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Phase diagram of the Hubbard-Holstein model in the coexistence of electron-electron and electron-phonon
interactions has been theoretically obtained with the density-matrix renormalization group method for one-
dimensional systems, where an improved warm-up �the recursive sweep� procedure has enabled us to calculate
various correlation functions. We have examined the cases of �i� the systems half-filled by electrons for the full
parameter space spanned by the electron-electron and electron-phonon coupling constants and the phonon
frequency, �ii� non-half-filled system, and �iii� trestle lattice. For �i�, we have detected a region where both the
charge and on-site pairing correlations decay with power laws in real space, which suggests a metallic behav-
ior. While pairing correlations are not dominant in �i�, we have found that they become dominant as the system
is doped in �ii� or as the electronic band structure is modified �with a broken electron-hole symmetry� in �iii�
in certain parameter regions.
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I. INTRODUCTION

In condensed-matter physics, the electron-phonon interac-
tion and electron-electron interaction are two of the funda-
mental interactions. While the problem is hard enough even
when only one of them exists, it is a most challenging prob-
lem to consider what happens when both of the interactions
coexist.

A central problem is the ground-state phase diagram—
how various phases arise in the coexistence of two kinds of
interactions that are quite different in nature. Of particular
interest is superconductivity. Strong electron-electron repul-
sive interactions introduce spin fluctuations in the electronic
system, which can mediate pairing interactions for the elec-
trons to make them condense into superconducting states
with anisotropic Cooper pairs.1 The superconducting phase
has to, however, compete with density-wave phases such as
the spin-density wave �SDW�, which also come from the
electron-electron interaction.2 On the other hand, the
electron-phonon interaction mediates an attraction between
electrons, which can make the electrons condense into super-
conducting states with isotropic Cooper pairs. This time the
superconducting phase has to compete with density-wave
phases such as the charge-density wave �CDW� arising from
the electron-phonon interaction. The electron-phonon inter-
action is the coupling of the conduction electrons to the lat-
tice structure, and it can also work to make the system un-
dergo a Peierls transition, where the lattice is deformed so
that the electrons are not conducting.

So it is quite a nontrivial problem to consider the ground-
state phases when the two interactions coexist and are both
strong. A prototypical model representing such a situation is
the Hubbard-Holstein model, where the Hubbard model for
the electron correlation is coupled to �Einstein� phonons. The
model is characterized by three physical parameters: �a� the
on-site electron-electron repulsion U, �b� the phonon fre-
quency �0, and �c� the electron-phonon coupling �, where
the unit of energy is the electronic transfer t � electronic

bandwidth W. Of particular interest is the intermediate re-
gimes: �a� the regime ���0� t� intermediate between the
adiabatic ���0�W� and antiadiabatic ���0�W� limits; �b�
the regime �U��� where the electron-electron Coulomb re-
pulsion and the phonon-mediated attraction are similar in
magnitude. The problem has, in fact, been studied in various
approaches.3–26

This is by no means a theoretical curiosity, since there are
various classes of materials in which both the electron-
electron and electron-phonon interactions are simultaneously
strong. A typical example is the solid fullerene doped with
alkali-metal atoms �A3C60, A=K,Rb, etc.�,27–29 where the
C60 fullerene molecules are aligned in a face-centered cubic
�fcc� lattice, for which the alkali atoms supply electrons mak-
ing the conduction band half-filled. In this material, the in-
tramolecular phonon modes are known to have high frequen-
cies ��0.2 eV�, which couple strongly to the conduction
electrons. The material is a superconductor whose transition
temperature TC is the highest to date among the carbon com-
pounds. It is an interesting problem to consider how the half-
filled electron band becomes metallic, rather than becoming
CDW or SDW insulators from coexisting electron-electron
and electron-phonon interactions, and exhibits superconduc-
tivity. The electronic bandwidth of A3C60 can be controlled
by, e.g., changing the alkali-metal species A, where TC is
observed to increase with the lattice constant. Organic chem-
ists have also fabricated fullerene derivatives in the shape of
a shuttlecock, where the molecules stack to form an array of
one-dimensional �1D� chains,30 where the separation be-
tween C60 molecules in a chain is controllable with the
choice of functional groups attached to C60, and the system is
shown to have stronger electron correlation.31

Given these backgrounds, the purpose of the present pa-
per is to obtain the ground-state phase diagram when the
electron-phonon and electron-electron interactions coexist
over the whole parameter space spanned by U, �, ��0 that
includes the intermediate regimes ���0�W; U���. We
adopt the Hubbard-Holstein model, one of the simplest mod-

PHYSICAL REVIEW B 76, 155114 �2007�

1098-0121/2007/76�15�/155114�11� ©2007 The American Physical Society155114-1

http://dx.doi.org/10.1103/PhysRevB.76.155114


els for the coexisting electron-electron and electron-phonon
interactions. We want to treat these interactions on an equal
footing, especially in the intermediate regimes. Phonons me-
diate attraction between electrons, but here we have adopted
the dispersionless, Einstein phonons that do not directly
propagate along the chain. While these phonons cannot di-
rectly mediate the pairing force between electrons across dif-
ferent sites, we can still expect the phonons to contribute to
the pairing, because electrons hop between neighboring sites.
So the phonon self-energy ��q ,�� should depend not only
on � but also on q. Specifically, phonons with q�	 /a �a:
the lattice constant� as well as phonons with q�0 should be
strongly renormalized by the coupling to the electrons, be-
cause the Fermi points reside at k= ±	 /2a. This is another
reason why the electron and phonon degrees of freedom
should be treated on an equal footing.

So a special care has to be taken in choosing the method,
since the method has to �a� take account of the phonons
without assuming the adiabatic or antiadiabatic limits, and
�b� take account of the electrons where charge gaps around
the half-filled electronic band �a region of interest� can be
described. We have adopted the density-matrix renormaliza-
tion group �DMRG� as an appropriate method.

DMRG was originally developed for spin systems32,33 and
applications to electron systems subsequently followed.34,35

The basic idea is the following: We iteratively add sites to
enlarge a one-dimensional system, which is approximately
represented as two connected subchains with truncated Hil-
bert spaces optimized for a target state of the whole system.
In adding a site to a subchain, we calculate the partial density
matrix for the target state wave function, diagonalize it, and
retain eigenstates that correspond to a limited number of
largest eigenvalues, to represent the new Hilbert space for
the new subchain. While the DMRG was developed for elec-
tron systems, Jeckelmann and White extended the formalism
to incorporate phonons in DMRG.36 We have here adopted
this formalism, with an improved algorithm.

In constructing a phase diagram, a most direct method is
to actually calculate various correlation functions. However,
the inclusion of phonons, which are bosons, makes the cal-
culation enormously heavy, and we have to somehow over-
come this difficulty. Here, we have adopted an improved
warm-up �the recursive sweep� procedure for the DMRG de-
veloped by one of the present authors,37 which has enabled
us to actually calculate correlation functions �including the
pairing correlation� for the Hubbard-Holstein model. While
employment of 1D systems is a theoretical device �apart
from the above mentioned quasi-1D fullerides�, it is theoreti-
cally intriguing to look at functional forms of correlation
functions in the coexistence of electron-electron and
electron-phonon interactions. The Mermin-Wagner theorem
dictates that continuous symmetries of the Hamiltonian are
not broken in the ground states of infinite 1D systems.
Hence, the correlation functions for the phases with broken
continuous symmetry should decay with distance. We can
still compare the exponents of the decay, as in the
Tomonaga-Luttinger theory for purely electronic systems, to
determine the dominant correlation, which may become long
ranged once we go to higher dimensions.

Now, there are many existing theoretical studies on the
Hubbard-Holstein model, but the nature of the model has yet

to be fully established. There have been competing results
even on the ground-state phase diagram at half-filling. Par-
ticular issues are as follows:

�1� For large enough U, we can expect the ground state to
be a SDW, while for large enough �, we can expect the
ground state to be a CDW. An interesting problem is whether
there exists a metallic phase between the two density-wave
phases.

�2� Whether a naïve expectation is valid, where one imag-
ines that, for the coexisting electron-electron and electron-
phonon interactions, the net interaction will simply be the
difference between them. This problem becomes especially
interesting in the intermediate regime.

�3� Whether the metallic phase, if any, can possibly be-
come superconducting. For pairing symmetries, we have
here considered all the possibilities of the following:

�a� sSC: on-site spin-singlet pairing,
�b� pSC: nearest-neighbor spin-triplet pairing, and
�c� dSC: nearest-neighbor spin-singlet pairing.

It may sound peculiar when we say p- or d-wave supercon-
ductivity for 1D systems, but a nearest-neighbor spin-triplet
�singlet� pairing corresponds to a p�d�-wave pairing in two
or higher dimensions, so we adopt this nomenclature.

�4� How the phase diagram depends on the electron band
filling or the lattice structure �i.e., the electronic band struc-
ture� of quasi-1D systems.

In order to resolve these issues, we have obtained the
correlation functions for long chains with DMRG for the
cases of �i� the systems half-filled by electrons for the full
parameter space spanned by the electron-electron and
electron-phonon coupling constants and the phonon fre-
quency, �ii� non-half-filled system, and �iii� trestle lattice. For
�i�, we have detected a region �where the electron-phonon
interaction is stronger than U but not too strong� where both
the charge and on-site �sSC� pairing correlations decay arith-
metically in real space, which suggests a metallic behavior.
While pairing correlations are not dominant in �i�, we have
found that they become dominant as the system is doped in
�ii� or as the electronic band structure is modified �with a
broken electron-hole symmetry� in �iii� in certain parameter
regions.

Organization of the paper is as follows: In Sec. II, we
introduce the Hubbard-Holstein model and briefly review the
open questions about the phase diagram. In Sec. III, we ex-
plain the numerical method for calculating correlation func-
tions. Results are presented in Sec. IV �half-filled chain�, V
�doped chain�, and VI �undoped trestle lattice�. Concluding
remarks are given in Sec. VII.

II. MODEL

We take the Hubbard-Holstein model, where the elec-
tronic part of the Hamiltonian is the Hubbard model that in
itself exhibits various phases according to the values of the
electron band filling n and the short-range �on-site� electron-
electron interaction U, dimensionality, and the lattice struc-
ture. Phonons are introduced as a local harmonic oscillator
for each site, to which the electrons are coupled, as shown
schematically in Fig. 1. Thus, the phonons are dispersionless
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�i.e., Einstein phonons�. Inclusion of on-site phonons adds
two parameters to the Hubbard model: the electron-phonon
coupling g and the phonon frequency �0. We can character-
ize the strength of the electron-phonon coupling,

� � 2g2/��0,

which is the attraction mediated by phonons between the two
electrons on the same site in the antiadiabatic ��0 / t→
�
limit. We take this as the measure of the electron-phonon
coupling to facilitate comparison with the electron-electron
repulsion U. We set �=1 hereafter.

The Hamiltonian is given as

H = − �
�i,j�,�

tij�ci�
† cj� + cj�

† ci�� + �
i

Uni↑ni↓

+ �
i,�

gni��ãi + ãi
†� + �

i

��0ãi
†ãi. �1�

Here, ci� annihilates an electron with spin ��=↑ , ↓ � at site i,
ni�=ci�

† ci� is the electron number, and ãi is the phonon an-
nihilator at site i. If we consider the phonon as a harmonic
oscillator where a mass M is attached to a spring with a
spring constant K with the phonon frequency �0=�K /M, the
displacement xi is written as

xi =
�

2M�0
�ãi + ãi

†� . �2�

The electron-phonon coupling is introduced as a coupling of
the local electron number, ni���ni�, with the lattice dis-
placement xi.

The electron band filling is defined as n̄�=n /2, and, by
introducing a� ã−gn̄� /��0, we can rewrite Eq. �1�, up to a
constant, as

H = − �
�i,j�,�

tij�ci�
† cj� + cj�

† ci�� + �
i

U�ni↑ − n̄↑��ni↓ − n̄↓�

+ �
i,�

g�ni� − n̄���ai + ai
†� + �

i

��0ai
†ai. �3�

In this form, the relevant electron occupation is the deviation
from the average value.

The Hubbard-Holstein model �1� has three independent
parameters: U / t ,� / t ,�0 / t, as schematically displayed in Fig.
2. In this parameter space, we are interested in the regimes

�i� away from the adiabatic ��0 / t�1� or antiadiabatic
��0 / t�1� limits and �ii� comparable U��. To summarize
the existing theoretical results on the 1D half-filled Hubbard-
Holstein model, we observe the following issues:

�1� Two of the recent studies on this model, one with the
Lang-Firsov transformation21 and the other with DMRG,22

have different conclusions as to where this model becomes
metallic. The former indicates a considerably wide metallic
region between the CDW �U��� and SDW ���U� phases,
while the latter indicates a closing of the charge gap only at
a quantum critical point between the CDW and SDW insu-
lators.

�2� While the strong-coupling expansion8 indicates that
superconductivity cannot be dominant for finite �0, a study
with some ansatz for phonons6 indicates a dominant super-
conductivity near the U=0 axis on the U-� phase diagram,
and another quantum Monte Carlo study for the charge struc-
ture factor25 suggests a phase diagram with a superconduct-
ing region near the U=� line between the CDW and SDW
phases.

On the other hand, the Holstein model corresponds to the
U=0 plane in the phase diagram of the Hubbard-Holstein
model and picks up the effect of the electron-phonon inter-
action in making the electronic system insulating. In one38,39

and two dimensions, and in the limit of infinite
dimension,40,41 there are extensive studies on the transition
between �i� the small-polaron regime, where the electrons are
self-trapped by the lattice through a stronger electron-phonon
interaction, and �ii� the large-polaron regime, where the elec-
trons move around exciting local phonons through a weak
electron-phonon interaction.42 When the electron-electron in-
teraction is turned on in such an electron-phonon system, the
interplay between the effects of the electron-phonon and

-t

ω0

λ

U

FIG. 1. The Hubbard-Holstein model. Each atom consists of an
electron site �circle� and a local phonon with frequency �0 �spring�.
The arrows denote up and down spin electrons, which are coupled
to the phonons with a strength �. An electron can hop between
neighboring sites with the hopping amplitude t and feel an on-site
electron-electron repulsion U when encountered with another elec-
tron of opposite spin on the same site.

FIG. 2. �Color online� Parameter space for the half-filled
Hubbard-Holstein model spanned by the on-site electron-electron
repulsion U, the phonon frequency �0, and the electron-phonon
coupling �, where the unit of energy is the electronic transfer t. The
model reduces to the Hubbard model when �=0, and to the Hol-
stein model when U=0. The �0 / t→0 limit is the adiabatic limit,
while the �0 / t→
 limit is the antiadiabatic limit.
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electron-electron interactions again becomes interesting,
which has not been fully understood.

III. METHOD

As we have seen, the ground-state phase diagram for the
1D Hubbard-Holstein model is controversial. The most clear-
cut way for examining the competition of various phases is
to look at the correlation functions on long systems, which
has not previously been done properly. So here we calculate
correlation functions in real space. A care has to be taken in
examining correlation functions in 1D quantum systems:
strong quantum fluctuations repress continuous symmetry-
broken long-range orders in the ground state.43,44 However, if
one type of correlation function decays more slowly than
others, we can identify the correlation to be dominant. Exact
results for purely electronic systems on various integrable
models show that diagonal 	�c†�r�c�r�c†�0�c�0��
 and pair
	�c†�r�c†�r�c�0�c�0��
 correlations decay with a power law
�r−�, where � is an exponent� or exponentially �e−r/, where 
is the correlation length� at large distances r.

In the case of charge and spin correlations, the charge
�spin� correlation function decays with a power law when the
charge �spin� excitation is gapless, �charge=0 ��spin=0�,
while the correlation decays exponentially when the charge
�spin� excitation has a gap �charge�0 ��spin�0�. To be pre-
cise, these correlations can have logarithmic corrections or
additional terms that decay faster than the main term. This is
one reason why we need long chains to identify the dominant
phase by numerically calculating the decay of correlation
functions. Here, we compare the real-space behavior of vari-
ous correlation functions in the ground state for a chain hav-
ing as many �typically 64� sites as numerical calculation is
possible for model parameters away from the adiabatic and
antiadiabatic limits. For these reasons, we adopt the DMRG
with the pseudosite method36 to calculate the ground-state
correlations. We adopt the open-boundary condition for a
better DMRG convergence. The recursive sweep
initialization37 adds two sites for both the electron and pho-
non degrees of freedom at each infinite-algorithm DMRG
step, while benefiting from the reduced size of the Hilbert
space in the pseudosite method. This also contributes to bet-
ter convergence with less computational resources, which
has allowed us to compute correlation functions on lattices
with large number of sites.

IV. RESULT: HALF-FILLED HUBBARD-HOLSTEIN
CHAIN

A. Parameter space

First, we investigate half-filled systems for the parameter
space shown as a bird’s eye view in Fig. 2 �with t=1 taken as
the unit of energy�, while the doped case is treated in Sec. V.

We calculate charge, spin, and pair correlation functions
for this parameter space. For the pairing symmetry, we con-
sider the on-site, spin-singlet pair �sSC� �which corresponds
to s-wave superconductivity in higher spatial dimensions�,
spin-singlet pair across the neighboring sites �dSC� �d wave
in higher dimensions�, and triplet pair across neighboring

sites �pSC� �p wave in higher dimensions�. Their operator
forms are as follows:

�1� Charge: �ninj�− �ni��nj�,
�2� spin: �Si

zSj
z�,

�3� sSC: ��i
†� j�,

�4� pSC: ��i
†� j�, and

�5� dSC: ��i
†� j�, where ni���ni�, Si

z��ni↑−ni↓� /2, �i

�ci↑ci↓, �i��ci↑ci+1↓+ci↓ci+1↑� /�2, and �i��ci↑ci+1↓
−ci↓ci+1↑� /�2.

We first display typical dependence of correlation func-
tions on the real-space distance along the chain. The calcu-
lations have been done on L=64-site, half-filled Hubbard-
Holstein chains, with pseudosite DMRG for at least Nb=3
phonon pseudosites per full site, unless otherwise indicated.
At least ten finite-system sweeps have been done with m
�400 states retained in more than two final iterations after
the infinite-finite method warm-up. The results do not change
significantly when we take larger Nb�4 or m�500. The
maximum discarded weight of the partial density matrix in
the final sweep is below 10−5 when m�400 and typically
around 10−7 when m�500.

B. Case of larger �0 / t

First, we consider the region where the phonon frequency
is greater than the electron hopping t. We fix the electron-
phonon coupling � and phonon frequency �0 at �� ,�0�
= �3.6,5.0�. We observe in Fig. 3�a� that only the spin corre-
lation decays with a power law for U much larger than �.
The exponent is near unity.

As U is decreased to around �, the charge correlation
begins to decay with a power law, as plotted in Fig. 3�b� for
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FIG. 3. �Color online� Log-log plot of correlation functions
against the real-space distance for �� ,�0�= �3.6,5.0� and U= �a�
8.0, �b� 3.6, and �c� 1.6 for the half-filled Hubbard-Holstein model.
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U=3.6=�. The exponent for the spin correlation is greater
than in Fig. 3�a�. Here, we note that the on-site pair correla-
tion also decays with a power law.

Finally, for a much smaller value of U=2.6 in Fig. 3�c�,
the spin correlation decays no longer with a power law, but
almost exponentially at large distances, which becomes more
manifest as U is further decreased. There, both CDW and
on-site pair correlations still decay with power laws. So we
observe a power law spin correlation when the electron-
electron interaction is stronger than the electron-phonon in-
teraction, or power-law charge and on-site pair correlations
when the electron-electron interaction is weaker.

Next, we compare the exponents of the correlations. We
fit the correlations as functions of the real-space distance r,
assuming the behavior �O†�x�O�x+r���r−�, and determine
the exponent �. The results are plotted in Fig. 4. We can see
that charge and on-site pair correlations have similar expo-
nents, but the exponent for the charge correlation is always
smaller than that for the on-site pair correlation. So the
charge correlation is dominant when U / t is smaller than
around 3.5 where �=3.6, while the spin correlation is domi-
nant when U / t is larger.

For the repulsive �U�0� Hubbard model, we have only
the spin correlation decaying as r−1. Now, for the purely
electronic Hubbard model, it has been known45,46 that we can
convert the repulsive �U�0� Hubbard model into the attrac-
tive �U�0� Hubbard model, at half-filling, with a canonical
transformation, with which the charge and sSC pair correla-
tions are mapped to the spin correlation in the repulsive side
as

U ↔ − U

��ni↑ + ni↓��nj↑ + nj↓�� ↔ ��ni↑ − ni↓��nj↑ − nj↓�� � �Si
zSj

z�

�ci↓ci↑cj↑
† cj↓

† � ↔ �ci↓ci↑
† cj↑

† cj↓� � �Si
−Sj

+� . �4�

This implies that the charge and sSC pair correlations are
degenerate and both decay like r−1 as far as the Hubbard

model �U�0� and the Hubbard-Holstein model �Ũ�U−�
�0� in the antiadiabatic limit are concerned.

If we go back to the Hubbard-Holstein model, the power-
law fit for an exponentially decaying correlation gives a fi-
nite exponent for finite systems, so what we should observe
when a correlation does become power law is a decrease of
the exponent around the phase transition point. We observe
in Fig. 4 that the exponent for the SDW �CDW and sSC�
decreases �increases� as Ũ�U−� is increased from the
negative to positive sides. This behavior is similar to the

Hubbard model having Ũ as the on-site interaction, except
that the exponent for the charge correlation is slightly
smaller than that of the sSC pair correlation in general for
finite �0 / t as mentioned above. This is similar to the case of
the Holstein model U=0 with an �0 / t�5 �not shown�.

C. Phonon numbers per site in the Hubbard-Holstein
model

We can calculate the phonon occupation number for each
site nphonon�i� in the ground state �0, defined as

�nphonon�i�� � ��0�ai
†ai��0� . �5�

We can check the boundary effects by plotting the phonon
number against the site number i in Fig. 5. The curves are
almost flat except for a few sites around either edge of the
chain.

We plot the phonon number at the center of the chain,
�nphonon�, as a function of U in Fig. 6�f�. Phonons mediate an
attraction between the two electrons with opposite spins on
the same site, which amounts to ��2g2 /�0 in the �0→

limit. For a finite �0, the attraction � is smaller than this
asymptote �.47,48 For U��, two electrons tend to form a
bipolaron, where the electrons are strongly bound to each
other by sharing phonons they excite. Bipolarons, at half-
filling, tend to occupy every second site to reduce kinetic
energy. In this case, the charge correlation that corresponds
to the 2kF CDW is the strongest. The number of excited
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phonons per site increases as U is decreased, because the
fluctuation from the single occupancy increases as the CDW
correlation becomes stronger.

The limit of immobile bipolarons can be understood as
follows: we consider two electrons on a site in Eq. �3� and
neglect their hopping, to apply a Lang-Firsov-type transfor-

mation â=a−��. Then the local Hamiltonian for the phonon
on this site is

H = g�a + a†� + �0a†a = �0â†â + ��0� + 2g��� , �6�

with ���g /�0�2=� /2�0. The second term is a constant, and
if we denote the n-phonon state as �n� �n=0,1 , . . . �, the
ground state ��0�=�nbn �n� satisfies

â��0� = �a − ����
n

bn�n� = �
n�1

��nbn − ����n − 1� = 0.

�7�

This is solved as a coherent state,

bn = �e−��n/n!, �8�

which gives

lim
U→0

�nphonon� = �a†a� =

�
n�1

�n/�n − 1�!

�
n�0

�n/n!
= � = �/2�0. �9�

We can observe in Fig. 6�f� that the system indeed ap-
proaches to this limit as U is decreased.

A deviation observed for larger values of �0 in Fig. 6�f� is
interesting in that the region is intermediate between the U
�� and U�� limits. There we can expect a behavior differ-
ent from the limiting behavior.

D. Case of smaller �0 / t

When the value of �0 / t is smaller than about 3, we start to
observe in Fig. 6�c� behaviors of the correlation functions
different from those discussed above: the value of U at
which the exponent for the charge and spin correlations co-
incide becomes considerably smaller than �. So the �U−��
Hubbard model picture is no longer valid. Secondly, the
charge correlation becomes almost flat against distance as in
Fig. 7, implying a charge-ordered �CO� phase, in some re-
gion of U in Figs. 6�a�–6�d�, while this does not happen for
the on-site pair correlation.

To analyze the nature of this behavior, we can again look
at the phonon occupation number against U for various val-
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ues of �0 for a fixed value of � 	Fig. 6�f�
. For small enough
�0, the phonon occupation number abruptly increases at
some value Uc as U is decreased. We can see that the expo-
nential decay of all the correlations except the charge corre-
lation, in fact, starts around U=Uc. Thus, we identify that
this is where the SDW-CDW transition occurs. For larger �0,
on the other hand, the changes in both the exponents and the
phonon occupation number are gradual. The intermediate
values �0� �nphonon��� /2�0� of the phonon occupation
number is consistent with the power-law behavior of the
CDW and sSC exponents, which corresponds to a metallic
phase with a closed charge gap, where the fluctuation in the
local electron number �hence the fluctuation in the local pho-
non number� will be large.

When we look at the CDW correlation,

charge�i, j� � ��0��
�

ni����
�

nj���0� − 1, �10�

its amplitude turns out to either decay or remain almost con-
stant �CO� against the distance r= �i− j�. Since ���ni�� alter-
nates between 1+ fCO and 1− fCO in the latter case at half-
filling, we can simply define the charge-ordering amplitude
fCO=��CO�. We plot �charge, �spin, and fCO against U in Fig.
8. As U is decreased in the CO region, we observe that �i� the
CDW amplitude fCO increases and approaches unity, �ii� both
the spin and charge gaps increase almost linearly, and �iii�
the spin gap is nearly twice the charge gap. For the CDW/
sSC region, the charge gap almost vanishes. The spin gap
becomes also small, but remains larger than the charge gap.
Finally, when U exceeds �, the spin gap remains zero, while
the charge gap slightly grows with U.

The effect of the ratio �0 / t on the U dependence of
�nphonon� can now be understood in the limits of �0� t and
�0� t as follows:

�1� In the antiadiabatic limit ��0� t�, the response of the
phonons to the motion of electrons is so fast that we can
think of the role of phonons as just mediating the attraction �
between electrons. Electrons then tend to occupy different
sites for U��, with spins antiparallel between the neighbors

because of the exchange interaction. In this case, the spin
correlation that corresponds to the 2kF SDW is the strongest,
and the number of excited phonons per site decreases with U,
because the electron occupancy becomes closer to unity for
every site.

�2� In the adiabatic limit ��0� t�, for U�� the deviation
�fCO� of the electron occupancy from the average value is
large, so that a larger number of phonons are excited. The
dynamics of phonon is much slower than that of electrons for
�0� t, and exactly when the charge-ordered states exist de-
pends on �0 as we shall show on the phase diagram. For
U�� electrons cannot move and form a Mott insulator, so
that phonons are hardly excited. In the region �0� t, we
observe a jump in �nphonon� as a function of U. This should
correspond to the CDW transition.

E. Phase diagram

As we have seen above, we have two to three distinguish-
able regions out of the five phases compared in Table I when
we increase the value of U from U=0:

�1� Charge ordering ��spin��charge�0�. The charge cor-
relation is dominant and does not exhibit a significant decay
against distance. Other correlation functions decay exponen-
tially. The charge and spin gaps are still large, but decrease
with U. These should be the characteristics of a long-range
charge order, which is not forbidden from Refs. 43 and 44.
We denote this region as CO.

�2� CDW/sSC ��charge� t, 0��spin� t�. The charge and
sSC correlations decay with power law, with the charge cor-
relation the stronger of the two. The spin gap is finite �al-
though a size-scaling argument will be required to quantify
this�, while the charge gap is closed �although a size-scaling
argument will again be required�. We denote this region as
CDW/sSC because the sSC correlation, while not dominant
anywhere, decays with power law as well. The dSC correla-
tion �nearest-neighbor spin-singlet pair� is even less domi-
nant.

�3� SDW ��charge�0, �spin� t�. Only the spin correlation
decays with power law with the exponent being nearly unity.
The spin gap is closed or much smaller than t. The charge
gap becomes larger as U is increased. We denote this region
as SDW.

We draw phase diagrams on the U-� plane for various
values of �0=0.2, 0.5, 2, and on the U-�0 plane for various
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TABLE I. Summary of possible phases at half-filling. We denote
power-law and exponential decays of correlation functions �“corr.”�
as “power” and “exp.,” respectively.

Phase CO CDW/sSC SDW

Spin corr. Exp. Exp. Power

Charge corr. Long-range order Power �smallest �� Exp.

sSC corr. Exp. Power Exp.

Charge gap Finite 0 Finite

Spin gap Finite Finite 0

�nphonon� →� /2�0 Intermediate →0
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values of �=0.65,1.5,3.6,8.4 	Figs. 9�b� and 9�c�
. We ob-
serve on the U-�0 plane that the CDW/SC region is narrow
for �0��, while the region expands with the CO-CDW/SC
boundary shifting to smaller U and the CDW/SC-SDW
boundary shifting to larger U, until the region finally extends
up to U�� when �0��. The CO region also becomes wider
for smaller �0 or smaller U, but vanishes at �0��. For �
=0.05, we have not detected this region.

On the U-� plane, we observe that the SDW region covers
all of U��, but it extends beyond the line U=� when �0 is
smaller. The CDW/sSC region is broader for larger values of

�0, and we have not detected CO region for �0 / t=20. Figure
9�a� summarizes the whole region.

V. DOPED CHAIN

Having seen that the pairing correlation is only subdomi-
nant in the half-filled Hubbard-Holstein model, we can natu-
rally ask the question: can the system away from the half-
filling be superconducting? Since the effect of doping is
dramatic in purely electronic systems such as the Hubbard
model, this is an obviously interesting avenue to examine.
For the doped systems, we change in our DMRG calculation
the target quantum number, which is the pair of the spin up
and the spin down electrons �N↑ ,N↓�, and change the values
of n̄� in Eq. �3� accordingly.

The functional forms of the correlations for the non-half-
filled system have turn out to have the following property:
the pair correlation functions decay almost exactly with a
power law, while the charge correlation decays as a power
law multiplied by an oscillating factor. The dominant wave
number for the CDW correlation should be 2kF, which
equals to 	 /a �a: the lattice constant� at half-filling, but be-
comes larger as the hole doping is increased. In fact, we can
fit the result for the CDW correlation as

CDW � Cr−�CDW cos�qr + c� , �11�

where �CDW is the exponent, C, c, and q��n	 /a� are fitting
parameters.

We compare the CDW exponent thus obtained with the
exponent for the sSC correlation �dashed line� in Fig. 10. The
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calculated exponents for CDW and sSC are similar in Fig.
10�a�, where the electron filling n is close to unity. However,
sSC becomes clearly dominant over CDW for a larger level
of hole doping �n=0.88� in Fig. 10�b�. The exponents in this
case are �sSC=1.09±0.02 and �CDW=1.54±0.13. So this is
the key result for the doped system: the sSC correlation has
a smaller exponent and thus dominant in the sufficiently
doped case.

In two or higher dimensions, superconductivity in the
doped Hubbard-Holstein model poses an interesting prob-

lem, especially because the simplified Ũ�U-� picture can
be invalidated as stressed above. So this should be a further
avenue for future studies.

VI. EFFECT OF THE LATTICE STRUCTURE: TRESTLE
LATTICE

A second approach to make the pairing correlation domi-
nant should be, in our view, to modify the electronic band
structure. Along the line of argument above, we can specifi-
cally break the electron-hole symmetry to lift the degeneracy
between the CDW and sSC correlations, Eq. �4�, which ex-
ists in the Hubbard model46 and is shown above to persist for
the Hubbard-Holstein model in the antiadiabatic limit. This
can be done by considering quasi-1D lattices such as ladder
or trestle lattices. A trestle lattice, for instance, is equivalent
to a chain where a next-nearest-neighbor hopping t� is intro-
duced �Fig. 11�. This washes out the bipartite symmetry in
the band structure, which in turn breaks the electron-hole
symmetry. We can then seek the possibility of making the
pairing correlation dominant, even at half-filling, in the
Hubbard-Holstein model, as have been done for the Hubbard
model.49,50

So we have performed the DMRG study for the trestle
lattice. We retained up to m=720 states per block. The maxi-
mum truncation error in the final sweep is around 10−5, so it
is considerably larger than in the case of the simple chain. If
we look at the correlation functions against the real-space
distance in Fig. 12, we can see that the sSC correlation is
indeed dominant at �U ,� ,�0 , t��= �2.5,3.6,5.0,−0.4�, even
though we consider a half-filled system. Here, both of the
charge correlation �at r � odd distances� and sSC correlation
functions exhibit power-law decay. We can then look at the
exponents of correlation functions against U for various val-

ues of t� / t, which control the band structure �top insets of
Fig. 14�. A special interest is that the number of Fermi points
at half-filling for the noninteracting system increases from 2
to 4 at �t� � �0.5. Curiously enough, the case of four Fermi
points is seen in the bottom panel of Fig. 13 to have a domi-
nant dSC correlation for U��. This is the key results for the
trestle lattice.

For U��, we observe relatively larger error bars in the
exponents. This should be due to the presence of four Fermi
points, for which we have a larger number of k points around
EF in a finite system. When U��, dominance of the SDW is
recovered as in the case of the 1D chain and trestle lattice
with smaller �t��.

Next, we plot the exponents of the correlation functions as
functions of t� in Fig. 14. The vertical dashed line in the
figure represents the boundary at which the number of Fermi
points changes from 2 to 4. In other words, a geometrical
frustration �i.e., interference between the nearest-neighbor

t’

t’
FIG. 11. �Color online� A trestle lattice �bottom� is equivalent to

a chain that has the next-nearest-neighbor hopping t� �top�.
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and second-neighbor transfers� becomes the strongest around
this boundary. We can notice that the pairing correlations
�sSC and dSC� tend to be dominant around the boundary,
while the CDW correlation begins to decay faster there.

VII. SUMMARY

To summarize, we have shown for the 1D Hubbard-
Holstein model the following: �i� For the half-filled case, we
have obtained the phase diagram for the whole parameter
space spanned by the Hubbard U, phonon frequency �0, and
the electron-phonon coupling �. A region is shown to exist
between the SDW and CO phases, where the superconduct-
ing correlation is only subdominant against CDW. �ii� When
we either �a� dope the electronic band or �b� change the
electronic band structure by considering a trestle lattice, the
on-site pair correlation, and in the case of �b� the nearest-site
singlet pair correlation, indeed become dominant over CDW.
This is to be contrasted with the Tomonaga-Luttinger picture
�g ology�, which would dictate that the pair correlation
should not dominate when there are two Fermi points �the
region left of the dashed line in Fig. 14�.
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FIG. 14. �Color online� Correlation exponents plotted against
−t� for a 40-site, half-filled Hubbard-Holstein model on the trestle
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been retained in the last �tenth� sweep of the finite algorithm
DMRG. The vertical dashed line represents the boundary at which
the number of Fermi points changes from 2 to 4 as indicated by the
band dispersion �top insets�.
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