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We study the thermodynamics of the one-dimensional extended Hubbard model at half filling using a
density-matrix renormalization group method applied to transfer matrices. We show that the various phase
transitions in this system can be detected by measuring usual thermodynamic quantities such as the isothermal
compressibility and the uniform magnetic susceptibility. For the isothermal compressibility, we show that
universal crossing points exist, which allow us to accurately determine the line where the charge gap vanishes.
By studying, in addition, several correlation functions, we confirm the existence of a phase with long-range
dimer order �bond order�, which has been a matter of debate for several years. According to our calculations,
this phase is located in a narrow region between the spin-density and charge-density wave phases up to a
tricritical point, which we estimate to be at Ut=6.7±0.2, Vt=3.5±0.1. Our results for the phase diagram are in
good agreement with the most recent zero-temperature density-matrix renormalization group study; however,
they disagree in some important aspects from the most recent Quantum-Monte-Carlo study.
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I. INTRODUCTION

Understanding the effects of competing interactions and
the associated quantum phase transitions in models of
strongly correlated electron systems is still one of the main
issues of modern condensed matter physics. In one dimen-
sion, correlation effects are particularly strong and a number
of analytical and numerical tools have been developed for
this case. This has led to intense work on such systems in the
last decades. One of the seminal models in this context is the
extended Hubbard model
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Here, cj,�
† �cj,�� is a creation �annihilation� operator for an

electron with spin �= ↑ ,↓ at site j, nj,�=cj,�
† cj,�, and nj

=nj,↑+nj,↓. t is the amplitude of a nearest-neighbor hopping,
U�0 an on-site and V�0 a nearest-neighbor Coulomb re-
pulsion. A possible additional magnetic field is denoted by h,
and the chemical potential by �. Here, we will concentrate
on the half-filled case �=0. In the following, we will only
keep the hopping amplitude t where it is necessary for the
sake of clarity and set t=1 otherwise.

In the strong-coupling limit, U, V� t, it is easy to see by
simple energetic considerations that two different ground
states exist: For U�2V, the system is an insulator with long-
range charge-density wave �CDW� order, whereas for U
�2V, a state with quasi-long-range spin-density wave
�SDW� order forms. The transition between these two phases
in the strong-coupling limit is of first order.1–3 In the weak-
coupling limit, U, V� t, the model can be studied using
bosonization and g-ology.4,5 In this framework, one finds
again a phase transition between the SDW and CDW phases

at U=2V. In the spin sector, this transition is driven by an
operator which turns from marginally irrelevant in the SDW
phase to marginally relevant in the CDW phase. The spin gap
therefore opens up exponentially slowly, and the transition in
the spin sector is of Kosterlitz-Thouless �KT� type. In the
charge sector, on the other hand, there is a relevant operator
in both phases leading to a charge gap. The amplitude of this
operator vanishes only at the transition line U=2V, so that
the charge gap disappears.4 The transition in the charge sec-
tor is therefore of second order. Already from the strong- and
weak-coupling approaches, it is clear that a point �Ut ,Vt� in
the intermediate coupling regime must exist where the order
of the phase transition changes.

In the last few years, the extended Hubbard model has
attracted renewed attention because it has been suggested
that the phase diagram obtained by the weak-coupling
g-ology approach and strong-coupling perturbation theory
might not be complete. Nakamura pointed out first that there
is no symmetry requiring the lines in U, V-parameter space,
where the marginal operator in the spin sector changes sign
and where the relevant operator in the charge sector van-
ishes, to coincide.4,6 The coupling constants for these two
operators do coincide in the standard g-ology approach,
where they are calculated to first order in the interaction
parameters. However, they might differ once higher order
corrections are taken into account. This opens up the possi-
bility for an intermediate phase. By extracting the scaling
dimensions related to the critical exponents of certain corre-
lation functions from finite-size energy spectra, Nakamura
indeed found a phase with long-range dimer order in a small
region between the SDW and CDW phases. This phase is
often called a bond-order wave �BOW� state. The existence
of such a phase around U=2V in the weak-coupling regime
was supported by quantum Monte Carlo �QMC�
calculations7,8 as well as by a g-ology approach where the
coupling constants have been calculated beyond leading
order.9 However, in a first density-matrix renormalization
group �DMRG� calculation,10 such a phase was only found
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above the tricritical point �Ut ,Vt� and only directly at the first
order transition line. A later DMRG calculation,11 on the
other hand, qualitatively confirms again the phase diagram as
proposed by Nakamura. Further evidence for the existence of
a BOW phase in the weak-coupling regime was also pro-
vided by a functional renormalization group analysis.12

Although the most recent DMRG11 and the most recent
QMC study8 agree that a BOW phase of finite extent does
exist, they disagree about the shape of this phase. Whereas in
the phase diagram of Ref. 11 the BOW phase ends at the
tricritical point, it extends beyond this point to larger values
of U, V in the phase diagram of Ref. 8. The question whether
the tricritical point also marks the end of the BOW phase or
is located on the BOW-CDW boundary therefore remains an
open issue.

In this work, we will investigate the half-filled one-
dimensional extended Hubbard model using a density-matrix
renormalization algorithm applied to transfer matrices
�TMRG�. This numerical method allows it to calculate ther-
modynamic properties of the model in the thermodynamic
limit. We will provide further evidence for the correctness of
the phase diagram as first proposed by Nakamura and give
an estimate for the tricritical point �Ut ,Vt�. In particular, we
will argue based on our numerical results that the BOW
phase ends at the tricritical point and does not extend to
larger values of U, V, in contrast to the findings in Ref. 8. In
the process, we will develop and discuss criteria to identify
the different phases and transition lines by considering usual
thermodynamic quantities such as the uniform magnetic sus-
ceptibility, the isothermal compressibility �charge suscepti-
bility�, and the specific heat.

Our paper is organized as follows. In Sec. II, we briefly
introduce the TMRG algorithm and compare results for the
Hubbard model �V=0� with exact results obtained by the
Bethe ansatz. In Sec. III, we then present results for a variety
of thermodynamic quantities which allow us to determine the
phase diagram of the extended Hubbard model at half filling.
The last section is devoted to our conclusions.

II. TRANSFER-MATRIX RENORMALIZATION GROUP
ALGORITHM AND THE HUBBARD MODEL

The density-matrix renormalization group applied to
transfer matrices �TMRG� has been explained in detail in
Refs. 13–15. Here, we only want to briefly discuss the most
important aspects. The TMRG algorithm is based on a map-
ping of a one-dimensional quantum system to a two-
dimensional classical one by means of a Trotter-Suzuki de-
composition. In the classical model, one direction is spatial
whereas the other corresponds to the inverse temperature.
For the classical system, a so-called quantum transfer matrix
�QTM� is defined which evolves along the spatial direction.
At any nonzero temperature, the QTM has the crucial prop-
erty that its largest eigenvalue 	0 is separated from the other
eigenvalues by a finite gap. The partition function of the
system in the thermodynamic limit is therefore determined
by 	0 only, allowing it to perform this limit exactly. The
Trotter-Suzuki decomposition is discrete so that the transfer
matrix has a finite number of sites or local Boltzmann

weights M. The temperature is given by T��
M�−1, where 

is the discretization parameter used in the Trotter-Suzuki de-
composition. The algorithm starts at some high-temperature
value where M is so small that the QTM can be diagonalized
exactly. Using a standard infinite-size DMRG algorithm,
sites are then added to the QTM leading to a successive
lowering of the temperature. A source for a systematic error
in these calculations is the finite discretization parameter 
.
However, this only leads to errors of order 
2 in all thermo-
dynamic quantities considered in the following. We will
choose 
=0.025 or 0.05 so that this systematic error will
only be of order 10−3–10−4. Another error is introduced by
the truncation of the Hilbert space. This error will grow with
decreasing temperature and will finally make the calculations
unreliable. Down to which temperature the DMRG algorithm
works will depend on the maximum number of states N kept
in the truncated Hilbert space basis. The truncation error is
difficult to estimate. We therefore start by comparing our
TMRG results for the Hubbard model �V=0� with exact re-
sults obtained by the Bethe ansatz.16 Within the TMRG al-
gorithm, nothing changes fundamentally when we introduce
the nearest-neighbor Coulomb repulsion V so that we expect
a similar accuracy in this case.

As an example, we consider the case U=8. Results with a
similar accuracy are also obtained for other U. Using the
TMRG method, the free energy per site is given by

f = − T ln 	0. �2�

The specific heat is then obtained by C=−T�2f /�T2 and is
shown in Fig. 1. It is also easy to calculate the expectation
values of local operators with the TMRG algorithm. To ob-
tain the magnetic susceptibility �s, the expectation value m
��Sz	= �n↑−n↓	 /2 is calculated in the presence of a small
magnetic field �h�10−2. The susceptibility is then given by
�s=m /�h and shown in comparison to the exact result in Fig.
2. Similarly, the isothermal compressibility �charge suscepti-
bility� �c is obtained by applying a small chemical potential
�� and is shown in Fig. 3. For the spin and charge suscep-
tibilities �s and �c, the error does not exceed 510−4 down
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FIG. 1. �Color online� TMRG data for the specific heat C of the
Hubbard model at U=8 with N=200 states kept �red solid line�
compared to Bethe ansatz data �circles� as a function of temperature
T. The lower graph shows the error �C of the TMRG calculation.
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to temperatures T
0.05. For the specific heat C, the errors
are an order of magnitude larger because a second numerical
derivative has to be calculated.

III. PHASE DIAGRAM OF THE EXTENDED HUBBARD
MODEL AT HALF FILLING

To investigate the phase diagram, we will consider a num-
ber of different thermodynamic quantities such as magnetic
susceptibilities, compressibilities, specific heats, and expec-
tation values of local operators. Furthermore, we will study
the behavior of correlation lengths which can be obtained
within the TMRG method by calculating next-leading eigen-
values of the QTM.13,15 Depending on the required accuracy
and the temperature regime we want to access, the basis for
the truncated Hilbert space will consist of N=200–400
states.

We start with the strong-coupling limit where the two
existing phases and the first order phase transition between
these phases are well understood. We then derive an estimate
for the tricritical point where the first order line ends. Next,
we discuss the considerably more complicated weak-
coupling regime and present the phase diagram as obtained
by TMRG. Finally, we will address the controversial ques-

tion whether or not the BOW phase ends at the tricritical
point. Throughout, we will discuss how far one can identify
the different phases and phase transitions by studying only
easily measurable thermodynamic quantities such as the spe-
cific heat, magnetic susceptibility, and compressibility.

A. Strong coupling

In the strong-coupling limit, U ,V� t, the ground state en-
ergy can be systematically expanded in terms of the hopping
parameter t. In lowest order, the hopping can be completely
neglected. Then, depending on the ratio U /V, two different
ground states are possible. These states are depicted in Fig.
4. The energy of the CDW state is then given by ECDW

0

=LU /4−LV, with L being the number of lattice sites. The
SDW state has energy ESDW

0 =−LU /4. The two energies as a
function of U ,V cross at U=2V, resulting in a first order
phase transition. As usual, in second order in t, virtual hop-
ping processes lead to an effective antiferromagnetic cou-
pling of Heisenberg type for the spins in the SDW state with
coupling constant J=2t2 / �U−V�.1,3 This state therefore has a
charge gap but no spin gap and algebraically decaying spin
correlation functions. The CDW state, on the other hand, has
a charge and a spin gap. Excitations for the CDW and SDW
states, ignoring hopping processes, are shown in Fig. 5. In
lowest order perturbation theory, the energies of the excited
states depicted in Fig. 5 are given by ECDW

1 =ECDW
0 −U /2

+2V, ECDW
2 =ECDW

0 −U+3V for the excited CDW states and
ESDW

1 =ESDW
0 +U /2, ESDW

2 =ESDW
0 +U−V for the excited SDW

states. Excitation �1� in the CDW state is a charge excitation,
whereas the breaking of a double occupancy—excitation
�2�—is a spin excitation. If we separate the two single spins
in this excited state, we obtain an excitation energy ECDW

0

+2�−U /2+2V�, i.e., each single spin contributes −U /2+2V.
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FIG. 2. �Color online� Same as Fig. 1 for the magnetic suscep-
tibility �s.
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FIG. 3. �Color online� Same as Fig. 1 for the charge suscepti-
bility �c.

CDW:

SDW:

FIG. 4. The two ground states in the strong-coupling limit
U ,V� t. The state in the first line is a CDW state where every
second site is doubly occupied, whereas the state in the second line
is a state with every site singly occupied. Virtual hopping processes
induce a quasi-long-range SDW order for this state.

CDW: SDW:

(1)

(2)

FIG. 5. Left column: �1� CDW state with one particle added and
�2� CDW state with one double occupancy broken. Right column:
�1� SDW state with one particle added and �2� SDW state with one
double occupancy.
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In thermodynamic data, the activated behavior will be char-
acterized by the energy of a single excitation irrespective of
whether these excitations appear in pairs or not. In the
strong-coupling limit, it follows that at the transition line
charge and spin gap as obtained from thermodynamic data
are expected to be equal �s=�c=U /2 and that both gaps
increase linearly �2V away from the transition line. In the
SDW phase, excitation �1� is also a charge excitation and has
a lower energy than excitation �2�. The charge gap in the
SDW phase is therefore given by �c=U /2 and is indepen-
dent of V.

In Fig. 6, TMRG results for the spin susceptibility �s and
the spin gap �s at U=12 are shown. If a gap � exists, the
dispersion of the elementary excitations is given by 
�k�
��+k2 / �2m� with some effective mass m. It is then easy to
see that the corresponding susceptibility will show activated
behavior,

��T� �
exp�− �/T�

�T
, �3�

at temperatures T��. Using this function to fit the numeri-
cal data, we are able to extract the spin gap �s. As shown in
the inset of Fig. 6, the behavior of �s as a function of V at
U=12 is already reasonably well described by the strong-
coupling limit, i.e., there is no spin gap up to V
U /2, and
then �s jumps to approximately U /2 and then increases lin-
early with slope 2.

Similarly, we show TMRG results for the charge suscep-
tibility �c and the charge gap �c at U=12 in Fig. 7. The
results obtained for the charge gap �c are also already close
to the strong-coupling limit, although the gap is a bit smaller
than U /2 in the SDW phase and it shows some V depen-
dence when the transition point is approached.

Another quantity which allows us to detect the phase tran-
sition and to determine its order is the double occupancy

d = �nj,↑nj,↓	 . �4�

In the strong-coupling limit at zero temperature, d=0 in the
SDW state and d=1/2 in the CDW state. In Fig. 8, we show
d for U=12 and various V. In the extrapolated data for zero
temperature, some corrections to the strong-coupling limit
are visible. d is already nonzero in the SDW phase and in-
creases slightly with V. However, a jump in d at V
6.18 is
obvious. In the CDW phase d continues to increase with V
and approaches 1/2 in the large V limit.

The specific heat shown in Fig. 9 has two maxima for
U=12 and V=0. The lower- and higher-temperature maxima
are due to spin and �gapped� charge excitations,
respectively.17 At low temperatures, only the gapless spin
excitations do therefore contribute, and conformal field
theory predicts
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FIG. 6. �Color online� Magnetic susceptibilities �solid lines� for
U=12 and V=1.0,2.0, . . . ,6.0,6.1,6.2, . . . ,7.0 as a function of
temperature T. The dashed lines are fits according to Eq. �3�. The
inset shows the spin gap �s extracted from those fits �circles� as a
function of V. The solid lines in the inset denote the theoretical
result in the strong-coupling limit.
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FIG. 7. �Color online� Charge susceptibilities �circles� for U
=12 and V=6.0,6.1, . . . ,7.0 as a function of temperature T. The
lines are a guide to the eye. The dashed lines are fits according to
Eq. �3�. The inset shows the charge gap �c extracted from those fits
�circles� as a function of V. The solid lines in the inset denote the
theoretical result in the strong-coupling limit.
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FIG. 8. �Color online� Double occupancy as a function of tem-
perature for U=12 and different V. Inset: Extrapolated values of the
double occupancy at zero temperature as a function of V.
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C =
�

3vs
T . �5�

With increasing V, the spin velocity vs increases leading to a
decreasing slope and to a shift of the lower-temperature
maximum to higher temperatures. At the same time, the
charge gap decreases leading to a shift of the higher-
temperature maximum to lower temperatures. The behavior
changes drastically above the phase transition V�Vc
6.18,
because in the CDW phase, the spin excitations are now also
gapped and the specific heat shows activated behavior C
�e−�/T with �=min��s ,�c�. The emergence of a sharp peak
for V�Vc can be understood as follows: Because
�0

�C�T�dT=−e0, with eo being the ground state energy, the
area under the curve will be nearly unchanged when going
from a value just below the phase transition, say, V=6.1, to a
value just above the transition, say, V=6.2. In addition, also
the high-temperature behavior will be almost unaffected by
this small change in V. Hence, the weight suppressed by the
gap at low temperatures will show up in a sharp peak just
above the gap. This is shown in the inset of Fig. 9 and con-
stitutes one possibility to detect the first order transition eas-
ily from thermodynamic data.

B. Tricritical point

From the discussion in the Introduction, it is clear that the
first order transition line must end at some point �Ut ,Vt�
because the phase transitions at weaker couplings are ex-
pected to be continuous. We found that a good criterion to
determine this endpoint with the TMRG method is to study
the double occupancy d Eq. �4��. As shown for the case U
=12 in Fig. 8, d as a function of T shows a dramatically
different behavior depending on weather we choose a V such
that we are in the SDW phase or a V such that we are in the
CDW phase. d at a fixed U extrapolated to zero temperature
therefore shows a jump �d as a function of V if the phase
transition is of first order. Reducing the on-site repulsion U,
we expect this jump to become smaller and smaller until it

disappears at Ut. For U=7.0, we can still detect a finite jump
�0.17 at V
3.65 see Fig. 10�c��, whereas d as a function
of V seems to be continuous for U=6 see Fig. 10�b��. To
determine the point �Ut ,Vt� more accurately, we have plotted
the jump �d as a function of U in Fig. 10�d�. We can fit these
data very well by a power law which leads us to the estimate
Ut=6.7±0.2. Because the value for U=7 is least reliable, we
also did fits where this point was excluded. Similarly, we
tried fits where the data points for large U were excluded.
The results of the various fits lead to the error estimate
above. For each possible value of Ut, we can find Vt with
high accuracy. For the values of Ut estimated above, we have
Vt=3.5±0.1. Here, the uncertainty in Vt is not an error esti-
mate but rather means that Vt
3.4 for Ut=6.5 and Vt
3.6
for Ut=6.9.

C. Weak coupling

The phase diagram in the weak-coupling limit is more
complicated than in the strong-coupling limit. Instead of a
first order, we expect different continuous phase transitions
here. Theoretically, the weak-coupling limit can be investi-
gated by bosonization with the coupling constants of the op-
erators in the effective Hamiltonian being determined in first
order in the interaction parameters. This method is also often
termed g-ology.5 As usual in one dimension, the charge and
the spin sectors completely separate in the low-energy effec-
tive bosonic theory due to the linearization of the excitation
spectrum. In the charge sector at half filling, umklapp scat-
tering leads to a relevant interaction term in the bosonic
Hamiltonian which creates a charge gap. In the spin sector,
on the other hand, the leading interaction term corresponding
to backward scattering is only marginal. The amplitudes of
both terms in the weak-coupling limit are proportional to
U−2V.4 The system therefore has always a charge gap ex-
cept at U=2V, where the amplitude of the umklapp scatter-
ing term vanishes. The charge gap at fixed U near the phase
transition behaves as

�c � �V − Vc��, �6�

with ��0 being an interaction dependent critical exponent
and Vc
U /2 at weak coupling. This means that the transi-
tion in the charge sector is of second order. In the spin sector
at weak coupling, the backward scattering term is marginally
irrelevant if U�2V so that the spin excitations are gapless.
For U�2V, this term becomes marginally relevant and a
spin gap �s appears. However, this gap only opens up expo-
nentially slow, i.e., for a fixed U and V�Vc, we expect

�s � �V − Vc exp�− const/�V − Vc�� , �7�

with Vc
U /2 at weak coupling.18 The phase transition in
the spin sector is therefore of Kosterlitz-Thouless �KT� type.

As Nakamura6 first noted, there is no symmetry which
fixes the amplitude of the umklapp and backward scattering
terms to be the same. So although these amplitudes are iden-
tical to first order in the interaction parameters, one would
expect, in general, that they start to differ once higher order
corrections are taken into account. In this case, an additional
phase between the SDW and CDW phases would occur. As
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FIG. 9. �Color online� Specific heat as a function of temperature
for U=12 and different V. Inset: A sharp peak forms just above
phase transition.
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already outlined in the Introduction, different methods have
given strong evidence that an additional phase with BOW
order does indeed exist, although some controversy about the
extent of this additional phase remains.4,6–12

In the following, we will first develop a criterion which
allows us to determine the second order line where the
charge gap closes with high precision from thermodynamic
data. Next, we will consider the KT-type transition where the
spin gap opens. Finally, we will provide some direct evi-
dence that the phase has long-range BOW order at zero tem-
perature and does not extend beyond the tricritical point.

To determine the line in the U ,V-phase diagram where the
charge gap closes, we consider the charge susceptibility �c.
If a charge gap �c exists, �c at temperatures T��c is de-
scribed by Eq. �3�. In the low-temperature regime, �c there-
fore will be larger the smaller the charge gap is. According to
Eq. �6�, we therefore expect the following behavior of
�c�T0 ,V� at fixed U and fixed low temperature T0: If V
�Vc, then �c�T0 ,V�, increases with increasing V, whereas
�c�T0 ,V� decreases with increasing V if V�Vc.

For high temperatures, T0�1, on the other hand,
�c�T0 ,V� will always decrease with increasing V as can be
easily seen from a high-temperature expansion. Up to second
order in 1/T, we find

�c�T � 1� =
1

2T
�1 −

1

2T
�U

2
+ V�� . �8�

For V�Vc, we therefore have the situation that ��c /�V�0
for T�1 and ��c /�V�0 for T�1. The compressibility
curves for different V�Vc at fixed U therefore have to cross
at least at one point. For V�Vc, on the other hand, we have
��c /�V�0 for high as well as for low temperatures so that
no crossing is expected. The different behavior of the com-
pressibility curves for V�Vc and V�Vc is a very efficient
criterion to determine Vc as is shown in Figs. 11 and 12 for
the cases U=2 and U=4, respectively. From Fig. 11, lower
panel, we see that the first curve crossing the ones for larger
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FIG. 10. �Color online� Extrapolated values of the double occu-
pancy d at zero temperature as a function of V for different U. The
inset of �c� shows a zoom of the region where d jumps. �d� Extrapo-
lated TMRG data �circles� for the jump �d in the double occupancy
at the phase transition at zero temperature as a function of U. The
line is a fit �d=0.232�U−6.7�0.29.
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FIG. 11. �Color online� Charge susceptibility �c for U=2. Upper
panel: �c for V=0.5,0.6, . . . ,1.0 �in arrow direction�. The inset
shows a zoom of the region around the crossing point at T*
0.12.
Lower panel: �c for V=1.04,1.1,1.2, . . . ,1.6 �main, in arrow direc-
tion� and V=1.04,1.06,1.08,1.1,1.12,1.13,1.2,1.3 �inset, in arrow
direction�.
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V is the one for V=1.04. We therefore find Vc=1.05±0.01
for U=2. In principle, the critical point can be determined
with this method even more accurately. Similarly for U=4,
the inset of the lower panel of Fig. 12 shows that the first
curve crossing is V=2.16, which leads to the estimate Vc
=2.165±0.005 in this case. Both critical values are in good
agreement with the most recent zero-temperature DMRG
calculation.11 Another interesting point is that in both cases,
the curves for V�Vc do not only cross but do so at one well
defined point. That is, there is a well defined temperature T*

where ��c /�V
0 for all V. Similar well defined crossing
points have also been observed in other systems and other
thermodynamic quantities, as for example, the specific
heat.19,20

For the spin susceptibility �s, there is only a spin gap
above the KT transition. For V�Vc

KT, the temperature depen-
dence of the spin susceptibility is then again given by Eq.
�3�. ��s /�V�0 for all temperatures so that the curves do not
cross. The same is true for V�Vc

KT: In the low-temperature
limit, the spin sector is then described by conformal field
theory and

�s�T = 0� =
1

2�vs
. �9�

The spin velocity vs increases with increasing interaction
strength so that again ��s /�V�0 for all temperatures. There-
fore, no qualitative change happens at the transition line. In
principle, one can try to use the fact that there is universal
scaling of certain ratios of thermodynamic quantities in the
conformal regime. The entropy is given by Eq. �5� so that

lim
T→0

S

T�s
�

2�2

3
�10�

is universal in the regime with gapless spin excitations.
However, these formulas are only valid at temperatures T
��c. Because the spin gap opens close to the point where
the charge gap vanishes, this criterion turns out to be useless

for our numerical calculations. We therefore have to deter-
mine the KT line by directly extracting the gap from the
susceptibility curves. As an example, we consider again the
case U=4 �see Fig. 13�. For small V, the behavior is quali-
tatively consistent with Eq. �9�, whereas for large V, a spin
gap is clearly visible. Fitting the low-temperature part of the
curves where a gap is present using Eq. �3�, we can extract
�s as a function of V as shown in the inset of Fig. 13. Here,
the error bars are obtained by varying the fit region. Another
fit according to Eq. �7� then yields Vc

KT
2.02±0.06, where
the error estimate stems again from a variation of the fit
region. Within the estimated errors, we therefore obtain
strong evidence that Vc�Vc

KT for U=4, i.e., that we have two
separate phase transitions. Following this procedure to deter-
mine the second order and the KT transition lines for other
values of U, we obtain the phase diagram discussed in the
next section.

D. Phase diagram

Our phase diagram, shown in Fig. 14, is very similar to
the one obtained in the most recent zero-temperature DMRG
study.11 There is a first order transition line for �U ,V� values
above the tricritical point �Ut ,Vt� separating the SDW and
CDW phases. Below the tricritical point, we have a KT-type
transition line where the spin gap opens and a second order
phase transition line where the charge gap disappears. The
nature of the so-called BOW phase enclosed by the two tran-
sition lines is discussed in more detail in the next section.
There is some quantitative difference between our study and
Zhang’s DMRG study11 in the location of the tricritical point
though. We find Ut=6.7±0.2, Vt=3.5±0.1, whereas he found
Ut
7.2, Vt
3.746. Both values are considerably larger than
the ones found in QMC calculations, Ut=4.7±0.1, Vt
=2.51±0.04 in Ref. 7, and Ut� 5,5.5� in Ref. 8. We also
note that our phase diagram disagrees with that obtained in
an earlier DMRG calculation10 where the BOW phase was
restricted to the first order phase transition line �SDW-CDW�
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FIG. 12. �Color online� Charge susceptibility �c for U=4. Upper
panel: �c for V=1.5,1.6, . . . ,2.1,2.15,2.17 �in arrow direction�.
The inset shows a zoom of the region around the crossing point at
T*
0.54. Lower panel: �c for V=2.16,2.17,2.2,2.3,2.4,2.5 �main,
in arrow direction� and V=2.16,2.17,2.18,2.19,2.2 �inset, in arrow
direction�.
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FIG. 13. �Color online� Spin susceptibility at U=4 for different
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extending from above the tricritical point estimated to be at
Ut=3.7±0.2 up to U
8.

E. Long-range bond-order wave order and extent of the bond-
order wave phase

From the phase diagram, Fig. 14, we see that the spin gap
opens starting from the SDW phase and only after that the
transition into the CDW phase occurs. From field theoretical
considerations, it is then expected that the phase enclosed by
these two transition lines is a Mott state with some dimeriza-
tion, also called a bond-order wave �BOW� state. Because
such a dimerization does not break any continuous symme-
try, true long-range order at zero temperature will occur even
in one dimension. This means that for the correlation func-
tion

F�r� = �− 1�r��A0Ar	 − �Ar	2� , �11�

with Ar=Sr
zSr+1

z or Ar=���cr,�
† cr+1,�+H.c.�, we have

limr→�F�r�=const�0. With the TMRG algorithm, there are
different possibilities to detect this order. First, next-leading
eigenvalues of the QTM allow it to calculate correlation
lengths easily. In an asymptotic expansion of a two-point
correlation function with operator Or, we obtain

�O1Or	 − �O1	�Or	 = �
�

M�e−r/��eik�r, �12�

with correlation lengths �� and wave vectors k� given by

��
−1 = ln�	0

	�
�, k� = arg�	0

	�
� , �13�

where 	0 is the largest eigenvalue of the QTM and 	� an-
other eigenvalue. A correlation length obtained according to
Eq. �13� will show up in the asymptotic expansion �12� if the
corresponding matrix element M�, which can also be calcu-
lated with the TMRG algorithm,15,21 is nonzero. In the long-

distance limit, the behavior of the correlation function will
be determined by the largest correlation length � with non-
zero matrix element.

If the correlation function decays algebraically, this corre-
lation length will diverge like ��1/T. If, on the other hand,
the correlation function decays exponentially even at zero
temperature, then � stays finite. Finally, for a correlation
function showing true long-range order at zero temperature,
the correlation length will diverge like

� �
exp��/T�

�T
, �14�

where � is the gap for the corresponding excitations.
In Fig. 15�a�, we show, as an example, the leading SDW,

CDW, and BOW correlation lengths for U=6 and V=3.16.
Here, the leading SDW and CDW correlation lengths stay
finite, whereas the BOW correlation length diverges faster
than 1/T, indicating long-range BOW order at zero tempera-
ture.

Another possibility to detect the BOW order with the
TMRG algorithm is to calculate static susceptibilities

�OO�q� = �
r

eiqr�
0

�

d��O0�0�Or���	 �15�

again for some operator Or. For true long-range order, the
corresponding ��q� will diverge exponentially with tempera-
ture, whereas ��q� will go to a constant �zero if the operator
is conserved� for short-range order. The situation is, how-
ever, complicated if the correlation function shows quasi-
long-range order, i.e., decays algebraically. Here, we want to
consider the case that only one sort of excitations is gapless,
say, the spin excitations. From conformal field theory, it is
known that the corresponding algebraically decaying corre-
lation function in the long-distance limit r�1 will behave as

�O0�0�Or���	 � �2�T

v
�2x

exp�− 2�Tx

v
r�

exp− ikr�exp2�Ti�d+ − d−��� . �16�

Here, v is the velocity of the elementary excitations, x=d+

+d− the scaling dimension, d± the conformal weights, and k
the characteristic wave vector. The � integral for the static
susceptibility �OO�k� can then be calculated explicitly and is
given by

�
0

�

d� exp2�Ti�d+ − d−��� =
e2�i�d+−d−� − 1

2�iT�d+ − d−�
. �17�

If the conformal spin s=d+−d− is a nonzero integer—this is
the case for any type of particle-hole excitation—the integral
is zero and this part of the correlation function does not
contribute. If, on the other hand, s=0, then there is no time
dependence in Eq. �16� and integral �17� yields just 1 /T. The
static susceptibility in the case of zero conformal spin will
therefore scale as �OO�k��T2x−2. In particular, for the alter-
nating part of the longitudinal spin-spin correlation function,
we have d+=d−=1/4 leading to �SzSz����1/T. Note, how-
ever, that for x�1, the long-distance asymptotics is no
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FIG. 14. �Color online� Phase diagram as obtained by TMRG.
The dashed line denotes U=2 V. The upper line describes the phase
boundary of the CDW phase. The related error is always smaller
than the symbol size. The error of the KT phase transition �lower
line� is shown.
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longer sufficient to discuss the behavior for T→0. In this
case, �OO�k�→const for a nonconserved operator, in general,
as in the case of exponentially decaying correlation functions
discussed above.

In Figs. 15�b�–15�d�, we show for U=6 and different V
the alternating static susceptibilities for the longitudinal spin,
the density, and the kinetic energy, respectively. From Fig.
15�b�, we conclude that a spin gap develops for V�3.1.
However, for V=3.1 and V=3.16, there is still no long-range
charge order see Fig. 15�c��, i.e., an intermediate phase does
exist. In Fig. 15�d�, we see that at least for V=3.16, this
phase has long-range BOW order which is consistent with
the correlation lengths shown in Fig. 15�a�. Fitting the BOW
correlation length using Eq. �14�, we extract a rather small
dimer gap ��0.08. For fixed U, the dimer gap is expected
to decrease with decreasing V so that possible long-range
bond order is detected most easily close to the transition into
the CDW phase. In Fig. 16, the leading BOW correlation
lengths for several U ,V values just below this transition line
are shown. For �U ,V�= �4.0,2.14�, �5.5, 2.9�, and �6.0, 3.19�,
the correlation lengths diverge exponentially, and we obtain
the dimer gaps �
0.01, 0.03, and 0.08, respectively. As
expected, � decreases with decreasing U, making it difficult
to show the exponential divergence of the BOW correlation
length for U�4 because temperatures below T�10−2 are
not easily accessible by the TMRG method. Nevertheless, it
is clear that the whole phase enclosed by the two transition
lines shown in Fig. 14 must have long-range BOW order. For
�U ,V�= �7.5,3.9�, on the other hand, we would expect �
�0.1 if BOW order does exist as found in Ref. 8 so that an
exponential divergence should already become obvious at
T�0.1. However, down to T
0.02, we see no indication of
such a behavior; instead, the BOW correlation length seems
to diverge exactly as 1/T, indicating that we are in the SDW
phase. This is supported by the data in the inset of Fig. 16
showing that the leading SDW correlation length also di-
verges like 1/T, whereas the CDW correlation length stays
finite for T→0. Interestingly, the BOW correlation length is
larger than the SDW correlation length. We also confirmed
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correlation lengths plotted as �T for U=6 and V=3.16. �b�–�d��
Alternating static susceptibilities for the longitudinal spin, the den-
sity, and the kinetic energy k=���cr,�
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that for �U ,V�= �7.5,3.92�, we are already in the CDW
phase. We therefore conclude that for U=7.5, no BOW phase
exists. Instead, a direct first order transition from the SDW to
the CDW phase occurs.

IV. SUMMARY AND CONCLUSIONS

We studied the thermodynamics of the half-filled one-
dimensional extended Hubbard model using a TMRG algo-
rithm. The focus was put on identifying the various phase
transitions by considering thermodynamic quantities which
are usually easy to measure such as the uniform magnetic
susceptibility �s or the isothermal compressibility �c. For
strong coupling, we calculated the charge gap in the SDW as
well as charge and spin gap in the CDW phase in lowest
order perturbation theory. The theoretical results were con-
firmed by TMRG calculations of �s and �c. In the weak-
coupling regime, where the phase transitions are continuous,
we showed that �c curves for a fixed U and different V as a
function of temperature cross in one well defined point if
measured in the SDW or BOW phase. In the CDW phase, on
the other hand, no crossing occurs. We used this criterion to
determine the boundary of the CDW phase with high accu-
racy. The KT transition line, on the other hand, where the
spin gap starts to open exponentially slowly is very difficult
to determine from thermodynamic data. Universal scaling
relations obtained from conformal field theory for the mag-
netic susceptibility and the specific heat in the SDW phase

turned out to be useless for this purpose. These scaling rela-
tions are only valid at temperatures T��c which are not
accessible by TMRG, because the charge gap �c is already
very small near the KT transition. We could, however, show
that extracting the spin gap from the magnetic susceptibility
where it is large enough and fitting it to a field theory for-
mula does allow us to determine the transition line reason-
ably well. In particular, the results clearly confirm that the
two transition lines do not coincide and that an intermediate
phase exists. By studying correlation lengths and static sus-
ceptibilities, we confirmed that this additional phase has
long-range bond order. We were also able to determine the
tricritical point accurately and found Ut=6.7±0.2, Vt
=3.5±0.1. Furthermore, we showed that above this point,
long-range bond order does not exist. Instead, we find that
BOW correlations can be dominant in this regime while still
decaying algebraically at zero temperature. The resulting
phase diagram is in good quantitative agreement with the
most recent zero-temperature DMRG study.11 However, it
does not agree with the phase diagram found in Ref. 8 with
the BOW phase existing even above the tricritical point.
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