
Reversible stochastic pump currents in interacting nanoscale conductors

N. A. Sinitsyn
Center for Nonlinear Studies and Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545, USA
�Received 12 May 2007; revised manuscript received 25 June 2007; published 29 October 2007�

The geometric phase, responsible for reversible pump currents in classical stochastic kinetics can be
observed experimentally with an electronic setup, similar to the ones reported recently by Gustavsson et al.
�Phys. Rev. Lett. 96, 076605 �2006�� and Sukhorukov et al. �Nature Physics 3, 243 �2007��.
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The stochastic pump effect manifests itself during peri-
odic driving of a classical stochastic system, such as the
enzyme in the sea of interacting substrate and product mol-
ecules or ion channel in the cell membrane.1 Usually the
driving is achieved by an application of a time-dependent
periodic electric field that modulates chemical potentials and
kinetic rates. As a result of time-dependent driving, part of
the flux appears to have properties that have no analog under
the purely stationary conditions. In the adiabatic limit this
extra contribution to the flux is reversible, i.e., it changes
sign under the time reversal of the external perturbation.

Recently, it was discussed that the purely classical adia-
batic pump effect has geometric origins,2 namely, it is related
to the geometric phase gained by the flux moments generat-
ing function �mgf� under an external periodic driving of ki-
netic rates. The theory in Ref. 2 allows one to calculate both
average geometric fluxes and their fluctuations. While the
experimental demonstration of the classical stochastic pump
effect has been reported, e.g., in ion channel experiments,3

the specific geometric properties such as the Berry curvature
in the parameter space or the effect of the phase mismatch of
driven kinetic rates have not been measured.

So far only the average pump fluxes have been studied
experimentally. The geometric phase,2 however, contains
much more information, so that its detailed experimental
evaluation requires the derivation of the full counting statis-
tics of pump currents. This is a complicated task when mea-
suring the fluxes through the setup discussed in Ref. 2 or in
the analogous electronic setup, with an electron transport
only through a quantum dot in the Coulumb blockade regime
because the corresponding currents are very weak.

In this note I propose that the full counting statistics of
reversible stochastic currents can be studied in another ex-
perimental setup, reported recently in Refs. 4 and 5. The
setup consists of a quantum dot coupled to a quantum point
contact �QPC� in the ballistic transport regime. The voltage
applied to the QPC generates the current J. This current,
however, is controlled by the charge inside the quantum dot,
which changes the tunneling barrier at QPC due to the Cou-
lomb potential. In the simplest realization, the quantum dot
can only have either one or no electrons inside. The switch-
ing between those states, in turn, is influenced by two gate
voltages.6 Although experiments were performed at low tem-
peratures, a sufficiently strong decoherence was assumed so
that the behavior of the charge in the dot was described by
purely classical Markov dynamics with rates �1 and �2 of
transitions, respectively, in or out of the dot.

Under the stationary conditions, in experiments 4 and 5,
the full counting statistics of electrons transferred through
the quantum point contact was measured. The counting sta-
tistics of the current through the QPC is much easier to mea-
sure experimentally but it is different from the one due to the
direct current through the quantum dot. Thus one cannot di-
rectly apply the expressions for pump currents, derived in
Ref. 2 to the currents through the QPC but rather should
derive the geometric phase of the QPC current separately,
using the same approaches.

This work contains the derivation of the full counting sta-
tistics of the reversible pump current through the QPC and
provides expressions for a direct comparison with experi-
mental data. In addition, I provide a simplified intuitive ex-
planation of the effect, which cannot be found in previous
publications.

Consider the time-dependent transition rates �1 ,�2, which
can be induced by a slow periodic modulation of gate volt-
ages. We will assume the adiabatic limit, so that the driving
frequency � is small, i.e., ���i �i=1,2�. As in Ref. 5 we
will assume fast decoherence so that the classical stochastic
dynamics can be sufficient to describe the experiment.

The complete information about the flux through the QPC
is contained in the moments generating function �mgf�, de-
fined by

U��� = �
s=−�

�

Pn=se
is�, �1�

where n is the number of electrons passed through the QPC
�reverse transitions are counted with the negative sign�. Sup-
pose that we know the mgfs of the currents under stationary
conditions, when in addition the state of the dot is specified
to be always either with or without the electron inside during
the whole measurement. For the time of measurement T such
mgfs can be written in the form

Ui��� = eTHi��� �i = 1,2� , �2�

where i=1,2 correspond here, respectively, to the case with-
out and with an electron inside the dot. Functions Hi��� do
not depend on T if the latter is sufficiently large. Derivatives
of Hi��� provide cumulants of current distributions.

Now we allow transitions between empty and filled states
of the dot with time-dependent rates �i�t�. According to Refs.
5 and 7 the mgf satisfies the equation
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�tU��� = HU , �3�

where the “Hamiltonian” H is given by8

H��,t� = �H1��� − �1�t� �2�t�
�1�t� H2��� − �2�t�

� , �4�

and unlike Ref. 5 we allow for the slow time dependence of
parameters �i. Also, unlike Ref. 2 the Hamiltonian �4� con-
tains the counting parameter � at the main diagonal, rather
than at off-diagonal matrix elements. This reflects the fact
that the current through the QPC “counts” time of the dot
being in one of the states, rather than the current through the
dot.

The evolution equation �3� is similar to the evolution
equation of spin-1 /2 in the time-dependent Zeeman field.
Although the Hamiltonian �4� is not Hermitian, this analogy
can be employed to find the mgf U��� in the adiabatic limit.
Following the discussion in Refs. 2 and 9 the result can be
expressed as an exponent of the sum of the geometric and the
quasistationary contributions

U��� = eSgeom���+Sqst���, �5�

where Sgeom and Sqst can be expressed in terms of the instan-
taneous eigenvalue h�� , t� of the matrix �4� with the larger
real part and the corresponding right and left instantaneous
eigenvectors �u�� , t�	 and 
u�� , t��.

Sqst��� =
T

T0
�

0

T0

h��,t�dt , �6�

Sgeom��� = −
T

T0
�

0

T0


u��,t���t�u��,t�	dt , �7�

where T0=2� /�. The quasistationary contribution �6� is
merely the time average of the stationary counting statistics,
derived in Ref. 5, while the geometric part �7� is a new term,
that has no analog in the steady state. Next we will use the
fact that the time dependence of �u�� , t�	 is due to the time
dependence of parameters �i�t� only, which allows one to
rewrite the geometric contribution in terms of the circulation
of the vector A, Ai= 
u ���i

u	 along the contour c in the pa-
rameter space or equivalently, as the integral of the two-form
F1,2= 
��1

u ���2
u	− 
��2

u ���1
u	 over the surface sc inside this

contour. Substituting expressions for eigenvectors and the
eigenvalue of Eq. �4� into Eqs. �6� and �7� we find

Sgeom��� = −
T

T0
�

c
A · d� = −

T

T0
�

sc

d�1d�2F1,2, �8�

F1,2 =
H2��� − H1���


K2 − 4�H1����2 + H2����1 − H1���H2�����3/2 ,

�9�

Sqst��� =
T

2T0
�

0

T0

dt
K

+ �K2 + 4��2H1��� + �1H2��� − H1���H2����� ,

�10�

where we introduced the vector �= ��1 ,�2� and K
=K�� ,��=H1���+H2���−�1−�2. The two-form F1,2

=F1,2�� ,�� is an analog of the Berry curvature in quantum
mechanics. It is responsible for the reversible component of
the current.

For a strong current through the QPC, as it is discussed in
Ref. 5, one can disregard the noise part of Hi���, in compari-
son to the noise due to interactions with the quantum dot,
i.e., one can use the simplified form H1= iI1� and H2= iI2�,
where I1 , I2 are currents through the QPC, respectively, when
the dot is empty and filled with an electron. Now cumulants
of the flux through the QPC can be found by differentiating
Eqs. �8� and �10� with respect to �. Thus we find that the
average current through the QPC is J=Jgeom+Jqst, where

Jgeom =� �
sc

d�1d�2
I1 − I2

T0��1 + �2�3 , �11�

Jqst = �
0

T0

dt
�1�t�I2 + �2�t�I1

T0��1�t� + �2�t��
. �12�

The expressions for the average currents �11� and �12� can
be derived in a much more simplified way which, however,
is not easy to apply to find higher cumulants. Let Pe and
Pf =1− Pe, respectively, be probabilities of the dot to have no
and have one electron inside. Pe satisfies a first order differ-
ential equation with the solution

Pe�t� = �
t0

t

dt��2�t��e−�
t�
t ��1�t��+�2�t���dt�. �13�

Due to the fast decaying exponent, the integral �13� is
dominated by the direct vicinity of the time point t where we
can approximate �i�t����i�t�− �t− t���t�i�t�. Then integrat-
ing over time we find

Pe�t� �
�2�t�

�1�t� + �2�t�
+ a · �̇ , �14�

where a is the vector over the parameter space with
components a= (�2 / ��1+�2�3 ,−�1 / ��1+�2�3). Note that
the vector field a=a��� has a nonzero vorticity
�a�2

/��1−�a�1
/��2=1/ ��1+�2�3, thus a circulation of a

over a closed contour can be nonzero. The average current is

J = I1Pe + I2Pf . �15�

Substituting Eq. �14� into Eq. �15� and averaging over the
period of the parameter modulation, one will recover Eqs.
�11� and �12�.

Can the reversible current be observed experimentally?
Generally the geometric contribution is much weaker than
the quasistationary one. In the adiabatic limit it is suppressed
by the ratio � /�i�1. However, the specific symmetry of this
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contribution provides the opportunity to detect it. The geo-
metric part of the full counting statistics Sgeom changes sign
under the change of the direction of “motion” along the con-
tour c, while the quasistationary part remains the same. This
suggests the obvious strategy to extract Sgeom experimentally,
namely, one should perform the measurements of the mgf
under periodically time-dependent gate voltages and then
perform the same type of measurements during the same
period of time but for the time-reversed perturbation.

For example, if during the first experiment one drives the
rates according to the law �1�t�=a+b cos��t� and
�2�t�=c+d cos��t+�� with constants a ,b ,c ,d and the
phase mismatch �, then the second measurement should be
done for the driving with the opposite sign of the phase
mismatch, namely, such that �1�t�=a+b cos��t� and �2�t�
=c+d cos��t−��. Taking the difference between two corre-
sponding counting statistics, the quasistationary contribu-
tions cancel but the geometric contributions, being different
only by the sign, do not cancel and make the final result of
such a measurement equal to 2Sgeom���. We note that to ob-
serve it the driving of the rates should be out of phase. This
is clear from the fact that the geometric contribution is finite
when the area inside the contour c is also finite, which can be
achieved only when there is a phase mismatch between �1
and �2 modulations. Changing this constant phase difference
one can manipulate the strength of the reversible current con-
tribution, for example, change its sign. Figure 1 shows an
example of the contour in the parameter space, leading to a
nonzero pump current for �=� /2 and its time reversed
counterpart, corresponding to �=−� /2. The zero value of
the reversible pump current can be achieved at �=0 or �
=�.

The geometric phase can be clearly observable if the dif-
ference of the measured total transported charge during the
forward and the time-reversed modulations of gate voltages
is much larger than the size of its typical fluctuations. The
latter is dominated by a quasistationary shot noise, which can
be estimated from the second cumulant of the current
J�2��2�I1− I2�2�1�2 / ��1+�2�3. Taking the data from
experiment:5 �i�500 Hz, time of measurement T�103 s,
then assuming that the amplitude of modulation

��i�300 Hz and the modulation frequency 1/T0�50 Hz,
we find the order of the signal-to-noise ratio 	
=JgeomT /�J�2�T�10, which can be good enough to confirm
the presence of the effect. Note also that this ratio can be
enhanced by increasing the measurement time �	�T1/2�.

In conclusion, I examined the possibility to measure the
geometric phase in the setup discussed in the recent work of
Sukhorukov et al.5 The estimates show that at least the av-
erage of the reversible current can be detected for a realistic
choice of parameters. Such measurements of the Berry cur-
vature are important to enhance the control over the micro-
scopic device with time-dependent perturbations.
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FIG. 1. �a� A contour in the parameter space and �b� its time-
reversed counterpart, leading to nonzero reversible pump currents
through the QPC.
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