d��. The orthorhombic symmetry of the Pnma struc-
ture means that the conductivity tensors will be diagonal and
that �xx��yy ��zz. As shown in Figs. 3�c� and 3�d�, �xx is
15.4 times higher than �zz for the p-doped system, while the
largest �yy /�zz is about 5.8 for the n-doped system. Note that

the largest ratios of �xx /�zz and �yy /�zz are predicted to be
7.7 and 5.2 at a higher temperature of 600 K �not shown� for
p- and n-type systems, respectively. Therefore, it is clear that
the p-type sample has a larger anisotropy in the Pnma phase.
Moreover, it is interesting to note that the anisotropy in the
Pnma phase is larger than that of hexagonal Bi2Te3, where
the ratio �xx /�zz is less than 5 at 300 K.19 It should also be
pointed out that the n-type Pnma phase has a larger S �Fig.
3�b�� and comparable � /� �Fig. 3�d�� along the y axis than
those of the n-type B1 phase. Therefore, if we assume the
same � for the two phases, the resulting S2� values along the
y axis over all the carrier concentrations for the n-type Pnma
phase at 6.5 GPa are found to be significantly larger than
those for the B1 structure at 0 GPa �Fig. 3�f��. This fact
could be responsible for the experimentally observed en-
hancement of S2�.11 However, for the p-type materials, the
calculated maximum S2� along the x axis in the Pnma phase
at 6.5 GPa is smaller than that for the B1 structure �Fig. 3�e��
at zero pressure, resulting from its smaller S.

From Eq. �6�, we calculate the ZT values for the B1 phase
at zero pressure and the Pnma phase along its optimal crystal
directions at 6.5 GPa. Here, we assume that � and �l are
independent of structures, doping level, and temperature. The
choice of �=4.48�10−14 s has been justified as described
above. We chose �l values to be 2.15 and 1.0 W/mK, which
are the lattice thermal conductivity of the undoped39 and
doped42 B1 phases at zero pressure. The calculated ZT values
with carrier concentrations for the B1 and Pnma phases at
300 and 600 K are shown in Fig. 4. Note that these results
could guide future experiments in finding the optimal con-
centration of the doped samples. It can be clearly seen in Fig.
4�b� that the experimental ZT values for the n-type B1 phase
at 300 K can be well reproduced by the calculated data, sig-
nifying the validity of the current model. On the contrary,
because of the overestimated S for p-type B1 phase, the cal-
culated ZTs do not agree well with the experimental data at
300 K in Fig. 4�a�. It is noteworthy that the calculated ZTs of
the n-type Pnma at 300 and 600 K are approximately two
times larger than those of the n-type B1. Both desirable p-
and n-type ZT values of the Pnma phase at 6.5 GPa reach up
to 0.9 at 300 K, close to ZT
1 �Refs. 45 and 46� of Bi2Te3,
which is one of the best bulk thermoelectric materials at
room temperature. Importantly, with temperature increasing
up to 600 K, the largest ZT values of 2.18 �along the x axis�
and 1.59 �along the y axis� for the p- and n-type materials
have been predicted, signaling a kind of excellent thermo-
electric material. However, one has to take caution for the
large ZT values of the p-type material. As we have demon-
strated in Fig. 2�a�, the current semiclassical calculation
overestimates the S for the p-type B1 by about 200 
V/K at
300 K, originated from the assumption of the constant relax-
ation time. So it is not straightforward to evaluate the exact
performance of the p-type Pnma phase with the current cal-
culation. Nevertheless, it is worth reminding that the p-type
sample �Pb0.393Sn0.157Te0.45� in the Pnma phase11 has already
been demonstrated as a good thermoelectric material. The
experimental findings, thus, support our current predictions.
It should be noted that the predicted ZT values for the n-type
Pnma structure are suggested to be reliable by evidence of a
satisfactory agreement with the experiments11 and an accu-
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rate description of the n-type B1 structure �Fig. 2�b��. Our
calculations also demonstrate that the optimal crystal direc-
tion of ZT in the Pnma phase is determined by the direction
of optimal electric conductivity. These results are similar to
the reports by Hicks and Dresselhaus.47 They found that it is
possible for an anisotropic crystal in three dimensions to
increase ZT by choosing the current to flow along the direc-
tion of highest mobility. The strong anisotropy in the Pnma
phase of PbTe at 6.5 GPa might be the main cause of its
excellent thermoelectric properties.

B. Electronic structure

The total and partial electronic DOSs for the B1 and
Pnma phases are presented in Fig. 5. For the sake of a clear
comparison, we set the highest valence band �HVB� of the
two phases as the zero energy level, and shift the lowest
conduction band �LCB� to fix the band gap at 0.19 eV for the
B1 phase and 0.166 eV for the Pnma phase. In the com-
pounds, Pb 5d and Te 4d and 5s states are quite deep, and
contribute little to the valence bands. From Figs. 5�b� and
5�c�, it is clear that the valence bands are formed primarily

FIG. 3. �Color online� Transport properties of PbTe within the Pnma structure at 6.5 GPa and the B1 structure at zero pressure, as a
function of carrier concentration at 300 K. �a� p-type Seebeck coefficients. �b� n-type Seebeck coefficients. �c� p-type electrical conductivi-
ties relative to relaxation time, � /�. �d� n-type electrical conductivities relative to relaxation time, � /�. �e� p-type power factors with respect
to relaxation time, S2� /�. �f� n-type power factors with respect to relaxation time, S2� /�. The solid lines, the dash lines, and the dash-dot
lines are the components of xx, yy, and zz, respectively, for the transport tensors of the Pnma phase. For the B1 phase, the components of
xx, yy, and zz for the calculated tensors are equal, and the dash-dot-dot lines are one-third of the trace of the transport tensors.
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out of 6s and 6p states of Pb and 5p states of Te, while the
conduction bands are mainly from 6p and 5p states of Pb and
Te, respectively.

Since transport properties are closely related to the elec-
tronic states near the HVB and LCB for the p- and n-type
compounds, respectively, it is reasonable to focus only on the

FIG. 4. �Color online� The calculated ZT values as a function of carrier concentrations at 300 and 600 K for PbTe within the B1 and
Pnma structures at the pressures of 0 and 6.5 GPa, respectively. The solid lines and the dash lines are the ZT values along the optimal crystal
directions of the Pnma structure calculated using �l=1 and �l=2.15 W/mK, respectively. The dash-dot lines and the dash-dot-dot lines are
the ZT values of the B1 structure calculated from �l=1 and �l=2.15 W/mK, respectively. The experimental data �solid symbols� are also
shown for comparison. The dopants in PbTe are shown in brackets. For the Pnma phase, the highest ZT values are along the x and y axes
for p- and n-type materials, respectively.

FIG. 5. �Color online� Calculated DOS for PbTe within the B1 and Pnma structure at 0 and 6.5 GPa. �a� The total DOS of PbTe, Pb, and
Te. �b� Partial DOS of s and p character for Pb. �c� Partial DOS of s and p character for Te.
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energy range near the band gap. It is shown in Fig. 5�a� that
the total DOS of the Pnma phase is higher than that of the
B1 phase near the LCB, in contrast to the fact that the B1
phase has a higher total DOS near the HVB. Therefore, it is
suggested that at the phase transition of B1-Pnma, there is an
enhancement of the DOS near the LCB, whereas a reduced
DOS near the HVB. The materials with high S are usually
associated with a large DOS near the band gap.30 So the
current DOS results are mainly responsible for the predicted
higher and lower S in the Pnma structure than those in the
B1 phase for n- and p-type materials, respectively, as shown
in Figs. 3�a� and 3�b�. The analysis of partial DOS indicates
that the increased DOS near the LCB is dominated by the p
states of Pb and Te, while the decreased DOS near the HVB
is from the s and p states of Pb and p states of Te.

Figures 6�a� and 6�b� show the energy band structure
along the principal symmetry directions of the B1 and Pnma
structures at 0 and 6.5 GPa, respectively. Figure 6�c� is a
description of the first BZ for the Pnma structure. From Fig.
6�a�, it can be clearly seen that the maximum of the HVB

and the minimum of the LCB for the B1 phase lie at the L
point �0.5, 0.5, 0.5�, indicating a direct band gap nature. Both
LCB and HVB are calculated to be twofold degenerate.
From Fig. 6�b� for the Pnma phase, the minimum of the
LCB lies along the �Z direction �kz direction in Fig. 6�c�� at
the I point �0, 0, 0.292�, while the maximum of the HVB sits
in the ZT direction at the k point �0, 0.49, 0.5�, resulting in
an indirect band gap. Note that H point �0.5, 0, 0.292� and J
point �0, 0.5, 0.292�, as shown in Figs. 6�b� and 6�c�, were
introduced in the band structure plot in order to discuss the
energy dispersion near the I point along two other main di-
rections of kx and ky in the LCB. The band energy at the k
point of �0, 0.49, 0.5� is only 0.019 eV higher than that of the
T point �0, 0.5, 0.5� �Fig. 6�c��, thus, for simplicity, we dis-
cuss the energy dispersion near the T point in the HVB.

Mahan and Sofo48 demonstrated that for good thermoelec-
tric materials, the energy distribution of carriers should be
narrow and have a high carrier velocity in the direction of the
applied field, which is possible in a highly anisotropic sys-
tem. Here, we can infer some favorable features for good

FIG. 6. �a� Band structures of PbTe within the B1 phase at zero pressure. The band gap is shifted to the experimental value of 0.19 eV.
�b� Band structures of PbTe within the Pnma phase at 6.5 GPa. The band gap is shifted to the value of 0.166 eV provided by EV-GGA. �c�
The first BZ of the Pnma structure. The principal symmetry points and k points of H �0.5, 0, 0.292�, I �0, 0, 0.292�, and J �0, 0.5, 0.292� are
shown in the first BZ.
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anisotropic thermoelectric materials from the curve of
��-
��f /�� that enters the expression for the S as shown in
Fig. 1. At 300 K, the extrema of the ��-
��f /�� function are
located approximately at ��-
�=0.05 eV, and the optimal
carrier concentration will therefore correspond to a chemical
potential close to the band edges.17 The constant energy sur-
face within 0.05 eV near the band edge should have a large
area to increase the DOS and S, while a small area along the
other direction to increase the group velocity17 and conduc-
tivity �Eqs. �1�–�4��. One example of this kind of constant
energy surface is a flat pocket of p-type CsBi4Te6.17 Both the
large and small areas along different directions on the same
constant energy surface lead to a large power factor S2�.

From Fig. 6�b� for the Pnma, it is found that the largest
band dispersions near the k points of T and I in the HVB and
LCB, respectively, are along the TR �kx� and IJ �ky� direc-
tions. Since the group velocity can be expressed by Eq. �3�, it
is suggested that the largest group velocities are along the
directions of kx in the HVB and ky in the LCB in the recip-
rocal space. Figure 7 shows the constant energy surface
within 0.05 eV below and above the extrema of HVB and
LCB edges for the Pnma phase. It is clear that the large

dispersion along the TR and IJ directions in Fig. 6�b� results
in the small areas on the constant energy surface along kx in
the HVB and ky in the LCB for the p- and n-type com-
pounds, respectively, as shown in Figs. 7�a� and 7�b�. It is
noted that there also exist large areas along other directions.
The coexistence of large and small areas on the same con-
stant energy surface in the Pnma phase results in large See-
beck coefficients and conductivities for both of the p- and
n-type samples at 6.5 GPa. The above analyses indicate that
the strong anisotropy for the Pnma phase in the electronic
structure is mainly responsible for the high thermoelectric
performance.

Why is the energy distribution so anisotropic for the
Pnma phase? The answer could be found in the constant
electron density surface within the energy windows of
0.1 eV below and above the HVB and LCB in Fig. 8. The
choice of 0.1 eV is from the fact that the carriers in the
energy range of ±0.1 eV contribute mostly to the transport
properties at 300 K as indicated in the plot of ��-
��f /��
�Fig. 1�. Figure 8�a� shows that the constant electron density
is mainly distributed along the y and z axes in direct space,
causing a small density change for the HVB along the ky and
kz directions in the reciprocal BZ. On the contrary, large

FIG. 7. �Color online� Constant energy surfaces in the first BZ
for the Pnma phase of PbTe at 6.5 GPa: �a� 0.05 eV below the
maximum of HVB. Four energy pockets are shown, and each side
along kx in the first BZ own a quarter of a pocket. �b� 0.05 eV above
the minimum of LCB.

FIG. 8. �Color online� Constant electron density surface plot for
the Pnma phase of PbTe at 6.5 GPa: �a� energy range at 0.1 eV
below the maximum of HVB. The surface covers a volume where
the electron density is larger than 2�10−5 e /Å3. �b� Energy range
at 0.1 eV above the minimum of LCB. The surface covers a volume
where the electron density is larger than 5�10−5e /Å3. The pink
spheres represent Pb, and the light blue spheres represent Te.
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density changes are expected along kx, resulting in a small
constant energy surface in this direction. It is noteworthy that
the dominant constant electron density for the LCB is mainly
located at the x and z directions �Fig. 8�b��, contributing to a
large energy dispersion along ky.

Figures 9�a� and 9�b� show the constant energy surfaces
for the B1 structure. It is found that there are eight half-
ellipsoid constant energy surfaces along �111�. The most
striking feature of these half-ellipsoids is the anisotropy of
their distributions. For instance, for the pocket along the
�111� axes, there is a larger dispersion along the LW direction
than that along L�. This anisotropy can also be verified from
the band structure plot in Fig. 6�a�. It is clear that compared
with the L� direction, there is a larger band dispersion along
the LW direction. The obvious anisotropy of the band disper-
sion causes a large anisotropy for the longitudinal �ml

*� and
transverse �mt

*� effective masses along �111�. It was previ-
ously demonstrated that ml

* is about ten times larger than
mt

*.49 From the equation of conductivity effective mass �mc
*�

and carrier mobility,50 it is shown that the large anisotropy in
effective masses, and especially the small value of mt

*, is
helpful to get a small mc

* and a large carrier mobility. Note
that each pocket in Fig. 9 is twofold degenerate, so there are
16 half-ellipsoids in the BZ. All of these half-ellipsoids are
useful to increase the areas of the constant energy surfaces
and the DOS near the band gap, and are responsible for the
reasonably large S in the B1 phase.

IV. CONCLUSION

The transport properties and electronic structure of PbTe
within the B1 and Pnma structures were extensively studied
by a combination of first-principles electronic structure cal-
culations and the semiclassical Boltzmann theory. We found
that it is important to use the correct band gap to calculate
the transport coefficient, especially in the low carrier concen-
tration. The calculated n-type S in the B1 phase is in good
agreement with the experimental value, but an obvious over-
estimation for the p-type one originated from the assumption
of the constant relaxation time. The ZT values of the n-type
Pnma phase at 6.5 GPa are calculated to be about two times
larger than that of the n-type B1 phase at ambient pressure.
The high thermoelectric performance of the Pnma phase at
6.5 GPa is due to its highly anisotropic electronic structure,
resulting in the anisotropic energy distribution and large
DOS in the conduction band.

Since the Pnma phase of PbTe possesses a very high ther-
moelectric performance, it is desirable to synthesize this
phase at ambient condition for utilization. Previously, Baleva
et al.51,52 reported the successfully synthesized thin films of
another orthorhombic phase and B2 phases of PbTe at ambi-
ent pressure. The synthesized method of changing the rate of
supercooling could be regarded as a good choice to pursue
the Pnma phase at ambient condition. Also, high-pressure
and high-temperature synthesis could be an alternative
method. Besides, for the well-known “diamond” example,
Saito et al.53 successfully obtained the single crystal of the
high-pressure phase of �VO�2P2O7 by slowly cooling the
melt at 3 GPa. By all appearances, further experimental ex-
ploration is needed to fully make use of the high thermoelec-
tric performance of Pnma PbTe.
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