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Full-potential linearized augmented plane-wave method has been used to calibrate isomer shift for the
14.4-keV resonant transition in 57Fe. Augmented plane waves and local orbitals were used for the valence
electrons. For the correlation and exchange potentials, a generalized gradient approximation has been adopted.

Calculations have been performed for the following compounds: FeF2�P42/mnm�, FeCl2�R3̄m�, FeBr2�P3̄m1�,
FeI2�P3̄m1�, FeF3�R3̄c�, TiFe�Pm3̄m�, and Fe�Im3̄m�. Strong on-site Coulomb interactions in the Fe 3d shell
of halides were taken into account by applying the Hubbard repulsion parameter U and the on-site exchange
interaction constant J. The isomer shift calibration constant of �=−0.291 a.u.3 mm s−1 has been obtained. The
nuclear quadrupole moment of the excited nuclear state involved was found to be Q= +0.17 b.
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I. INTRODUCTION

Mössbauer spectroscopy is one of the few methods being
able to sample electric monopole interaction on the resonant
nucleus via the hyperfine interactions. The sensitivity to the
monopole interaction is due to the fact that hyperfine inter-
actions are seen by this method in two different nuclear
states. Hence, the solid-state effects influencing electron den-
sity on the resonant nucleus are sampled. The electric mono-
pole interaction is observed via the isomer shift between two
materials with resonant nuclei embedded in �Refs. 1 and 2�.
The above shift is, to good approximation, a product of the
nuclear and electronic terms, thanks to the fact that the elec-
tron absolute charge density is small compared to the nuclear
charge density within the nuclear volume.1 It is important as
well that the nuclear matter has very large stiffness and
therefore remains practically unperturbed by the electronic
shells of the atom and its surrounding. Therefore, one can
approximate nuclear charge distribution by the homoge-
neously charged sphere, and one can assume that the electron
density remains constant within such sphere. Under such
circumstances, the isomer shift could be expressed as
�=���A−�S�. Symbols �A and �S stand for the electron den-
sity on the resonant nucleus in the absorber and source, re-
spectively. Those are positive densities as they represent
particle densities instead of the charge densities. The calibra-
tion constant � could be expressed as follows, provided
that the change of the nuclear radius during the transition
between two nuclear states is small compared in the
absolute terms to the radius in either of these states: �
= �Ze2c�r2��R� / ��0E0�.1,2 The symbol Z stands for the atomic
number, e denotes positive elementary charge, c stands for
the speed of light in vacuum, �r2� represents mean squared
charge radius of the nucleus �formally in the state with the
more compact nuclear charge distribution�, and �R denotes
relative change of the nuclear charge radius in the transition.
The last parameter is positive for the more compact charge
distribution in the lower energy nuclear state �ground state�,
and negative for the opposite cases. The symbol �0 stands for
the vacuum dielectric constant, while the symbol E0�0 de-

notes transition energy between nuclear states involved to
good approximation. Therefore, the calibration constant � is
positive for nuclei expanding during transition from the
ground to the excited state, and negative for nuclei contract-
ing during such transition. Unfortunately, the calibration con-
stant can neither be calculated nor measured reliably nowa-
days.

In principle, there are several experimental methods being
able to measure this constant, such as the exact determina-
tion of the lifetime for highly converted transitions, determi-
nation of the respective conversion coefficients, and spec-
troscopy of the muonic atoms. Unfortunately, all of them
require adoption of some nuclear models.2–6 On the other
hand, the calibration constant could be determined in the
almost nuclear model independent fashion calculating elec-
tron charge density in the resonant nucleus position.

Many calculations of the electron charge density have
been performed in the past for various nuclei. Early attempts
concentrated on the calculations for free atoms, ions, or mol-
ecules without taking into account solid-state effects.7,8 One
has to bear in mind that the Mössbauer spectroscopy is im-
possible on the free molecules, and therefore, solid-state ef-
fects are to be taken into account. Recently, successful cal-
culations taking into account solid-state effects have been
performed for 23.88-keV transition in 119Sn,9 37.15-keV in
121Sb,10 and partly for the 35.48-keV in 125Te.11 All these
calculations were performed for nonmagnetic compounds.
For the most commonly used 14.41-keV transition in 57Fe,
solid-state effects have been taken into account in the work
by Eriksson and Svane.12 They used linear muffin-tin orbitals
in the atomic sphere approximation. The choice of com-
pounds for the isomer shift calibration is also important, as
one has to cover wide range of shifts, select simple and well
characterized structures, and pay attention to the eventual
disorder, i.e., one has to avoid nonstoichiometric systems or
disordered alloys.

Therefore, we have attempted calibration of the isomer
shift for the 14.41-keV transition in 57Fe by means of the
full-potential linearized augmented plane-wave method
�FLAPW�, which became the most accurate and reliable
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method to include solid-state effects.13 The paper is orga-
nized as follows. Section II deals with the computational
method and choice of iron compounds, and Sec. III discusses
the results. The electric field gradient tensor �EFG� has been
calculated as a by-product and compared with the available
experimental data, where applicable. EFG is very sensitive to
the proper choice of the basis set, and hence, it could be used
to control the reliability of calculations.

II. COMPUTATIONAL METHOD, CHOICE OF
COMPOUNDS, AND RESULTS

Calculations have been performed within density func-
tional theory using the FLAPW and augmented plane wave
plus local orbitals �APW+lo� methods as implemented in the
WIEN2K code.14–16 Fully relativistic spin dependent approach
was applied. The APW+lo extension was used for the va-
lence electrons since it allows for the faster convergence at
the same high level of accuracy as the LAPW+lo approach.
In the FLAPW and APW+lo methods, the wave functions
are expanded into spherical harmonics inside nonoverlapping
atomic spheres centered on the atomic sites of radius RMT
and in plane waves in the remaining space of the unit cell
�the so-called interstitial region between muffin-tin spheres�.
The radii RMT used in the calculations fall in the range
2.0–2.85 a.u. for Fe and Ti and 1.64–2.85 a.u. for halide
anions. The maximum angular momenta l for the expansion
of the wave functions in the spherical harmonics inside the
muffin-tin spheres were confined to lmax=10. The wave func-
tions in the interstitial regions were expanded in plane waves
with a cutoff of Kmax=8/min�RMT�, while the magnitude of
the largest vector in the Fourier expansion of the charge den-
sity �Gmax� was set to 16 Ry1/2. The APW+lo basis for
l=0,1 ,2 and the standard linearized augmented plane wave
expansion for higher angular momenta l were used. States
lying more than 7 Ry below the Fermi level were treated as
the core states.

Iron compounds are difficult as they are magnetically or-
dered in the ground state except exotic spin states of iron. On
the other hand, available computational methods deal with
the ground state of the system. In order to cover wide range
of shifts, it is desirable to choose high spin Fe2+ and high
spin Fe3+ compounds as they form enough stoichiometric
and well ordered structures. Additionally, one has to choose
ground state bcc �-Fe as it is used as a reference point for
the transition in question. Some perfectly ordered intermetal-
lic compounds could be taken into account as well. Poorly
defined structures should be avoided.

We have chosen the following set of Fe2+ high spin com-

pounds: FeF2�P42/mnm�,17 FeCl2�R3̄m�,18 FeBr2�P3̄m1�,19

and FeI2�P3̄m1�.20 They are antiferromagnetic �AF� insula-
tors in the ground state with relatively large EFG. Electric
field gradient tensors are axially symmetric for all of these
compounds except FeF2.21 All iron sites are crystallographi-
cally equivalent in these compounds, i.e., the primitive cell
contains single iron atom. On the other hand, for the Fe3+,

high spin compound was chosen FeF3�R3̄c�, as it is also
stoichiometric AF insulator with single iron atom per primi-

tive cell.22 It seems that this is the best characterized com-
pound within this class with the collinear magnetic
structure.23 On the other hand, other compounds of this class
may have noncollinear magnetic arrangements, and all of
them have similar isomer shifts. Two metallic systems have
been chosen: TiFe�Pm3̄m� �Ref. 24� and Fe�Im3̄m�. Iron is
ferromagnetically ordered. Magnetism of the above com-
pounds is due to the iron moments aligned parallel �or anti-
parallel� to the �001� axis. On the other hand, TiFe�Pm3̄m�
does not order magnetically and it has negligible magnetic
moment on either iron or titanium. Our calculations were
carried out with the experimental lattice constants �see Table
I for details�. The Brillouin zones of all insulators were
sampled with a regular mesh containing from 50 to 70 irre-
ducible k points, while for metallic structures, 286 irreduc-
ible k points were taken per Brillouin zone. The convergence
of the quantities of interest with respect to the number of k
points and the basis size, the latter determined by the
RMTKmax criterion, was checked. At convergence, the inte-
grated difference between the input and output charge densi-
ties was less than 5�10−5 e / a.u.3. Number of radial mesh
points was kept in all calculations as 781. For the correlation
and exchange potentials, the generalized gradient approxima-
tion of Perdew et al. was used.25 Strong on-site Coulomb
interactions in the Fe 3d shell of halides were taken into
account by applying the Hubbard repulsion parameter U and
the on-site exchange interaction constant J in the form
proposed by Anisimov et al.26 The same parameters
U=5.50 eV and J=0.95 eV were applied to all halide struc-
tures. These values are representative of those used for the
Fe cation in other magnetic insulators.27 Variation of the
above parameters was tested for FeCl2. It was found that for
U=6.45 eV and unchanged J, electron density increases by
0.018 a.u.−3. On the other hand, setting U=5.50 eV and
J=0 eV leads to the increase of the electron density by
0.064 a.u.−3 in comparison with the original value. Finally,
setting U=6.45 eV and J=0 eV results in the decrease of the
electron density by 0.003 a.u.−3 in comparison with the origi-
nal value. These changes are small and do not affect the final
results.

In order to calculate the electron contact densities on the
Fe nucleus, the region near the nucleus having the radius of
R0=4.987 fm was applied. It corresponds to the radius of the
homogeneously charged sphere, R0=1.123A1/3+2.352A−1/3

−2.070A−1, with the mass number A=57.28 For other ele-
ments, the same expression was used replacing the mass
number of 57Fe by the integer nearest to the average mass
number of the respective element. The above expression is
very similar to the Weizsäcker formula for the heavier nuclei.

Shifts S quoted in Table I were measured at 4.2 K for
halides, while shift for metallic system TiFe is taken from the
room temperature. Shift of bcc �-Fe is used as the reference
shift, and therefore, it is temperature independent in the
present context. They all include second order Doppler shift.
Hence, the shift of the Table I is expressed as S=�+�D. On
the other hand, the second order Doppler term contributing
to shift takes on the form �D=−�v2� / �2c�,1 where the symbol
�v2� stands for the mean squared velocity of the resonant
atom. The above expression reduces to �D=−�E� / �2mc� in
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the vicinity of the ground state and for harmonic motion.
Symbol �E� stands for the zero-point motion energy and m
stands for the rest mass of the vibrating atom �formally in its
ground nuclear state�. For finite temperatures and within the
phonon approximation, mean squared velocity satisfies the
following condition:1

�v2� = � kB

2m
��

j=1

3 �
0

+	

dx	 exp�x/T� + 1

exp�x/T� − 1

Dj�x,T�

with �
0

+	

dxDj�x,T� = 1. �1�

Here, the symbol kB stands for the Boltzmann constant,
the index j enumerates three mutually orthogonal directions,
and Dj�x ,T�
0 stands for the partial density of the phonon
states �DOS� contributing to the resonant atom vibrations
along the jth axis at temperature T. For low temperatures,
one can assume that the above DOS is practically tempera-
ture independent. Mean squared velocity is also temperature
independent at sufficiently low temperatures. On the other
hand, mean squared velocity takes on the following simple
form for sufficiently high temperature, �v2�= �3kBT� /m, ac-
cording to the energy equipartition principle. A difference
between absorber and source second order Doppler shifts,
SD=�D

�A�−�D
�S�, is accessible experimentally. Hence, this con-

tribution to the total shift disappears in the first order ap-
proximation at high temperatures provided the source and
absorber have nearly the same temperature. Term SD could
be observed for source and absorber kept both at low tem-
peratures provided the zero-point motion energy is different
for source and absorber, respectively. We have calculated
�D

�Fe� in the ground state by means of the ab initio calculated

Hellmann-Feynman forces.32 The latter forces were used to
generate ground state DOS. It appears that this shift amounts
to −0.11 mm/s. Owing to the fact that differences in the
zero-point motion energies within compounds considered are
about one order of magnitude smaller than the average zero-
point motion energy, one can safely neglect corrections due
to the second order Doppler shift. Usually, the room tem-
perature total shift of �-Fe is used as the reference point.
This shift differs from the ground state shift by the thermally
generated second order Doppler shift and by the electron
density change due to the thermal expansion. However, this
is a constant shift and it has no influence on the calibration
constant in the first order approximation. Generally, a ther-
mal expansion is small between ground state and room tem-
perature, and hence room temperature lattice constants �in-
cluding angles� and atomic positions could be safely adopted
provided there is no structural phase transition within the
above temperature range. Data point for room temperature
TiFe is still on the straight line �see Fig. 1�, indicating that
the total shift between ground state and room temperature is
sufficiently small for this compound. Figure 1 shows experi-
mental shift plotted versus difference in electron density for
compounds used in calibration.

A resonant nuclear transition occurs here between ground
nuclear state with spin and parity Ig

���= 1
2

�−� and the first
excited state with the spin and parity Ie

���= 3
2

�−�. It is almost
pure M1 transition.1 Hence, the ground state remains doubly
degenerated for nonvanishing EFG, while the excited state
splits into Kramers doublet provided magnetic interactions
are absent or very weak. Under such circumstances and for
the microscopically random absorber, one can observe
solely splitting of the excited state expressed as
�=6�AQ��1+2 /3.1 The quadrupole coupling constant
is expressed to high accuracy here as AQ

TABLE I. Crystallographic data, the differences in electron densities �A−�Fe, and relative experimental
shifts SA−SFe are listed for compounds taken into account. Electron densities and shifts are shown versus
metallic bcc �-Fe values. Lattice constants are given in Å, and angles are given in deg. Total electron density
for bcc �-Fe amounts to �Fe�r=R0��Fe=15 322.046 a.u.−3. The parameter �Fe is determined within about
30% accuracy �see, for comparison, Hartree-Fock results �Ref. 7�� and it is the following function of the
charge nuclear radius r �homogeneously charged sphere�, �Fe�r�=�0+�1 exp�−r /R�. It was found that �0

=14 660.7 a.u.−3, �1=1775.6 a.u.−3, and R=4.973 fm.

Compound Crystallographic data
�A−�Fe

�a.u.−3�
SA−SFe

�mm/s�

FeF2�P42/mnm� a=4.83, c=3.36a −5.073 +1.467b

FeCl2�R3̄m� a=6.20, �=33.55, xCl=0.2543c −3.753 +1.093d

FeBr2�P3̄m1� a=3.772, c=6.223, zBr=0.25e −4.156 +1.120d

FeI2�P3̄m1� a=4.03, c=6.75, zI=0.25f −2.750 +1.044d

FeF3�R3̄c� a=5.362, �=58, xF=0.836g −1.739 +0.489h

TiFe�Pm3̄m� a=2.9760i +0.441 −0.145j

Fe�Im3̄m� a=2.8311 0 0

aReference 17.
bReference 21.
cReference 18.
dReference 29.
eReference 19.

fReference 20.
gReference 22.
hReference 30.
iReference 24.
jReference 31.
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= �ecQVzz� / �4Ie�2Ie−1�E0�, while the asymmetry parameter
is expressed as = �Vxx−Vyy� /Vzz. Symbol Q stands for the
spectroscopic nuclear electric quadrupole moment in the first
excited state, while symbols Vxx, Vyy, and Vzz denote princi-
pal components of the electric field gradient tensor on the
nucleus. The following convention is applied �Vxx�� �Vyy�
� �Vzz�, and therefore, the asymmetry parameter satisfies the
condition 0��1. For axially symmetric EFG, one obtains
=0. One has to remember that the EFG tensor is always
symmetric and traceless. Hence, the following relationship is
always obeyed: Vxx+Vyy +Vzz�0. For the magnetically or-
dered state, a hyperfine magnetic field could appear, and
therefore more information could be gained. Namely, the ex-
cited state hyperfine nonscalar part of the Hamiltonian takes
on the following form in the principal axes of EFG:1

He = AQ�3Iz
2 − I2 + �Ix

2 − Iy
2��

− a�Iz cos � + sin ��Ix cos � + Iy sin ��� . �2�

Symbols Ix, Iy, and Iz denote respective �excited state�
nuclear spin projection operators on the orthogonal principal
axes of EFG, while I stands for the total �excited state�
nuclear spin operator. Magnetic dipole coupling constant is
well approximated by the form a= �cge�NB� /E0. Symbol ge

stands for the effective nuclear gyromagnetic factor in the
nuclear state under consideration, �N denotes nuclear mag-
neton, and B stands for the absolute value of the magnetic
hyperfine field on the nucleus. Angles � and � denote polar
and azimuthal angles of the hyperfine field in the principal
axes of EFG, respectively. The Hamiltonian described by Eq.
�2� allows determination of the sign of the quadrupole cou-
pling constant and asymmetry parameter under favorable
conditions. Results for the EFG calculations are summarized
in Table II for the compounds with nonvanishing EFG. Elec-
tric field gradient vanishes for the local symmetry being cu-
bic. Hyperfine fields are very small in the ground state of
divalent halides except FeF2 due to the cancellation of the
contact, orbital, and dipolar contributions.33 On the other
hand, the quadrupole interaction is very small for FeF3.30

Therefore, the sign of the quadrupole coupling constant is
determined unambiguously solely for the nonaxial case of
FeF2. The spin-orbit coupling �SO� has been neglected in

present calculations as it has negligible effect on the charge
distribution. Hence, the hyperfine fields for divalent halides
have not been calculated except for divalent fluoride, where
the dominant contribution to the hyperfine field is due to the
contact term. It appears that for this compound, Vxx is
aligned with the hyperfine field, the latter being aligned with
the �001� axis. Hence, the angles of Eq. �2� take on the fol-
lowing values for this compound: �=90° and �=0°. The SO
contribution to the iron hyperfine field in FeF3 is also quite
significant. For the metallic iron, we have obtained hyperfine
contact field of 34.4 T in comparison with the experimental
field at room temperature of 33.0 T.

Figure 2 shows experimental quadrupole splitting �abso-
lute value of the splitting� versus calculated effective electric
field gradient �Vzz��1+2 /3.

III. DISCUSSION

Linear regression fit to the data of Fig. 1 gives
the isomer shift calibration constant of
�=−0.291�14� a.u.3 mm s−1. Upon having excluded FeI2,

TABLE II. Calculated and experimental data are shown for the
EFG in various compounds. Hyperfine contact field is shown for
divalent fluoride, where the SO and dipolar terms are relatively
small. Experimental quadrupole splitting �exp is shown with the
sign of the coupling constant for the unambiguous case of FeF2.

Compound
Vzz

�1021 V/m2� 
�exp

�mm/s� exp

B
�T�

Bexp

�T�

FeF2�P42/mnm� +15.79 0.3 +2.85a 0.4a 36.8 32.9a

FeCl2�R3̄m� −7.08 0.0 1.21b

FeBr2�P3̄m1� −6.64 0.0 1.132b

FeI2�P3̄m1� +4.36 0.0 0.962b

FeF3�R3̄c� −0.28 0.0 0.044c

aReference 21.
bReference 29.
cReference 30.

FIG. 1. Relative experimental shift plotted versus difference in
electron density for various compounds.

FIG. 2. Experimental quadrupole splitting is plotted versus cal-
culated effective electric field gradient.
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one obtains �=−0.285�5� a.u.3 mm s–1, while exclusion
of FeBr2, results in �=−0.304�15� a.u.3 mm s–1. Exclusion
of both of the above compounds yields
�=−0.291�2� a.u.3 mm s–1. Similar linear regression fit to
the data of Fig. 2 gives the nuclear quadrupole moment of
Q= +0.17�1� b. Errors quoted above are solely due to the
errors of linear regression. Positive sign of the quadrupole
moment is determined from the FeF2 data. Actual errors for
both of the above parameters �� and Q� are, in fact, larger
than linear regression errors and they are about 10% due to
the various approximations used and uncertainty of the ex-
perimental data.

Previous values for the isomer shift calibration
constant determined by means of the electron density calcu-
lations varied from �=−0.11 a.u.3 mm s−1 �Ref. 34� to
�=−0.62 a.u.3 mm s−1 �Ref. 35� for the transition considered
here. Our value is very close to the value obtained by Trau-
twein et al.36 All of the above calculations have been per-
formed neglecting solid-state effects. Ericksson and Svane12

obtained �=−0.22 a.u.3 mm s−1 using a method similar to
the method used by us with the solid-state effects accounted
for. Similar calculations albeit without determination of the

calibration constant and for nonrelativistic electrons have
been performed by Akai et al.37 Detailed review of the pre-
vious attempts aimed at the determination of the calibration
constant for the 14.41-keV transition in 57Fe by means of the
electron density calculation is given in Ref. 7.

The electric quadrupole moment of the first excited state
of 57Fe has been estimated in the early days of the Möss-
bauer spectroscopy as lying in between Q= +0.15 b and
Q= +0.28 b.38 Calculations performed later on and
some comparisons with the nuclear models suggested
Q= +0.082 b.39,40 However, detailed calculations performed
by Dufek et al.38 with the solid-state effects accounted for
lead to Q= +0.16 b, in excellent agreement with our value.
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