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We generalize the rotationally invariant formulation of the slave-boson formalism to multiorbital models,
with arbitrary interactions, crystal fields, and multiplet structure. This allows for the study of multiplet effects
on the nature of low-energy quasiparticles. Nondiagonal components of the matrix of quasiparticle weights can
be calculated within this framework. When combined with cluster extensions of dynamical mean-field theory,
this method allows us to address the effects of spatial correlations, such as the generation of the superexchange
and the momentum dependence of the quasiparticle weight. We illustrate the method on a two-band Hubbard
model, a Hubbard model made of two coupled layers, and a two-dimensional single-band Hubbard model
(within a two-site cellular dynamical mean-field approximation).
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I. INTRODUCTION AND MOTIVATIONS

A. General motivations

The method of introducing auxiliary bosons in order to
facilitate the description of interacting fermionic systems is
an important technique in theoretical many-body physics. In
this regard, the so-called slave-boson (SB) approach is a very
useful tool in dealing with models of strongly correlated
electrons. Slave-boson mean-field theory (SBMFT), i.e., at
the saddle-point level, is the simplest possible realization of
a Landau Fermi liquid (for a review, see, e.g., Ref. 1). Within
SBMFT, a simplified description of the low-energy quasipar-
ticles is obtained, while high-energy (incoherent) excitations
are associated with fluctuations around the saddle point. In
particular, two essential features are captured by SBMFT: (i)
the Fermi surface (FS) of the interacting system (satisfying
Luttinger’s theorem) is determined by the zero-frequency
self-energy, which is in turn determined by the Lagrange
multipliers associated with the constraints and (ii) the quasi-
particle (QP) weight Z is determined by the saddle-point val-
ues of the slave bosons. Hence SBMFT is a well-tailored
technique when attempting to understand the low-energy
physics emerging from more sophisticated theoretical tools,
such as dynamical mean-field theory (DMFT), which deals
with the full frequency dependence of the self-energy.

In this paper, we are concerned with the construction of a
slave-boson formalism which is able to deal with the two
following problems.

(1) In multiorbital models, we handle an arbitrary form of
the interaction Hamiltonian, not restricted to density-density
terms, and possibly including interorbital hoppings or hy-
bridizations. We aim, in particular, at describing correctly the
multiplets (eigenstates of the atomic Hamiltonian), but we
also want to be able to work in an arbitrary basis set, not
necessarily that of the atomic multiplets (and of course, to
obtain identical results, independent of the choice of basis).

(2) We describe situations in which the QP weight is not
uniform along the Fermi surface, but instead varies as a func-
tion of the momentum, i.e., Z=Z(k).
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There are clear physical motivations for addressing each
of these issues. The first one is encountered whenever one
wants to deal with a specific correlated material in a realistic
setting (see, e.g., Ref. 2). Usually, more than one band is
relevant to the physics (e.g., a 1,, triplet or e, doublet for
transition metal oxides, or the full sevenfold set of f orbitals
in rare earth, actinides, and their compounds). The second
issue is an outstanding one in connection with cuprate super-
conductors. In those materials, a strong differentiation in mo-
mentum space is observed in the “normal” (i.e., nonsuper-
conducting) state, especially in the underdoped regime (for a
review, see, e.g., Ref. 3). For momenta close to the nodal
regions, i.e., close to the regions where the superconducting
gap vanishes, reasonably long-lived QPs are found. In con-
trast, in the antinodal directions, the angle-resolved photo-
emission spectra (ARPES) reveal only a broad line shape
with no well-defined QPs. The nature of the incipient normal
state in the underdoped regime (i.e., the state achieved by
suppressing the intervening superconductivity) has been a
subject of debate. One possibility is that QPs would eventu-
ally emerge at low-enough temperature in the antinodal re-
gion as well, but with a much smaller QP weight Z,y<<Zy.
Another possibility is that coherent QPs simply do not
emerge in the antinodal region. Anyhow, there is evidence
from ARPES and other experiments® that the QP weight
(whenever it can be defined) has significant variation along
the FS and is larger at the nodes. Since the QP weight sets
the scale for the coherence temperature below which long-
lived QPs form, a smaller Z means a smaller coherence tem-
perature. Hence, if the temperature is higher than the coher-
ence scale associated with momenta close to the nodes, and
larger than the one associated with the antinodes, QPs will be
visible only in the nodal regions. At this temperature, the FS
will thus appear as being formed of “Fermi arcs,” as indeed
observed experimentally.* Important differences between the
nodal and antinodal regions in the superconducting state
have also been unraveled by recent experiments, in particu-
lar, from Raman scattering which revealed two different en-
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ergy scales with different doping dependences, associated
with each of these regions.> Momentum-space differentiation
of QP properties is therefore a key feature of cuprate super-
conductors, but it is also an issue which is particularly diffi-
cult to handle theoretically.

As we now explain, these two issues are actually closely
related one to the other. In a general multiorbital model, the
self-energy is a matrix 2,5 (o and B are orbital indices).
Except when a particular symmetry dictates otherwise, this
matrix has in general off-diagonal (interorbital) components
and these off-diagonal components may have a nonzero lin-
ear term in the low-frequency expansion, hence yielding
nondiagonal components of the matrix of QP weights defined
as

-1
7= (1 - ii) . (1)
dw w=0
On the other hand, a momentum-dependent QP weight Z(Kk)
means that, in real space, Z;=Z(R;,~R;) depends on the
separation between lattice sites (a momentum-independent Z
means that Z;=Z4;; is purely local). Hence, in both cases,
one has to handle a QP weight which is a matrix in either the
orbital or the site indices. The connection becomes very di-
rect in the framework of cluster extensions of DMFT (for
reviews, see, e.g., Refs. 6-9). There, a lattice problem is
mapped onto a finite-size cluster which is self-consistently
coupled to an environment. This finite-size cluster can be
viewed as a multiorbital (or molecular) quantum impurity
problem, in which each site plays the role of an atomic or-
bital. Recently, numerical solutions of various forms of clus-
ter extensions to the DMFT equations for the two-
dimensional Hubbard model have clearly revealed the
phenomenon of momentum-space differentiation.'%!> Devel-
oping low-energy analytical tools to interpret, understand,
and generalize the results of these calculations is clearly an
important and timely issue. The slave-boson methods devel-
oped in the present work are a step in this direction.
Obviously, the existence of off-diagonal components of

the Z matrix is a basis-set dependent issue. A proper choice
of orbital basis can be made, which diagonalizes this matrix.
In certain cases, this basis is dictated by symmetry consider-
ations, while in the absence of symmetries, the basis set in
which Z is diagonal cannot be guessed a priori. For instance,
in a two-site cluster or two-orbital model in which the two
sites play equivalent roles, even and odd combinations diag-

onalize not only the VA matrix, but, in fact, the self-energy
matrix itself for all frequencies (see Sec. III). In such cases,
it may be favorable to work in this orbital basis set, and deal
only with diagonal QP weights. However, performing the
rotation into this orbital basis set will in general transform
the interacting Hamiltonian into a more complicated form.
For example, starting from a density-density interaction, it
may induce interaction terms which are not of the density-
density type (i.e., involve exchange, pair hopping, etc.). For
these reasons, it is essential to consider slave-boson formal-
isms which can handle both arbitrary interaction terms, and
nondiagonal components of the QP weight matrix: these two
issues are indeed connected. The formalism presented in this
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paper builds on earlier ideas of Wolfle and co-workers'3!4

(see Appendix A), in which the SB formalism is formulated
in a fully rotationally invariant manner (see also Refs. 15
and 16 in the framework of the Gutzwiller approximation),
so that the orbital basis set needs not be specified from the
beginning, and the final results are guaranteed to be equiva-
lent irrespectively of the chosen basis set.

B. Some notations

In this paper, we shall consider multiorbital models of
correlated electrons with Hamiltonians of the form

H = Hyo+ 2 Hio 1] 2)
with
Hy, = E E Saﬁ(k)dladkﬁ- (3)
k aB

In these expressions, «a and S label electronic species and run
from 1 to M [i.e., M is twice the number of atomic orbitals in
the context of a multiorbital model of electrons with spin:
a=(m,o),0=1,]]. The k vector runs over the Brillouin
zone of the lattice, whose sites are labeled by i (in the con-
text of cluster DMFT, i will label clusters and runs over the
superlattice sites, thus k runs over the reduced Brillouin zone
of the superlattice, see Sec. III C). The first term in Eq. (2) is
the kinetic energy: &,4(k) is the Fourier transform of the
(possibly off-diagonal) hoppings and does not contain any
local terms [i.e., Zge,p5(k)=0]. H, contains both the one-
body local terms and the interactions, assumed to be local. A
general form for Hy,, is>

. 1
Hioo= 2 eoplidp+ S 2 Uapylidlidody (4)
af afyd

Fock states form a convenient basis set of the local Hilbert
space on each site. They are specified by sequences n
=(n;,...,ny), with n,=0,1 (we consider a single site and
drop the site index) as follows:

lny = (d))" -+~ (d},)"M|vac). (5)

In the following, {|A)} will denote an arbitrary basis set of
the local Hilbert space, specified by its components on the
Fock states as follows

Ay = 2 (n|A)|n), (6)

while |I') will denote the eigenstates of the local Hamil-
tonian, i.e., the “atomic” multiplets such that

H100|F> =EF|F>' (7)

C. Slave bosons for density-density interactions:
A reminder

When the orbital densities n, are good quantum numbers
for the local Hamiltonian H,, i.e., when the eigenstates of
the latter are labeled by n,, a very simple slave-boson for-
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malism can be constructed which is a direct multiorbital gen-
eralization of the four-boson scheme introduced by Kotliar
and co-workers.!”-1® While this is standard material, we feel
appropriate to briefly remind the reader of how this scheme
works, in order to consider generalizations later on. We thus
specialize in this subsection to a local Hamiltonian of the
form

0 A A A
Hloc = E sana"' E Uaﬁnanﬁ’ (8)
a af

so that the multiplets are the Fock states |n) themselves, with
eigenenergies

E,=> g+, Uaghotp. 9)
a af3

To each Fock state, one associates a boson creation opera-
tor (l)ll Furthermore, auxiliary fermions ffy are introduced
which correspond to quasiparticle degrees of freedom. The
(local) enlarged Hilbert space thus consists of states which
are built from tensor products of a QP Fock state, times an
arbitrary number of bosons. In contrast, the physical Hilbert
space is generated by the basis set consisting of the 2¥ states
which contain exactly one boson, and in which this boson
matches the QP Fock state. Thus, the states representing the
original physical states (5) in the enlarged Hilbert space, in a
one-to-one manner, are the following (“physical”) states:

In) = ¢/ |vac) ® n) ;. (10)

The underlining in |) allows one to distinguish between the
original Fock state of the physical electrons |n), and its rep-
resentative state in the enlarged Hilbert space. In this expres-
sion, |n); stands for the QP Fock state as follows:

), = (Fym--- (i) ™| vac). (11)

It is easily checked that a simple set of constraints
uniquely specifies the physical states among all the states of
the enlarged Hilbert space, namely,

> dibu=1, (12)

D b= Ffife Ve (13)

The first constraint imposes that only states with a single
boson are retained, while the second one ensures that the
fermionic (QP) and bosonic contents match. Obviously, the
saddle-point values of the slave bosons will have a simple
interpretation, |¢,|* being the probability associated with the
Fock space configuration n.

The operator

dl= 2 (nlfmyd) bt (14)

is a faithful representation of the physical electron creation
operator on the representatives (10), namely,
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dilny =2 (n'|dl|m)|n"), (15)

in which, in fact, the right-hand side (rhs) is either zero (if
n,=1) or composed of just a single state (with n,=1 and
otherwise nﬁzn’ﬁ for B+ «). This expression of the physical
electron operators is not unique; however, obviously, one
can, for example, multiply this with any operator acting as
the identity on the physical states. This is true as long as the
constraint is treated exactly. When treated in the mean-field
approximation, however (i.e., at saddle point), these equiva-
lent expressions will not lead to the same results. In fact, Eq.
(14) suffers from a serious drawback, namely, it does not
yield the exact noninteracting (U,z=0) limit at saddle point.
Instead, the expression

di= 2 nlfm A2 gl 1 - AL (16)

with

ALd] =2 nodb, (17)
turns out to satisfy this requirement, while having exactly the
same action as Eq. (14) when acting on physical states. This
choice of normalization is actually very natural given the
probabilistic interpretation of |¢,|*: the expression
[Aa]‘”zcﬁl (¢, [1-A,7) is actually a probability ampli-
tude, normalized over the restricted set of physical states
such that n,=1 (n,=0). Hence the combination of boson
fields in Eq. (16) is a transition probability between the state
m with m,=0 and the state n with n,=1.

Anyhow, whether the simplest expression (14) or the nor-
malized expression (16) is chosen for the physical operator,
the relation between the physical and QP single-particle op-
erators is of the form

do=1[ Plf o (18)

It is important to note that the orbital index carried by the
physical operator is identical to that of the QP operator. An
immediate consequence is that the self-energy at the saddle-
point level is a diagonal matrix in orbital space Eaﬁ
= 8,2 q» Which reads

1
3 () =2,(0) + w(l - Z_) (19)
with
Zo=|ral, (20)
3, (0) = No/|r* - €. (21)

In these expressions, r, is evaluated at saddle-point level,
and A, is the saddle-point value of the Lagrange multipliers
enforcing the constraint (13).

The expression (20) of the QP weight is an immediate
consequence of Eq. (18): at saddle-point level, r, becomes a
¢ number and Eq. (18) implies that the physical electron
carries a spectral weight |r,|>. Hence, in order to describe
within SBMFT situations in which the QP weight is a non-
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diagonal matrix, one must disentangle the orbital indices car-
ried by the physical electron and those carried by the QP
degrees of freedom. These operators will then be related by a
nondiagonal matrix

dy=Rod Dlf 5. (22)

This is precisely what the formalism exposed in this paper
achieves. The physical significance of such a nondiagonal
relation is that creating a physical electron in a given orbital
may induce the creation of QPs in any other orbital. Think-
ing of orbital as real-space indices (within, e.g., cluster
DMEFT), this means that the creation of a physical electron
on a given site induces QPs on other sites in a nonlocal
manner, corresponding to a momentum-dependent Z(k).

D. Difficulties with naive generalizations
to the multiorbital case

Let us come back to the general multiorbital interaction
(4). In order to motivate the fully rotationally invariant for-
malism exposed in the next section, let us point out some
difficulties arising when attempting to generalize the simple
SB formalism of the previous section.

The central difference between the general interaction (4)
and the density-density form (8) is that the atomic multiplets
[T') are no longer Fock states. Thus, it would seem natural to
associate a slave boson ¢ to each of the atomic multiplets.
Indeed, Biinemann ef al.'® (see also Ref. 15) have proposed
generalized Gutzwiller wave functions in which a variational
parameter (also known as a probability |¢p|?) is associated
with each atomic multiplet (see also Ref. 20 and the recent
work of Dai ef al.?! in the SB context). A slave-boson for-
mulation requires a clear identification of the physical states
within the enlarged Hilbert space. A natural idea is to define
those in one-to-one correspondence with the atomic multi-
plets, as

ID)=gf|vac) @ 3 (| |n);. (23)

The local part of the Hamiltonian has a simple representation
on these physical states H10C=EFEF¢1T~¢F. However, a major
difficulty is that there is no simple constraint implementing
the restriction to these physical states, and such that it is
quadratic in the fermionic (QP) degrees of freedom (which is
essential in order to yield a manageable saddle point). In
particular, it is easily checked that the apparently natural
constraint?!

Fifu=S (Ui T) oy (24)
T

is actually not satisfied by the states (23) as an operator
identity.”® Further difficulties also arise when attempting to
derive an expression for the physical creation operators.
These difficulties stem from the fact that two atomic multi-
plets having particle numbers differing by one unit cannot in
general be related by the action of a single-fermion creation.

One might also think of defining the physical states in
correspondence to the Fock states, as:

PHYSICAL REVIEW B 76, 155102 (2007)

[m)=[n); ® 2 (Tln)ilvac), (25)
r
which do satisfy the following quadratic constraint:
fifa= 2 (PlAC" Yl (26)
rr’

However, another difficulty then arises. Namely, it is not
possible to write the local interaction Hamiltonian purely in
terms of bosonic degrees of freedom, which is the whole
purpose of SB representations. In particular, the obvious ex-
pression H10C=EFEF¢+F¢>F which had the correct action on
states (23) no longer works for states (25) since it leaves
unchanged the fermionic content of them.

After some thinking, one actually realizes that these naive
generalizations are all faced with the same problem, namely,
that they do not embody the crucial conceptual distinction
between physical and QP degrees of freedom. Both Egs. (23)
and (25) assume a priori a definite relation between the
physical and QP contents of a state. The key to a successful
SB formalism is therefore to disentangle physical and qua-
siparticle degrees of freedom, and letting the variational prin-
ciple at saddle point decide which relationship actually exists
between those.

We shall see, however, in Sec. IIT A that, provided the
local Hamiltonian has enough symmetries, the rotationally
invariant formalism of the present paper does correspond to
assigning at saddle point a probability to each atomic con-
figuration (multiplet) |T'), hence establishing contact with the
previous works of Refs. 19 and 21. Yet for less symmetric
Hamiltonians, the general formalism of the present paper is
requested.

II. ROTATIONALLY INVARIANT SLAVE-BOSON
FORMALISM

A. Physical Hilbert space and constraints

In order to construct a SB formalism in which physical
and QP states are disentangled, we shall associate a slave
boson ¢r,, to each pair of atomic multiplet |’y and QP Fock
state |n)f More generally, we can work in an arbitrary basis
set |A) of the local Hilbert space, not necessarily that of the
atomic multiplets, and consider slave bosons ¢,,. As we
shall see, the formalism introduced in this paper is such that
two different choices of basis sets are related by a unitary
transformation and therefore lead to identical results. In par-
ticular, one could also choose the physical Fock states |m),
as the basis set A, and work with slave bosons ¢,,, which
form the components of a density matrix connecting the
physical and QP spaces. It is crucial, however, to keep in
mind that the first index (A) refers to physical electron states,
while the second one (n) refers to quasiparticles.

A priori, a slave boson ¢,, can be introduced for any pair
(A,n). However, in this paper, we shall restrict ourselves to
phases which do not display an off-diagonal superconducting
long-range order, and hence one can restrict the ¢,,’s to
pairs of states which have the same total particle number on
a given site (the local Hamiltonian H,,, commutes with
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EadZda). The formalism is easily extended to superconduct-
ing states'*!>?2 by lifting this assumption and modifying ap-
propriately the expressions derived in this section. In the
following, we consider basis states A which are eigenstates
of the local particle number (denoted by N,), and hence a
¢4, 1s introduced provided X n,=Ny.

The representation of such a basis state in the enlarged
Hilbert space is defined as

1 .
4) = =2 ¢}, [vac) ® |n);. (27)
VDA n

In this expression, D, denotes the dimension of the subspace
of the Hilbert space with particle number identical to that of
A, ie., DAED(NA):(]’\Z). This ensures a proper normaliza-
tion of the state. As before, the “underline” in |A) allows us
to distinguish this state, which lives in the tensor product
Hilbert space of QP and boson states, from the physical elec-
tron state |A).

Having decided on the physical states, we need to identify
a set of constraints which select these physical states out of
the enlarged Hilbert space in a necessary and sufficient man-
ner. It turns out that the following (M?+1) constraints
achieve this goal:

> bhaban=1, (28)
An

A

E 2 ¢Zn'¢An<n|fTafa’|n,> =fzxfa" Va. (29)

The first constraint is obvious and requires that the physi-
cal states are single-boson states. It is easy to check that the
physical states satisfy the second set of constraints (29), but
a little more subtle to actually prove that this set of con-
straints is sufficient to uniquely select the physical states (27)
in the enlarged Hilbert space. The detailed proof is given in
Appendix B. Let us emphasize that the order of primed and
unprimed indices in Eq. (29) is of central importance.

B. Representation of the physical electron operators

We now turn to the representation of the physical electron
creation operator on the representatives (27) of the physical
states in the enlarged Hilbert space. We need to find an op-
erator which acts on these representatives exactly as dl acts
on the physical basis |A). Namely, given the matrix elements
(Al|d!|B) such that

di|By = X (Ald}|B)|A), (30)
A

we want to find an operator c_lz (in terms of the boson and QP
operators) such that

d|B) =2 (A|d}|B)|A). (31)
A

1. Proximate expression

As in the case of the density-density interactions dis-
cussed above (Sec. I C), the answer is not unique. We first
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construct the generalization of expression (14) to the present
formalism (i.e., ignore at first the question of the proper op-
erators to be inserted in order to recover the correct nonin-
teracting limit). The following expression is shown in Ap-
pendix C to satisfy Eq. (31):

(Ald}|BY(nlfglm) .
= 2 TN iny Twbedy (32
- ﬂgﬂm VNA(M ~ Ng) PP p (32)

We note that Ny=Npz+1 in this expression can take the val-
ues 1,...,M.

Hence, we see that within this formalism, the physical and
QP operators are indeed related by a nondiagonal transfor-
mation (22) as follows:

do=RlPlogf s (33)

with the R matrix corresponding to Eq. (32) given by (IQZB
denotes the complex conjugate of Iéaﬂ)

A <A|d+|B><n|f+|m>
R[] .= a—LﬁT 5
[ ]aB_ABE,nm \‘”NA(IW _NB) AnFm: (34)

The action of Eq. (32) on physical states, and the proof that
it satisfies Eq. (31) are detailed in Appendix C.

2. Improved expression

The simple expression (32), although having the correct
action on the physical states, suffers from the same drawback
than Eq. (14) in the case of density-density interactions.
Namely, at saddle-point level (i.e., with the constraint satis-
fied on average instead of exactly), the noninteracting limit is
not appropriately recovered. Thus, one needs to generalize
the improved expression (16) to the present rotationally in-
variant formalism. However, care must be taken to do so in a
way which respects gauge invariance (i.e., the possibility of
making an arbitrary unitary rotation on the QP orbital indi-
ces, see Sec. I1 C).

We consider the following operators, bilinear in the
bosonic fields:

AP =30 Gl banimlfifgn). (35)
Anm
A= E B bamlmlfafiln), (36)

which can be interpreted as particle- and holelike QP density
matrices (note that when the constraint is satisfied exactly,

Ag[)f 6aﬁ—AAg’l;). We then choose to modify the R matrix in
the following manner (see Appendix C):

Rlplp= 2 (AldBXnlfiim) b, dpuM g (37)

AB,nm,y
with
M. 5= |[1(AA(p)AA(h) A”(h)AA(p))]—lm' )
Y8~ Y 2 + B>

We chose to let the QP density matrices enter the M matrix
in a symmetrized way in order to respect equivalent treat-
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ment of particles and holes. Expression (37) can be shown to
be gauge invariant, and turns out to yield the correct nonin-
teracting limit at saddle point. However, although it yields a
saddle point satisfying all the appropriate physical require-
ments, it is not fully justified as an operator identity.

C. Gauge invariance

As usual in formalisms using slave particles, a gauge sym-
metry is present which allows one to freely rotate the QP
orbital indices, independently on each lattice site. Physical
observables are of course gauge invariant. Let us consider an
arbitrary SU(M) rotation of the QP operators as follows:

fo=2 Ungf. (39)
B

This rotation induces a corresponding unitary transformation
U(U) of the QP Fock states |n);. This unitary transformation
is characterized by the fact that the expectation value of f, in
its Fock basis is an invariant tensor: it is the same in every
basis. Therefore (summation over repeated indices is implicit
everywhere in the following)

(nlfglm) = Uggtd(U),, 0" |ffy|m YU) s (40)

<n|fzxfﬁ|m> = Uaa’U:gﬁ'U*(U)nn’<n,|fszﬁ'|ml>u(U)mm’
(41)

(the second expression can be deduced from the first using
closure relations). We can now check that if the slave bosons
transforms like

¢An = u(U)nn’ aAn’ > (42)

then the constraints and the expressions of the physical elec-
tron operator [either Eq. (32) or Eq. (37)] are gauge invari-
ant. Namely, the R matrix obeys the following transforma-
tion law:

é[¢]aﬁ=é[$]aﬂ’ Ugpr (43)

and therefore the physical electron operator is invariant,

da=é[$]ad‘~ﬁ=k[¢]aﬂfﬁ' (44)

D. Change of physical and quasiparticle basis sets
It is clear that the basis |A) of the local Hilbert space (i.e.,
the physical basis states) can be chosen arbitrarily in this

formalism. Indeed, making a basis change from |A) to |A), all
the expressions above keep an identical form provided the
bosons corresponding to the new basis are defined as

ot =2 (AlA)g],. (45)
A

As mentioned above, it is often convenient to use the eigen-
states |I') of Hy,. as a basis set.

PHYSICAL REVIEW B 76, 155102 (2007)

Changing the basis states associated with quasiparticles is
a somewhat trickier issue. Up to now, we have worked with
Fock states |n).. A different basis set |Q); can be used, pro-
vided, however, the unitary matrix (Q|n) is real, i.e.,
(Q|n)=(n|Q). Indeed, the matrix element (Q|n) appears in
the transformation of the physical states and of the con-
straint, while (n|Q) appears in the transformation of the
physical electron operator. When this matrix elements are
real, new bosons can be defined in the transformed QP basis
according to

bho=2 (0L, (Qln)y=(n|0)). (46)

In particular, when the local Hamiltonian is a real symmetric
matrix, the same linear combinations of Fock states which
define the atomic multiplets |[I") can be used for QPs, and
bosons ¢ can be considered. This is sometimes a useful
way of interpreting the formalism and the results at saddle
point (see Sec. IIT A).

E. Expression of the Hamiltonian, free energy,
and Green’s function

In this section, we derive the expression of the Hamil-
tonian in terms of the slave boson and QP fermionic vari-
ables. We then construct the free-energy functional to be
minimized within a mean-field treatment, and express the
Green’s function and self-energy at saddle point.

We recall that the full Hamiltonian (2) reads, in terms of
the physical electron variables, H=H,;,+=;H,,[i] with Hy;,
=Ek2aﬂsaﬁ(k)d;&adk5 the intersite kinetic energy and H,,
the local part of the Hamiltonian on a given site i, with
general form (4).

It is easily checked that the following bosonic operator is
a faithful representation of H,,. on the representatives of the
physical states in the enlarged Hilbert space:

Hio. = E <A|H10C|B>E quxn(/an- (47)
AB n

If the basis |I') of atomic multiplets is used, this simplifies
down to

I:]loc = E EFE ¢;n¢rn' (48)
r n

Using the bosonic R operators relating the physical electron
to the QP operators yields the following expression of the
kinetic energy:

Hin=2 2 [Rwewp®Rpafiafis  (49)
k aa'pp’

A mean-field theory is obtained by condensing the slave
bosons into ¢ numbers {¢p,,)= @4, The constraints are
implemented by introducing Lagrange multipliers: A\ associ-
ated with Eq. (28) and A, =[A],. associated with Eq.
(29). The saddle point is obtained by extremalizing, over the
©a,’s and the Lagrange multipliers, the following free-energy
functional:
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Q{@ants Aol (50)
1 ;
_ /_32 r In[1 + ¢ AR @R _ )\
k

+ E (’D:n'{énn’éAB)\O + 5nn’<A|Hloc|B>
ABnn'

- 5ABE Aa5<”|f2f5|”,>}¢3n~ (51)
ap

The saddle-point equations, as well as technical aspects of
their numerical solution, are detailed in Appendix D.
Finally, we derive the expressions of the Green’s func-
tions G, the self-energy 3., and the QP weight Z at saddle
point. For the QPs, the one-particle Green’s function
Groplk,7=7') E‘OC;LQ(T) fxp(7')) reads (in matrix form)

G/ (ko) =0-RI(@e®R(G-A,  (52)

and hence the physical electron Green’s function reads (we
drop the ¢ dependence for convenience)

G;'(k,0) =[R'T'G;'R™' = o(RR")' - [R'T AR - £(k),
(53)

while the noninteracting Green’s function is (including the
one-body term present in H,,)

G (k,w) = wl — £°— (k). (54)
The physical self-energy is thus

() = Gz - G7' = (1 -[RR'T) + [R'T'AR™" - £°.
(55)

So that the matrix of QP weights is obtained in terms of the
R matrix at saddle point as

Z=RR'. (56)

This generalizes Eq. (20) to nondiagonal cases. It is easily
checked that these expressions of the physical quantities G,
., and Z are indeed gauge invariant.

III. ILLUSTRATIVE RESULTS

In the following, we apply the above formalism to three
different model problems in strongly correlated physics.
First, we consider two popular models, namely, the two-band
Hubbard model on a three-dimensional (3D) cubic lattice,
and a “bilayer” model, coupling two Hubbard 3D cubic lat-
tices. Finally, a two-site cluster (cluster DMFT) approxima-
tion to the single-band Hubbard model on a two-dimensional
(2D) square lattice is investigated. Hence these models have
in common that they all involve two coupled orbitals [asso-
ciated, in the cluster-DMFT (CDMFT) framework, to the
dimer made of two lattice sites]. The present formalism is of
course not restricted to two-orbital problems; however, such
models provide the simplest examples where the power of
the method may be demonstrated.

PHYSICAL REVIEW B 76, 155102 (2007)

A. Two-band Hubbard model

The Hubbard model involving two correlated bands, with-
out further onsite hybridization or crystal-field splitting,
serves as one of the standard problems in condensed matter
theory. In contrast to the traditional single-band model, the
formal interaction term in Eq. (4) now generates in the most
general fully SU(2) symmetric case four energy parameters,
i.e., the intraorbital Hubbard U and the interorbital Hubbard
U’ as well as the two exchange couplings J and J.. Thus the
present atomic Hamiltonian reads

Hpoe= U, Ny + U' 2 ighag: —J 20 Mgy
o ! g

+ 2 d} ydyody gdr g+ To(dyd] | dy doy + db,d) dyydy).

(57)

The kinetic energy shall contain only intraband terms for a
basic tight-binding (TB) model for s bands on a 3D simple
cubic lattice with lattice constant a. Thus the corresponding
Hamiltonian is written as

1
Hkin == 52 2 [az dj—a jao> (58)
o a=1,2 ij
with the eigenvalues
2
salk) == 1, 2 cos(k,a), (59)
3 M=XyZ

where ¢, denotes the hopping parameter for orbital a=1,2.
For convenience, we set a=1. The factor 1/3 in Eq. (58) is to
normalize the total bandwidth to W,=4¢,. Because of the
cubic symmetry, U'=U-2J may be used, and furthermore
we set J=J. This model is similar to the one considered by
Biinemann et al.'® using a generalized Gutzwiller approxi-
mation (see also Ref. 15). Our simpler TB description exhib-
its in principle perfect nesting; however, this issue is not
relevant at the present level. The 3D two-band Hubbard
model is studied to make contact with the named previous
work and in order to establish the connection between the
Gutzwiller and slave-boson points of view.

When working in the SU(2) rotationally invariant case,
the 2*=16 atomic eigenstates |I') of the local Hamiltonian
(57) serve as the appropriate atomic basis (see Table I); how-
ever, also the simpler Fock basis (or any other) may be used.
Of course, in the Fock basis, a more complicated energy
matrix must be used in the saddle-point equations (see Ap-
pendix D). It should be clear from Table I that there are 20
nonzero slave-boson amplitudes ¢r,, for the current problem.
The $°=0 triplet as well as the three singlets are described
with two ¢r,,, respectively. In principle, even more ¢, may
be introduced in the beginning of the iteration cycle to mini-
mize (), but at convergence those will come out to be strictly
zero. Of course, in high-symmetry situations there is still
some redundancy within the set of the 20 SBs. For instance,
for equal bandwidth at half-filling (see Fig. 1), all the one-
and three-particle SBs are identical, as well as the zero- and
four-particle SBs. Moreover the S°==+1 triplet SBs are equal
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TABLE 1. Eigenstates |T') of the SU(2) rotationally invariant two-band Hubbard model. Spin values and
energies are given for the eigenstates. The last column shows the slave bosons for the description of the

eigenstates in the SBMFT formalism.

No. Eigenstate |T') Sr St Ey bra

1 |00,00) 0 0 0 &1]00.00)

2 [10,00) % % 0 $2./10,00)

3 [01,00) % —% 0 $3./01,00)

4 [00,70) % % 0 4./00,10)

5 [00,0]) % —% 0 &5.100,01)

6 10,70) 1 1 u'-J ®6.110.10)

7 5(10,00)+[01.10)) 1 0 vi-J (11001 ®7)0L.10)
8 01.01) 1 -1 u'-J Psjor.01)

9 5(10.01)-]01.10)) 0 0 Ut (Po.00n: P9.01.10)
10 \L_(|T l ’00>_|00’ T l>) 0 0 U—JC (¢10,Hl,00>’¢10,‘00,Tl>)
1 L(17 1,00)+[00, 1 1)) 0 0 U+Je (é11./11.00)> P11.jo0.1 1))
12 11,10 5 5 U+2U'-J b1211.10)

13 11.00) 5 -3 U+2U'-J bi3)11.00)

14 10.11) 5 3 U+2U'-J braf10.11)

15 01,11 5 -3 U+20'-J bisjol.11)

16 111,11 0 0 2U+4U'-2J br6r1.11)

because of the degeneracy. The two SBs describing the S*
=0 triplet are also identical, with a magnitude ¢, ),
=dgein! \2. Also the bosons describing one specific singlet
have the same absolute value; however, they carry the mul-
tiplet phase information, i.e., have plus or minus sign. In
conclusion, in the orbitally degenerate case, the SB ampli-
tudes at saddle point are of the form

Prn = <n|F>yF’ (60)

in which the matrix element (I"|n) is entirely determined by
H,,. and yr is a (coupling-dependent) amplitude, depending

- ¢1,\00,00> !
0.3 ) N
T 72,110,00>
S ¢10,|11,00>
- ¢6,\10,10>
(S 0.2F (D T
= 11,111,00>
—~
=

0.1

FIG. 1. (Color online) Inequivalent slave-boson probabilities
|¢p,|* for the two-band Hubbard model at half-filling for equal
bandwidth and J/U=0.2. Note that ¢ ooy and ¢y || ooy describe
part_of the singlet states, hence their overall amplitude is scaled by
1/42.

only on the eigenstate I'. This is more clearly interpreted
when atomic states are also used as basis states for QPs (Sec.
II D). Indeed, Eq. (60) means that

@rrr = orryr. (61)
Hence, in this highly symmetric case, the saddle point is
indeed of the diagonal form considered in Refs. 19 and 21.
Once the symmetry is lowered, more SBs become inequiva-
lent and this relation does not hold anymore: there are off-
diagonal components even when the basis of atomic states is
used for both physical and QP states. In this context, the
present formalism becomes essential. Different bandwidths
for each orbital, together with a finite doping away from
half-filling, lead, for instance, to two different absolute val-
ues for the two SBs associated with the singlets formed by
the two doubly occupied Fock states (as seen at the end of
this paragraph in Fig. 6).

Since no interorbital hybridization is applied in this sec-
tion, the Z matrix is diagonal. We consider first the simple
case of equal bandwidths 7;=1,=0.5 (note that in all our ap-
plications, ¢ sets the unit of energy), thus Z;,=Z,,=Z. Figure
2 shows the variation of Z for different ratios J/U in the
half-filled case (n=2). The critical coupling U, for the Mott
transition with J=0 obtained from this slave-boson calcula-
tion is in accordance with the result of the analytical formula
given by Frésard and Kotliar.'® It is seen that an increased J
lowers the critical U and moreover changes the transition
from second to first order. Note that in this regard, Fig. 2
depicts Z up to the spinodal boundary, i.e., the true transition
(following from an energy comparison) is expected to be at
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1.0 \ ‘ \
L — rotationally-invariant _
08k — density-density
0.6 nl
N L 4
0.4r- =
L : : J
02 A T
0 R N T
I O O T S N [ 1
! o ! o
0 Lol | | i ‘
0 1 3 4

FIG. 2. (Color online) Influence of J on the Mott transition in
the two-band Hubbard model at half-filling (n=2) for equal band-
width. From right to left: J//U=0,0.01,0.02,0.05,0.10,0.20,0.45.

slightly lower U.. One can also observe the nonmonotonic
character for the evolution of the critical Z at this boundary
when increasing J/U. We plot in Fig. 2 additionally the re-
sults when restricting the atomic Hamiltonian to density-
density terms only, in order to check for the importance of
the neglected spin-flip and pair-hopping terms. For larger
J/U the critical Z from the latter description is larger com-
pared to the rotationally invariant one and moreover it is
monotonically growing. The latter feature strengthens the
first-order character in the density-density formulation for
growing J/U, whereas for rotationally invariant interactions
this character is strongly weakened in that regime. Although
for J/U=0.45 the jump of Z is quite small, the transition is,
however, still first order in the present calculation. Further-
more, there appears to be a crossover between the two ap-
proaches concerning the reachable metallic spinodal bound-
ary when increasing J/U.

At quarter filling (n=1) a continuous transition is ob-
tained for all the previous interactions (see Fig. 3). Com-
pared to the half-filled case, the density-density approxima-

1.0 T
L — rotationally-invariant |
\ .-~ density-density
0.8+
0.6 1
N N
041 N -
DN JU=0.45
L NN |
0.2 \ AP 1U=0.207]
L \ N \'\ 4
\' \v\ .\.
0 | L NI
0 2 6 8

4
U/(2)

FIG. 3. (Color online) Influence of J on the Mott transition in
the two-band Hubbard model at quarter filling (n=1) for equal
bandwidth. The first three combined curves for the two types of
interactions (from left to right) belong to J/U=0,0.05,0.10. The
arrows indicate the labeling for the two larger J/U ratios.
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4 0.6
3/20)

FIG. 4. (Color online) Influence of J for fixed U at n=2 (solid
lines) and n=1 (dotted-dashed lines) for equal bandwidth and full
SU(2) symmetry. The vertical dotted lines mark the limit we set for
J.

tion appears to be less severe for small J/U, but leads to
some differences compared to the rotationally invariant form
for large J/U. Note that for J/U=0.45, U'—J in the local
Hamiltonian (57) becomes negative. Thus a corresponding
change of the ground state may lead to the resulting non-
monotonic behavior for U, then observed in Fig. 3. The criti-
cal U for J=0 is smaller than at half-filling and with increas-
ing J/U the transition is shifted to larger U, (with the above
named exception for J/U large). Hence J has a rather differ-
ent influence on the degree of correlation for the two fillings.
While for n=2 Hund’s rule coupling substantially enhances
the correlations, seen by the decrease in Z, for n=1 the op-
posite effect may be observed. This is also demonstrated in
Fig. 4 which displays the influence of J for fixed values of U
comparing half-filling with quarter filling. The strong de-
crease in Z upon increasing J was recently shown to be im-
portant for the physical properties of actinides, in particular,
regarding the distinct properties of J-plutonium and
curium.?* For each U shown in Fig. 4, the density-density
limiting value U/3 was used as an upper bound for J. How-
ever, for U=2 and U=3 the system shows already a first-
order transition at half-filling below the latter limit.

The QP residue Z is shown as a function of filling n in
Fig. 5 for U=1.75 and three ratios J/U. For J=0 it is ob-
served that Z(n) exhibits two minima, both located at integer
filling. The minimum at n=1 is deeper, corresponding to a
lower value for U, in the quarter-filled case. Because of the
filling-dependent effect of J seen in Fig. 4, the nonmonotonic
character of Z(n) is lifted for growing J/U.

The two-band Hubbard model was already extensively
studied in the more elaborate DMFT framework in infinite
dimensions. Such investigations reveal the same qualitative
change of the critical U for different integer fillings,?*? of
course with some minor quantitative differences. Also the
reduction®*?%? of U, and the onset of a first-order Mott
transition?#?%272% for finite J/U at half-filling is in accor-
dance. Concerning the latter effect, the trend of weakening
the first-order tendency for large J/U is also reproduced and
there is some discussion?®?” about the possibility of even
changing back to a continuous Mott transition in that regime.
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FIG. 5. Filling dependence of Z for selected values of J/U
within the equal-bandwidth two-band model with full SU(2) sym-
metry (U=1.75).

The increasing U, with growing J at quarter filling was also
found by Song and Zou.”

Finally, in Fig. 6 a comparison between the equal-
bandwidth and the different-bandwidth cases at noninteger
filling n=1.5 is displayed (J/U=0.2). For W;=W, the model
does not show a metal-insulator transition because of the
doping. Also the filling of both bands is identical and con-
stant with increasing U (n,;=ny,=0.375), and as stated ear-
lier the SBs are still of the form given by Eq. (60). However,
when breaking the symmetry between the two bands by con-
sidering different bandwidths, the model behaves qualita-
tively rather differently. The individual band fillings are not
identical anymore, favoring the larger-bandwidth band for
U=0. With increasing U the system manages to drive at least
one band insulating by transferring charge from the broader
into the narrower band, until the latter is filled with one
electron.?*3! Hence Z, of the narrower band becomes zero at

2.4
2.2
o 20
Q:E 1.8
=1.6
=
1{_ 1.4
1.2 1 1
N 1.0 10 Z ]
. 0.8
=>0.6
0.4

0.2

0 | | |

11
40 1 2 3 4
U/2)

(e)
[
S}
W

FIG. 6. (Color online) Comparison of the two-band model for
W,=W, (left) and W;=2W, (right) at noninteger filling n=1.5 and
J/U=0.2. The ratio x is plotted for the singlet states coupling the
doubly occupied Fock states (see Table I), demonstrating that ¢pr-
is no longer diagonal in this case.
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an orbital-selective Mott transition (OSMT).3%-3> This asym-
metric model has also a more sophisticated SB description,
since, for instance, the SBs of the singlets built out of the
respective doubly occupied Fock states have now different
amplitudes.

B. Hubbard bilayer

Next, we consider a model consisting of two single-band
Hubbard models (two “layers”), coupled by an interlayer
hopping V. This rather popular model has already been sub-
ject of various studies.**° For simplicity and in order to
make connection to the previous section, each layer is de-
scribed here by a 3D cubic lattice, with an onsite repulsion U
and an intralayer bandwidth W, (a=1,2), possibly different
for the two layers. Hence the local Hamiltonian for this prob-
lem reads

Hoe=U 2, Ngilg| + V2 (d] ,dyy+ dbydy )

a=1,2 o

J
+ 52 d}ody g d) s

oo/’

(62)

where the last term describes a possible spin-spin interaction
between the layers. However, for simplicity, we only present
in this paper results with J=0. Our choice of kinetic energy
is equivalent to the one in the last section, i.e., given by Egs.
(58) and (59).

In the presence of V, an off-diagonal self-energy 2 ,(w) is
generated. Furthermore, away from half-filling (n,+n,=2),
this self-energy is expected to have a term linear in w at low
frequency, and hence Z;, # (0. We note that, when the band-
widths are equal (W,=W,), the bilayer model can be trans-
formed into a two-orbital model by a k-independent rotation
to the bonding-antibonding (or +,—) basis. In the latter ba-
sis, there is no hybridization but instead a crystal-field split-
ting (=2V) between the two orbitals. The couplings of the
two-orbital Hamiltonian are given by (in the notation of the
previous section, and for J=0) U.y=Uly=J4=U/2. When
the bandwidths are different, the interlayer hopping cannot
be eliminated without generating nonlocal interdimer inter-
actions.

Due to the reduced symmetry of the present model in
comparison to the two-band Hubbard model from the previ-
ous section, the number of nonzero SBs ¢,, equals now 36
(we use here the Fock basis for |A)). We first consider the
simplest case of a half-filled system (n,=n,=1) with equal
bandwidths W, =W, (and J=0). Results for the intralayer QP
weight and the orbital occupancies of the bonding and anti-
bonding bands are given in Fig. 7. It is seen that the Mott
transition is continuous for V=0 but becomes discontinuous
in the presence of an interlayer hopping V# 0. For V=0.25
the spinodal boundary of the metallic regime is reached for
U~2.055. These results are consistent with findings in pre-
vious works**~4? within the DMFT framework.

Still focusing on the half-filled case, we display in Fig. 8
the QP weight as a function of U for different bandwidth
ratios W,/W;. When V=0, one has two independent Mott
transitions in each layer, i.e., an OSMT scenario, at which Z
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FIG. 7. (Color online) Half-filled bilayer with equal bandwidth
for V=0 and V=0.25. For V=0 the filling per spin within the two
bands is identical (n;=ny,=0.5), whereas for finite V the
symmetry-adapted bonding and/or antibonding states have different
filling, denoted n,, n_.

vanishes continuously. In the presence of a nonzero V, this is
replaced by a single discontinuous transition for both orbit-
als. This is consistent with previous findings on the OSMT
problem.3?

We now consider the effect of finite doping away from
half-filling. Figure 9 displays the diagonal (Z;,=Z,,) ele-
ments as well as the now appearing Z;, element of the QP
weight matrix as a function of doping for U<<U,. Addition-
ally shown are the symmetry-adapted QP weights Z, _ (oc-

cupations 7, _) which follow from diagonalizing the Z (AP
matrix. Since Zj, is small in this case, the Z, _ are rather
similar to Z;;=Z,, and merge with the latter at half-filling.
On the other hand, the polarization of the (+,—) bands is still
increasing.

As it is seen in Fig. 10 the off-diagonal component Z;,
becomes increasingly important for larger U (>U,) in the

PHYSICAL REVIEW B 76, 155102 (2007)
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FIG. 9. (Color online) Doped bilayer with equal bandwidth and
V=0.25 for U=2.054 (<U,).

doped case. It follows that in this regime the QP weights Z, _
for the bonding and/or antibonding bands have rather differ-
ent magnitudes and/or behaviors. Whereas Z_ is monotoni-
cally decreasing, Z, turns around and grows again (as also is
the filling of the bonding band). Hence, this model is a
simple example in which a differentiation between QP prop-
erties in different regions of the FS occur. Figure 11 shows
the QP (+,—) bands in the noninteracting and interacting
cases (U>U,), exhibiting strong orbital polarization and dif-
ferent band narrowing close to the insulating state. For very
small doping and large U a transition to a new metallic phase
is found, which will be discussed in detail in a forthcoming
publication.*!

Finally, we have also investigated a case in which the
interlayer (interorbital) hopping does not have a local com-
ponent (V=0), but does have a nonlocal one V=r,#0,
treated in the band term of the Hamiltonian. Hence the cor-
responding energy matrix reads here

2(t t
s(k):—-( ! 12) > cos(k,a), (63)
10 ‘ | ‘ 3\t 12/ 4y,
08k > i ] with the choice t,,=1,,=0.5 and ¢,,=0.25, as well as a=1. In
H ! : . that case, a continuous Mott transition within an OSMT sce-
0.6~ B B
N L 4 4
04r 7 | 7 1.0 S 7 ——1—0.00
0.21 2\ - | ] , //
f \ AN 1 0.8 <
1.0 ‘ } ‘ } ‘ 1 * —-0.05
L = wyw, =075 | | o E :
B L — Wiw, =050 _
0.8/ 1 — wiw =025 i : b
ﬂ‘ 067 n+= n I )
.
=04r Bl: T ]
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L 1L o [
0 | | | [ | ! :
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08005

FIG. 8. (Color online) QP residues Z; and symmetry-adapted

1.0

\ \ \
1.5 2.0 2.5

U/(2t)

30 33220

fillings n,, n_ for the half-filled bilayer. Left: W,/W;=0.5 and V
=0. Right: various bandwidth ratios and V=0.1. In the right part,
the curves for smaller Z and n are associated with the lower-
bandwidth band.

FIG. 10. (Color online) Bilayer at fixed doping (n=1.88) with
equal bandwidth and V=0.25. Full green (gray) lines: fillings n,,
n_; dashed dark lines: QP weights Z,, Z_. The vertical dotted line
marks the critical U at half-filling.
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FIG. 11. (Color online) QP bands of the doped bilayer model
(n=1.88) with equal bandwidths and V=0.25. The dominately filled
band is the bonding one.

nario can be recovered, with, interestingly, a sizable value of
the off-diagonal Z;, (Fig. 12). At the transition Z;;=Z,,

=Z,=Z. holds, i.e., the Z matrix has a zero eigenvalue,
associated with the (antibonding) insulating band. Note,
however, that no net orbital polarization appears with V be-
ing purely nonlocal.

C. Application to the momentum dependence
of the quasiparticle weight within cluster
extensions of dynamical mean-field theory

In this section, we finally consider the implications of the
rotationally invariant SB technique for the Mott transition
and the momentum dependence of the QP weight, in the
framework of cluster extensions of DMFT.

For simplicity, we consider a CDMFT approach to the
two-dimensional Hubbard model with nearest-neighbor hop-
ping ¢ and a next-nearest neighbor hopping ¢, based on clus-
ters consisting of two sites (dimers), arranged in a columnar
way on the square lattice (see Fig. 13). The “local” Hamil-
tonian on each dimer is formally identical to the one intro-
duced in the previous section for the bilayer model, i.e., Eq.

1.0

0.8 12 1

T

T
|

0.6
N . 4
0.4

T
|

0.2

T
|

U/(2t)

FIG. 12. (Color online) Half-filled bilayer, with equal band-
widths and V=0, but with a nonlocal interlayer hybridization #,,.
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FIG. 13. Square lattice in the two-site CDMFT picture.

(62), with the value V=-r of the “interorbital” hybridization.
The interdimer kinetic-energy matrix reads (we set again
a=1)

£11(K) = £x(K) =21 cos K,

e12(K) = £5,(K) = — 1e"K: = 21 (1 + e )cos K, (64)

in which K denotes a momentum in the reduced
Brillouin zone (BZ) of the superlattice: K, e [-7/2,+ /2],
K, e[-m,+m]. Note again that in SB calculations, the in-
tradimer ¢ has to be treated separately from the rest of the
kinetic energy within Hj,. It is easy to check that when
putting back —t into the off-diagonal elements of the above
kinetic-energy matrix, the eigenvalues just correspond to the
one of a single band:

(k) = —2t(cos k, + cos k,) — 41" cos k,cos k,  (65)

in the full BZ of the original lattice k,, € [-m,+]. In the
following, we set =0.25 and consider successively ' =0 and
t'=-0.3¢ (a value appropriate to hole-doped cuprates). Note
that, in this paper, we do not consider a bigger cluster than
the two-site dimer, even in the presence of #'. Hence, the
cluster self-energy will only contain 2, and 3,, compo-
nents, i.e., has a spatial range limited to the dimer. As a
result, no renormalization of the effective ¢’ is taken into
account. This is of course an oversimplification (particularly
in view of the demonstrated physical importance'""'? of 5
close to the Mott transition). Larger clusters will be consid-
ered within the present SBMFT in a further publication. The
goal of the present (simplified) study is to make a point of
principle, namely, that the SB formalism can indeed produce
a momentum-dependent Z(k). As the cluster symmetry of the
problem at hand is identical to the bilayer model from the
last section, the number of nonzero SBs amounts again to 36.
Figures 14-16 summarize the main findings, at half-filling
and as a function of doping, respectively. Let us first concen-
trate on the case ¢’ =0. Obviously, the Mott transition at half-
filling in this case occurs in a manner which is very similar
to the bilayer model with a finite interlayer hybridization
studied in the previous section (Fig. 7): a first-order transi-
tion is found. The static part of the self-energy 2,,=2,,
equals U/2, while 3, (which has no frequency dependence
at half-filling within SBMFT) has a more complicated nega-
tive amplitude close to the transition. Note that we only dis-
cuss the paramagnetic solution, though, of course, the system
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FIG. 14. (Color online) Half-filled two-dimensional Hubbard
model within two-site CDMFT. Left: QP weights and band fillings;
right: static dimer self-energy .

is in principle unstable against antiferromagnetic order for
any U. Upon doping, a finite value of Z;, is generated. The
behavior of Z;, is rather similar to the case of the bilayer
model, except for the change of sign (Figs. 15 and 16).
Hence its amplitude is again significantly enhanced for U
>U,, i.e., the Z, _ values tend to manifestly deviate from
each other. This is therefore signaling an increasingly nonlo-
cal component of Z(k) as the Mott insulating state is ap-
proached at strong coupling. Again, further studies in the
latter regime at small doping will be published soon.*!
Including the effect of a nonzero nearest-neighbor hop-
ping ¢' #0 turns out to lead to significant differences. Al-
though the first-order character of the transition remains
stable, the critical U is significantly lower (Fig. 14). The
static components of the self-energy behave rather similarly
to the r-only case, with some minor quantitative differences.
There is a small negative Z;, with a maximum amplitude
~0.02, remaining nonzero also at the Mott transition
(~0.01). The main difference in comparison to ¢’ =0 is that
here, in the doped case, Z;, changes sign from negative to
positive close to the insulating regime for U>U.+ & (with
6>0) (see Fig. 16). Thus the degree of correlation of the

1.0 — T,
R zi], z ” -0.04
0.8
0.6
N
0.4
0.2

00

. | . | . | . .
8.75 0.80 0.85 0.90 0.95 1.0
filling per site

FIG. 15. (Color online) Doped two-dimensional Hubbard model
(¢'=0) within two-site CDMFT, for U=2.195 (U,~2.197).
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FIG. 16. (Color online) Two-dimensional Hubbard model within
two-site CDMFT at fixed doping n=0.94. Left: r-only model; right:
t-f' model (#'=-0.3t). The vertical lines denote the critical U at
half-filling.

effective (bonding-antibonding) bands is inverted. These dif-
ferences have to be interpreted with caution, since again the
hopping range on the lattice is larger than our cluster size,
and definitive conclusions will have to be drawn from a
study involving 35 as well.

Nonetheless, keeping with the simplified treatment based
on a two-site cluster, we now describe the resulting momen-
tum dependence of the QP weight Z(k) for the -t model.
The matrix elements ,; and X, of the cluster (physical)
self-energy matrix %, are obtained from the SB amplitudes at
saddle point according to Eq. (55). The self-energy is then

periodized on the whole lattice, in the form:*>*3

(k@) = 31 () + 33 5(@)(cos k, +cos k). (66)
The interacting FS is defined as follows:
p—ek) -3,k o=0)=0. (67)
For our case, using Egs. (65) and (66), this reads
©w—21,00) + [Zt - %212(0)](005 ky + cos ky)
+4t" cos k, cos k,=0. (68)

Hence the FS deforms in a nontrivial way in the presence of
3 When including " in the present two-site CDMFT de-
scription. The QP weight Z(k) can be derived from 3, ac-
cording to:

; (69)

P -1
Z(k) = {1 - azlat(lg w)]

K=k,
which leads here to
Z(k) = [[Z;l]u + %[Zzl]lz(cos k. + cos ky):l_1
= (Z%1 - Z%z)[Z” - %le(cos k. + cos ky)]_l. (70)

A contour plot of this function is displayed in Fig. 17. Note
that it varies only according to (cos k,+cos k,). Because the
interacting FS involves both 7 and ¢, and hence both lattice
harmonics (cos k,+cos k;) and cos k, cos k, (for 1" #0), it
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FIG. 17. (Color online) Interacting Fermi surface (solid lines)
for the CDMFT treatment of the 2D -’ Hubbard model with ¢’
=-0.3r and U=2.5 at n=0.94 (per site). The color contours show
the variation of Z(k) (smallest at antinodes).

cuts through different contour lines of Z(k). This results in a
QP weight which varies on the FS. Figure 17 shows Z(k) for
k close to the interacting FS. Albeit the momentum variation
is quantitatively quite small, the key qualitative effect of Z
being different on different parts of the FS is indeed found. It
is seen that the QPs along the nodal direction, i.e., along
(0,0)-(r, ), have slightly larger Z than the ones in the the
antinodal direction [(0,0)-(0, 7r)]. Hence these results are in-
deed in qualitative agreement with ARPES measurements on
cuprates. Note that to get nodal points to be more coherent
that antinodal ones in this two-site scheme, Z;,>0 is actu-
ally crucial.

Our results provide an example of a SB calculation which
can address the issue of the momentum dependence of the
QP weight. We believe that the too small variation of Z along
the FS found here is due to the oversimplified two-site de-
scription in which 3,5 is neglected. We intend to consider
improvements on this issue using the present SBMFT in a
forthcoming work.

Finally, let us make contact with previous work on the
two-dimensional Hubbard model. Of course, this model has
been intensively studied with a variety of methods such as:
quantum Monte Carlo,*** exact diagonalization,***’ path-
integral renormalization group,*® functional renormalization
group,*® and various quantum cluster methods (dynamical
cluster approximation,®® cluster extensions of dynamical
mean-field theory,” and variational cluster perturbation
theory®). We shall not attempt here a detailed comparison
between the rotationally invariant SB method (which any-
how is a mean-field technique tailored to address low-energy
issues) with the results of these numerical methods over the
whole phase diagram (note, in particular, that we have not
yet investigated long-range ordered phases, such as antifer-
romagnetism or superconductivity). Rather, we would like to
point out that some recent numerical studies using the above
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methods'®'>4% have indeed revealed the emergence of
momentum-space differentiation in the two-dimensional
Hubbard model. We hope that the rotationally invariant SB
method will help us understand qualitatively the low-energy
physics emerging from these results.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we extended and generalized the rotationally
invariant formulation of the slave-boson method.!*!#

Our formulation achieves two goals: (i) extending the
slave-boson method in order to accommodate the most gen-
eral crystal fields, interactions, and multiplet structures and
(ii) the development of a technique which can describe QP
weights and Fermi liquid parameters which vary along the
Fermi surface.

The key aspect of the formalism is to introduce slave-
boson fields which form a matrix with entries labeled by a
pair of a physical state and a QP state (within an arbitrary
choice of basis set). As a result, a density matrix is con-
structed instead of just a probability amplitude for each state.

While the first objective (i) could also be achieved by
generalizing appropriately the Gutzwiller approximation, !¢
we find the slave-boson approach to be somewhat more flex-
ible, in the sense that it is a mean-field theory which can in
principle be improved by computing fluctuations around the
saddle point. Our application to the two-band model seems
promising. While further work is needed to benchmark the
accuracy of the rotationally invariant slave-boson method
against exact quantum impurity solvers, it is clear that al-
ready in the single site multiorbital DMFT setting, our
method has numerous advantages. It obeys the Luttinger
theorem even in the presence of multiplets, and can accom-
modate full atomic physics information. Furthermore, the
off-diagonal elements of the matrix of QP weights can be
calculated within this method, while the standard slave-
boson or Gutzwiller approximations (using probability am-
plitudes instead of a density matrix) cannot achieve this goal.

Our technique achieves the second objective (ii) via a
detour, namely, the use of cluster extensions of dynamical
mean-field theory in order to reduce the lattice to a multisite
(molecular) impurity problem, to which we apply our rota-
tionally invariant slave-boson method as an impurity solver.
Because the intersite matrix elements of the QP weight can
be calculated, it leads on the lattice to a momentum depen-
dence of the QP residue Z(k). We successfully demonstrated
this point, in the framework of a two-sitt CDMFT study of
the single-band 2D Hubbard model. We did find that the QP
weight at the nodes is somewhat larger than at the antinodes,
although the magnitude of this effect is expected to increase
within a more realistic study involving a larger cluster (e.g.,
a square plaquette), which is left for future work. A major
challenge is the direct extension of our slave-boson approach
to the lattice, without resorting to the cluster-DMFT detour.
In this context, we mention that other slave-boson tech-
niques, which introduce magnetic correlations through the
use of link variables to decouple the superexchange J term,!
can be interpreted in terms of a k-dependent self-energy.
However, within such schemes, the derivative of the self-
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energy with respect to frequency is momentum independent
(in contrast to the static part), yielding a k-independent QP
residue. Hence, our approach goes beyond these methods, at
least in conjunction with the cluster-DMFT approach. We
hope that having an economic impurity solver based on SBs
will allow us to study larger cluster sizes than feasible with
other methods, and most importantly help us understand the
low-energy physics emerging from these cluster dynamical
mean-field theories.

Finally, we limited our study to slave bosons which do not
mix the particle number. The extension to full charge-
rotational invariance and superconductivity is possible (see
Refs. 14 and 22 in the single-orbital case), and will be pre-
sented in a separate paper. In this context, the slave-boson
method will incorporate the SU(2) charge symmetry and its
extension away from half-filling considered by Wen and
Lee’' and the rotationally invariant slave-boson formalism
can serve as a powerful tool for interpreting the low-energy
physics emerging from plaquette-CDMFT studies of this is-
sue.
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APPENDIX A: SINGLE-ORBITAL CASE AND
CONNECTION WITH PREVIOUS WORK

Here, we briefly consider the single-orbital case (M=2),
which also allows us to make contact with Refs. 13 and 14.
These authors introduced in this case a rotationally invariant
formalism, with the calculation of response functions associ-
ated with the saddle point as their main motivation. For M
=2, the following local basis set can be considered (whether
or not Hy,, is diagonal in this basis):

N=0:|0),
N=1:|oy=d’|0),

N=2: |D)=dd||0). (A1)

Hence, we introduce the following bosons (not mixing sec-
tors with different particle numbers, i.e., not considering su-
perconducting states):

¢00 = ¢E? ¢o’(r’» ¢TL = ¢D'

Up to normalizations, the bosons pjm, introduced in

(A2)

Ref. 13 correspond to d)jm,. In contrast, the standard
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Kotliar-Ruckenstein'” formalism introduces only two bosons
p. in the one-particle sector. The representatives (27) of the
physical states read here

|0) = p}|vac),

1o
gy = —52 ¢! fh|vac),
\’ (rl

|D) = d)Zd}clﬂvac), (A3)
and the constraints (28) and (29) read
L= Gpbp+ 2 by oo + Sibp, (A4)
fofa= bpbp+ 2 Broboas (A5)
f?fl = E ¢Z—l¢tﬁv (A6)
(A7)

fIfT = ¢ZT¢UL-

Not including, for simplicity, the square-root normalizations
in Eq. (37), needed in order to ensure a correct U=0 limit at
saddle point, the “simplest” expression (32) of the electron
creation operators reads

1 .
di= \,—52 [p] g+ (= DPBL b 51f 5. (A8)
< B

1 N

di= Tz% [6p¢e= (= DPpbialf.  (A9)
Apart from the motivations of Ref. 13 (associated with fluc-
tuations and response functions), the usefulness of the rota-
tionally invariant scheme in the single-orbital case can be
demonstrated on a toy model consisting of a one-band Hub-
bard model with a magnetic field, purposely written in the S*
direction (i.e., in the form hd;d l+h.c., analogous to a hybrid-
ization). Although the direction of the field should not matter,
a direct application of the standard Kotliar-Ruckenstein for-
malism is impossible in that case. The rotationally invariant
formalism can be shown to lead to the correct saddle point,
independently of the spin-quantization axis.

APPENDIX B: DERIVATION OF EQUATION (29)

In this section, we show that the physical states of the
form (27) are exactly those selected by the constraints (28)
and (29). First, it is easy to check that states of the form (27)
do satisfy these constraints. Indeed, let us act on the state
|C) =528,/ vac) © m) and with Eq. (29). The lefi-hand
side (lhs) leads to
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i 1 T i
fif Q) = =22 $L,lvac) ® fifalm)y
VDC m

1 .
= _"D— > (m'|fLf | my L, |vac) ® Im");.
A mm’

c
(B1)

When acting with the rhs, only the terms A=C and n=m give
a nonvanishing contribution. Hence,

22 b bannlfifurlnC)

A

”n,
1
= TE (n|f£fa/|n’>¢2n,|vac) ® |n);.
VD¢ !

We now prove that Eq. (29) is a sufficient condition,
which is a bit more difficult. Since Eq. (28) excludes states
with more than one boson, it is enough to consider a general
state of the form

|C’W> = 2 qu¢Tcp|V2[C> ® |Q>f» (Bz)
Prq

and to show that Eq. (29) implies W, = §,,. Acting on this
state with each term in the constraint (29) yields for the lhs

[of ol CW) = 2 W, 8 |vac) ® fifula)
rq

=2 pp,|vac) ® [r) 20 W, (rlfifurla).
pr q

(B3)
Let us now act with the rhs. Only the terms with A=C and
n=p contribute, leading to

22 b bannlfifaln N C W)

A !

= D Woydivac) @ @) Aplfifarln’y
pan’

=2 dr,lvac) ® |12 Wolalfifwlp).  (B4)
pr q

where the last expression comes from a change of indices
n'—p, q—r,and p—q.

We see that the constraint is satisfied provided that the
following identity holds, for all orbital indices aa' and all
states p, r:

2 qu<r|flfa’|Q> = E qu<61|flfa'|l7>- (BS)
q q

Let us first look at the case a=«’, which reads
raWpr =paWpr‘ (B6)
Hence W,,=0 unless p,=r, for all «, so that

Wy =W,6,- (B7)

Substituting this into Eq. (B5), we obtain
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w(rlfifarlp) = wArlfof ur D). (B8)

Thus, if r and p are related by a move of a QP from one state
to another (a transposition of two occupation numbers), then
w,=w,. Moreover, two Fock states in the same sector Hy of
the Hilbert space are related by a permutation of the occu-
pied states, which can be decomposed in a product of trans-
positions. Hence, w), is a constant for p € Hy, and W, % J,,
as claimed.

APPENDIX C: PHYSICAL CREATION OPERATOR

1. Proximate expression

First let us note that there is a systematic route to find the
expression for d, which consists in writing the operator as

di,= 2 (AldB)AXB=> X
AB

AB neHymeHpg

<A |dTa|B> d);nd)BmXJr:m ’

(C1)

with X/ =|n){m|; in usual Hubbard notations. X/, is obvi-
ously not just a one-particle operator 7, even when restricted
to the sectors of interest in the above formula, since the states
n and m can differ in many places. However, because any
transposition of two QPs, when acting on a physical state,
can be replaced by a corresponding operation on bosons us-
ing the constraint (29), and because any product of bosonic
operators which cannot be reduced to a quadratic form will
produce a state which is out of the physical subspace, the
physical operator must in the end take the form

di=2 2 > Chp(e.B) bl (€2)
B AB nm
One can solve for the coefficients Cj"(a,f), requesting
proper action on the physical states.
In this section, however, we restrict ourselves to proving
that Eq. (32) does the job, i.e., that

T ¥
di = (AldlB)nlf |m>¢2n¢3nf; (€3)

pasam N4 (M = Ng)

satisfies
dalB)= 2. (Ald|BlA). (C4)
We start by proving the formula
2 2 (alfglpdfplp) = (W + D). (C3)

B peHy

where the sum over p runs over the basis of the subspace Hy
(states with N QPs) of the Fock space. First, we have in
general

2 2 lfdpyipy= 2 agn’).  (C6)

B peHy n' eHy,

but, because f' is the creation operator (it connects one basis
state to only one another),
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apr = E <n|f[13|p><n,|f[‘3|p> * 5rm’

BreHy

> [alfgpl.

BpeHy

(C7)

We now use the fact that the tensor is invariant (it has the
same expression in every basis) and use the notations intro-
duced for Eq. (40): U is a unitary transformation of the one
QP states and U is the corresponding transformation in the
Fock states. (n|f}|m)y=Upggld, (n’ |f o m" )y, and we have

Moreover, any couple of elements of the basis of the Fock
state can be connected by a U/ transformation (with a U that
permutes the one QP basis state); therefore, a,=a is inde-
pendent of n. a can then be determined by summing Eq. (C5)
over n,

2 a,=2 2 [nlfplP= 2 0l s
neHy, B neHyy nety, B
peHy

= X (N+1),

neHy,

(C9)

leading to a=N+ 1. This completes the proof of Eq. (C5).

It is now simple to compute the action of Eq. (32): acting
on |C)E\%—C2p¢zp|vac>®|p>f with this operator, only the
term B=C, m=p contributes, and we get

1
\’/DC(NC +1)(M =N¢) an

® > > (nlfip)fsp)

B peHy,

[N s
DC(M_NC)A,VL

€Hy 11

di|C)= > (Ao, |vac)

€Hy 41

(Ald}|C) ), Ivac) ® |n)

=2 (Aldjo)c), (C10)
A

which is identical to Eq. (31).

2. Improved expression

In this section we present arguments for the improved
formula used in this paper. First, it is useful to define the
“natural orbital” (NO) basis as the basis which diagonalizes
the quasiparticle and quasihole density matrices correspond-
ing to the average constraint, which is given by

AP = 2 brubanlmlfifaln), (Clla)

Anm

AA(;??[(#] = E ¢Zn¢Am<m|foL|n> = 2 ¢:n¢An - AAZ?L;[‘#]

Anm An

(C11b)

Let us denote by &,, |\) the eigenvalues and eigenvectors of

those matrices:
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AP =3 6B, N =2 (aM]a), (C12)
A A

which is equivalent to use the NO quasiparticle operator 1/11
such that

dh=2Nafl. (Rg)=0,6.  (C13)
To be fully explicit, we can consider the particular basis
transformation (in the notations of the section above) fZ
=Ua)\zﬁj; which rotates to the NOs, and the corresponding
rotation on the bosons: ¢,,=U(U),,,{)s, . The rotation ma-
trix is

Ua)\=<a|)\>9 (C14)

and in the NO basis,

E Q;.nQBm<m|l//;:¢/lL|n> = 5)\/L2 Q:nQAnn)\ = 5>\M§)‘({QA"})’

Anm An
(C15)

and

AP $l= 2 Un&[U g (C16)
A

The idea is to generalize the Kotliar-Ruckenstein normaliza-
tion factor in the NO basis, where the QP density being di-
agonal, its probabilistic interpretation is more transparent.
Hence, the improved expression of d reads

: (Ald3B)n|y|m) . .
d= QL Qi
b TGO = 6

(C17)

Note that the formal square-root normalization, i.e.,
1/y/N4(M—-Npg), does not appear in this representation. We
can now rotate back to the generic basis we started from and
use the gauge invariance, leading to

. M
d= 3 @Bl dmS A
AB.nm,By » VE(T =&V
= 2 Ch(aB) B, bl BIAVAN12]y)f"
AB,nm,By
(C18)
with
Cam(v. B) = (Ald]|B)(nlf|m). (C19)

Hence this yields the following form for the R matrix:

Rlplys= 2 Conla.0)dh,dp,(SA[APADT12|B).

AB.,nm,é

(C20)

In the actual implementation of the saddle-point calcula-
tions, the explicit use of both the quasiparticle and the quasi-
hole density matrices has been utilized (i.e., not using their
relation). Although at convergence the different representa-
tions yield the same values, writing the equations via both
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particle and hole density matrix appears to be necessary
within the minimization cycle. This is due to the fact that the
derivatives with respect to the slave bosons have to be sym-
metric, however, when using only the particle density matrix
(or its eigensystem decomposition) for instance, the deriva-
tive with respect to the empty boson vanish, although this
one exists in the Kotliar-Ruckenstein case. In the end an
even more symmetrized form, i.e., %(AA(P)A”‘MN}‘)AA(P)) was
used for the square root in Eq. (C18). Thus defining the
following matrix:

Myﬁz<y][%(5<p>5<h>+AA<h>AA(p))]‘”2‘B>’ (C21)

the electron operators are written as

E E 2 Clg:ln(a 7)¢An¢Bm yﬁfﬁ 2 Raﬁfﬁ’

AB nm yB
(C22)

dy=2 2 2 Con(a,Y) Bl anM pof 5= 2 Ropf 5.
B

AB nm yB
(C23)

and correspondingly independently written the elements of
the R, R" matrices read

Rl¢lg= 2 Co(a,Y)PhndanM g, — (C24)
AB.,nm,y
Rplug=RlDlse= 2 Chu(B.Y)bhbsnM
AB,nm,y
(C25)

APPENDIX D: DETAILS ON THE SADDLE-POINT
EQUATIONS AND THEIR NUMERICAL SOLUTION

The saddle-point equations for 7=0 are obtained by per-
forming the partial derivatives with respect to all the vari-
ables, i.e., condensed slave-boson amplitudes and Lagrange
multipliers as follows:

é‘Q

Ny (D1)

2 PanPans
An

= <fafﬁ> - 2 (pAn <n|deB|n >(PA11’ (D2)

Ann’

aAaﬁ

O"Sk
=21 S+ 2 Eac@hm + NP

&QDCm kj (%DCm A
— 2 Aop> (mldidgln' Yol (D3)
af n'
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ﬁ(jp(jm E Sxj :;Cm + % Ecs@pm + No®cm
- EB A2 (nlddglm) c, (D4)
with
(flfﬁ> = kE .7kj<a|ij><ij|ﬂ>- (D5)
j

The ey are the eigenvalues (with band index j) of the QP
matrix (R7(¢)e(k)R(¢)+A) with corresponding eigenvector
|ka) while fk] denotes the occupation number of the state
|ij> for a given total number of particles, to be evaluated by
standard k-integration techniques (e.g., tetrahedron method,
Gaussian smearing, etc.).

1. Some slave-boson derivatives

(a) Eigenvalues and R matrices. The derivatives of the

. . . deig
eigenvalues with respect to the slave bosons, i.e., (9 , may

be performed pertubatively as follows:
ij>

o€y
Zokj _ < Y
dp
JRT R
=\ M P Vkj

4 i(RTs(k)R +A)
e
—&(k)R+RTe(k)—
dp

=\ wg

]’éf
S o) 22 gle(OR
af ®
+ SR eW]a) 28 )
af ¢
]’é%
= E l(ij|a>%§<B|8(k)R|ij>
af ®

R,
+ (ij|RT€(k)|a>7(P§<,3| ij)] : (D6)
The therefore needed explicit expressions for the derivatives

of the R, R' matrices read as follows [using Eqs. (C24) and
(C25)]:

IR g " . M g,
P = = 2 Cn (a 7)993,, (ég;nM,By"'(PAna )9
Pcm AB.n',y Pcm
R, B
&_é 2 CBZ/(a"Y)‘PAn(éC Mﬁy
Pcm AB.nn',y

+ (,o;n —P) (analogous for [Ié"']aﬁ).
a¢Cm
(b) The M matrix. As it is seen, the derivatives involve the
derivative of the M matrix (C21). This derivative is com-
puted as follows. Let us first write M as

155102-18



ROTATIONALLY INVARIANT SLAVE-BOSON FORMALISM...
M, z=(yK"B). (D7)

What we are looking for is the derivative of K™/~ with re-
spect to the SBs. In order to get access to this quantity we
use the identity

12\ -1/2 -1/2 —1/2y _ -
(0, K"K "2+ K9, K%)= 9,K™!

172

(D8)

SXK "+ KX =Y, (D9)

with X=¢9¢,K‘”2 and Y=a¢K‘l. We then apply P which
transforms K to its eigensystem. This yields

X'L+LX' =Y/, (D10)

where the prime denotes that the quantities defined above are
expressed in that eigensystem, and L=PK~"?P. Since in the
eigensystem K~"? is diagonal, i.e., L is, the last equation can
be written in components and X’ determined as follows:
Al
Xl-’ij + LI-X{J- =Al-’j <:>ij =—1

. D11
Li+L; ( )

Backtransforming to X=PX'P"=9,K™""? yields the desired
derivative of K and subsequently of M. To perform the de-
scribed computation we need to know 8¢K‘1 in Eq. (D8);
however this quantity may be straightforwardly calculated
when starting from the identity KK~"2K~2=1, resulting in
9K '=-K'(9,K)K™".

2. Mixing

In order to solve the saddle-point equations, a method to
deal with a system of nonlinear equations F as a function of

PHYSICAL REVIEW B 76, 155102 (2007)

the variables (slave bosons and Lagrange multipliers) x has
to be utilized as follows:

F(x)=0. (D12)

In the present work we tested several quasi-Newton tech-
niques (e.g., Broyden,’® modified Broyden,>* etc.) to handle
this numerically. Thereby from a starting guess for x the
variables are updated via

X(na1) = X + I F - (D13)
since we want F,,,) to be zero to linear order. The Jacobian
J is here defined as follows

P

L
/ &xj

(D14)

and is not calculated exactly (this would involve second de-
rivatives and would lead to the Newton-Raphson method)
but is computed at each step m via formulas which dictate
several constraints on how J should evolve. In our numerical
implementation we found the modified Broyden scheme to
be well suited for the so far investigated applications Note
that there is usually no need for explicitly fixing the gauge
for the numerical solution of the saddle-point equations. The
initial amplitudes of the variational parameters, i.e., slave
bosons and Lagrange multipliers, at the start of the iteration,
together with the choice of the atomic basis |A), always en-
sured proper convergence to one of the family of solutions
within our implementation.

*frank.lechermann @ physnet.uni-hamburg.de

I'G. Kotliar, in Strongly Interacting Fermions and High-T, super-
conductivity, edited by B. Doucot and J. Zinn-Justin (Elsevier,
New York, 1995), Les Houches, Session LVI, p. 197.

2M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

3 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75,
473 (2003).

4M. R. Norman et al., Nature (London) 392, 157 (1998).

SM. Le Tacon, A. Sacuto, A. Georges, G. Kotliar, Y. Gallais, D.
Colson, and A. Forget, Nat. Phys. 2, 537 (2006).

OT. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 (2005).

7G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-
collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

8A. M. S. Tremblay, B. Kyung, and D. Senechal, J. Low Temp.
Phys. 32, 424 (2006).

SA. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

10D, Sénéchal and A.-M. S. Tremblay, Phys. Rev. Lett. 92, 126401
(2004).

"M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.
Kotliar, Phys. Rev. Lett. 95, 106402 (2005).

120. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92,

226402 (2004).

BT. Li, P. Wolfle, and P. J. Hirschfeld, Phys. Rev. B 40, 6817
(1989).

4R, Frésard and P. Wolfle, Int. J. Mod. Phys. B 6, 685 (1992).

15C. Attaccalite and M. Fabrizio, Phys. Rev. B 68, 155117 (2003).

16 M. Ferrero, Ph.D. thesis, SISSA-Trieste, 2006.

7G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362
(1986).

I8R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).

197, Biinemann, W. Weber, and F. Gebhard, Phys. Rev. B 57, 6896
(1998).

20B. R. Trees, A. J. Fedro, and M. R. Norman, Phys. Rev. B 51,
6167 (1995).

21X, Dai, G. Kotliar, and Z. Fang, arXiv:cond-mat/0611075 (un-
published).

22B. R. Bulka and S. Robaszkiewicz, Phys. Rev. B 54, 13138
(1996).

23J. H. Shim, K. Haule, and G. Kotliar, Nature (London) 446, 513
(2007).

%Y. Ono, M. Potthoff, and R. Bulla, Phys. Rev. B 67, 035119
(2003).

25M. J. Rozenberg, Phys. Rev. B 55, R4855 (1997).

26T. Pruschke and R. Bulla, Eur. Phys. J. B 44, 217 (2005).

?7K. Inaba and A. Koga, Phys. Rev. B 73, 155106 (2006).

155102-19



LECHERMANN et al.

28], E. Han, M. Jarrell, and D. L. Cox, Phys. Rev. B 58, R4199
(1998).

Y. Song and L.-J. Zou, Phys. Rev. B 72, 085114 (2005).

04, Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev.
Lett. 92, 216402 (2004).

3 A. Riiegg, M. Indergaard, S. Pilgram, and M. Sigrist, Eur. Phys. J.
B 48, 55 (2005).

321, de’ Medici, A. Georges, and S. Biermann, Phys. Rev. B 72,
205124 (2005).

3YV. L. Anisimov, I. Nekrasov, D. Kondakov, T. M. Rice, and M.
Sigrist, Eur. Phys. J. B 25, 191 (2002).

3+ A. Liebsch, Phys. Rev. B 70, 165103 (2004).

35M. Ferrero, F. Becca, M. Fabrizio, and M. Capone, Phys. Rev. B
72, 205126 (2005).

36H. Monien, N. Elstner, and A. J. Millis, arXiv:cond-mat/9707051
(unpublished).

37G. Moeller, V. Dobrosavljevi¢, and A. E. Ruckenstein, Phys. Rev.
B 59, 6846 (1999).

38 A. Fuhrmann, D. Heilmann, and H. Monien, Phys. Rev. B 73,
245118 (2006).

3S. S. Kancharla and S. Okamoto, Phys. Rev. B 75, 193103
(2007).

40M. Capone (private communication).

PHYSICAL REVIEW B 76, 155102 (2007)

4IM. Ferrero, P. S. Cornaglia et al. (unpublished).

42@. Biroli, O. Parcollet, and G. Kotliar, Phys. Rev. B 69, 205108
(2004).

43G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 (2001).

44]. E. Hirsch, Phys. Rev. B 31, 4403 (1985).

4N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 (1992).

4G, Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, 6877
(1990).

4TE. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera,
Phys. Rev. B 45, 10741 (1992).

“8T. Kashima and M. Imada, J. Phys. Soc. Jpn. 70, 2287 (2001).

“D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 (2005).

S0T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 (2005).

SIX.-G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 (1996).

32M. Fabrizio (unpublished).

3C. G. Broyden, Math. Comput. 19, 577 (1965).

34D. Vanderbilt and S. G. Louie, Phys. Rev. B 30, 6118 (1984).

3In this paper, the chemical potential is usually included in the
one-body part 823 of the local Hamiltonian.

56Note, however, that both sides of Eq. (24) have identical matrix
elements between physical states.

155102-20



