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We demonstrate that the flow of a longitudinal spin current with different spin polarizations will induce
different patterns of charge accumulation in a two-terminal strip, or electric current distribution in a four-
terminal Hall-bar structure, of two-dimensional electron gas with Rashba spin-orbit coupling. For an in-plane
polarized spin current, charges will accumulate either at the two lateral edges or around the center of the strip
structure, while for an out-of-plane polarized spin current, charge densities will show opposite signs at the two
lateral edges, leading to a Hall voltage. Our calculation offers a different route to experimentally detect or
differentiate pure spin currents with various spin polarizations.
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Semiconductor spintronics has achieved remarkable suc-
cess in the past decade and is still progressing rapidly. Spin-
orbit science and engineering, which allow for electrical ma-
nipulation of spin polarization and spin currents in
nonmagnetic semiconductors, is one of the key steps to
implement spintronic devices.1 By utilizing spin-orbit cou-
pling, various schemes were proposed to generate pure spin
currents,2 while detecting pure spin currents remains a chal-
lenge from either experimental or theoretical aspect. The de-
tection of spin currents often involves spin accumulation or
electrical effects, despite quantum interferences by optical
means also reported.3 For example, spin accumulation in-
duced by spin current near the boundaries has been detected
in both n- and p-doped semiconductor systems
experimentally,4 and Hall voltage resulted from the recipro-
cal extrinsic spin Hall effect was observed in diffusive me-
tallic conductors.5,6 Recently, it was reported that an opti-
cally injected spin current flowing through a Hall-bar
semiconductor can generate either inward or outward electric
currents while the Hall voltage remains zero.7 This observa-
tion renders a manifestation of the tensorlike nature of the
spin current, which means that both the spin polarization and
the direction of motion are decisive factors in producing
physically observable effects.

The electrical detection of spin currents has reduced com-
plexities in practice and, thus, is potentially more
applicable,5–7 whereas a fundamental problem of theoreti-
cally studying the electrical effects resulted from spin cur-
rents, are the difficulties in incorporating the concept of spin
current into a theoretical formalism, for reasons like the am-
biguous definition of spin currents under certain
circumstances.8 In this Brief Report, we investigate such ef-
fects in a mesoscopic system of spin-orbit-coupled two-
dimensional gas �2DEG� with ideal leads which connect sev-
eral special electron reservoirs. Generation of the spin
current is simulated phenomenologically by introducing
spin-dependent chemical potentials within each electron res-
ervoir. These chemical potentials are tuned separately for
each spin component to produce independent potential gra-
dients, so that electrons with opposite spins are driven to
move in opposite directions through the spin-conserved leads

and the spin-orbit-coupled central region. It must be empha-
sized that the aim of this phenomenological simulation is to
capture only the general and essential features of the spin
current flow, without bothering about the details of the
method in its generation and injection, and this is justified as
long as we keep our focus on the electrical effects that are
led by or intimately related to the circulation of the spin
current.

We demonstrate spin-current-induced electrical effects by
showing charge accumulation induced in a strip structure and
the electric current distribution in a corresponding Hall-bar
structure. The Landauer-Büttiker-Keldysh formalism is used
in our calculations, which is a quantum-in-nature approach
and has extensive application.9 The total Hamiltonian of the
central region is HC=H0+HSO, where H0= �2k2

2m* +V0 is the ki-
netic energy plus the hard-wall confining potential V0, m* is
the effective electron mass, and HSO=−��k��� · ẑ, with �
the strength of Rashba spin-orbit coupling �RSOC�, k the
wave vector, � the vector composed of Pauli matrices, and ẑ
the unit vector perpendicular to the plane of the 2DEG. After
discretizing HC with the tight-binding approximation and
transforming it into the spin bases which are the eigenstates
�denoted by �� or ��, where �, �=↑ or ↓� of r̂ ·�, where r̂ is
the orientation of spin polarization under consideration, we
have

HC = �
�ij�

�
�,�

tij
��ci�

† cj�, �1�

where c† and c are the creation and annihilation operators of
electrons at sites i �j� with spin � ���, and �¯� means the
pairs of nearest neighboring �nn� sites, and

tij
�� =��u†����− t0I � itSO

R 	y��
u
�, i = j ± ��x

�u†����− t0I ± itSO
R 	x��
u
�, i = j ± ��y ,

�
where ��x�y� is the unit vector displacement between two nn
sites in the x �y� direction, t0=�2 /2m*a2 is the overlap inte-
gral of two nn sites, with a the average spacing between two
nn sites, tSO

R =� /2a, I is the identity matrix, and u= ��↑ ,�↓� is
the unitary matrix which rotates 	z to r̂ ·�. To take into ac-
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count the effect of the semi-infinite ideal leads, self-energy
terms are introduced, �r=��p

r , with the specific term due to
lead p in the � spin diagonal block is

�p,�
r �i,j;E� = − t0�

m

m�pi�eikm�E�am�pj� , �2�

where m�pi� is the mth eigenfunction in the transverse di-
mension at site pi in lead p, which is adjacent to site i in the
central region, and km is the wave vector along the semi-
infinite lead. Here, we assume that there is no spin-orbit
coupling in the leads. This not only guarantees that the
spin currents under our investigation is well defined from
the experimental aspect, but also is justified because it turns
out that the interface mismatch between the leads and the
central part actually contributes little to the patterns
we observed. The retarded Green’s function Gr�E�
= �E−HC−�r�−1 and the lesser Green’s function is
given by the Keldysh equation G�=Gr��Ga, with ���E�
=−�p,�f�E−�p

�� ��p,�
r �E�−�p,�

a �E�	, where �p
� is the spin-

dependent chemical potential for electrons of spin � in lead
p, and f�E−�p

�� is the Fermi-Dirac distribution function. Ex-
pressed in terms of the lesser Green’s function, when a
steady state is achieved, the nonequilibrium charge density at
site i is

�c�i� = −
ie

2�
�
�



−�

�

dEG��i,�;i,�;E� �3�

and the electric bond current from site i to site j is

jij
c = −

e

2�
�
��



−�

�

dE�tji
��G��i,�;j,�;E� − tij

��G��j,�;i,�;E�	 .

�4�

Our present study focuses on electrical effects resulting from
spin current with spin polarization orientated in plane �re-
ferred to as ŷ henceforth�, which is perpendicular to the di-
rection of motion �referred to as x̂ henceforth� of electron
spin. When a spin current with ŷ spin polarization is flowing
through a strip, depending on the sign of the RSOC �, which
stands for whether the velocity, the spin polarization, and the
gradient of potential for the RSOC satisfy the left-hand or
right-hand chirality, the electric charges will accumulate
either near the lateral edges or around the middle of stripe, as
shown in Fig. 1. In this figure, two equal-magnitude +ŷ
and −ŷ spin-polarized currents are driven in the direction
+x̂ and −x̂ by the spin-dependent chemical potentials �±x

�

= ±sign���0.1t0 through a 40�20 lattice with the Fermi en-
ergy Ef =0.1t0, which is measured from the bottom of the
conduction band and is small enough to ensure the parabolic
energy-momentum dispersion in the tight-binding approxi-
mation, and �=−6.1�10−12 eV m or tSO

R =−0.02t0 in Fig.
1�a�, and �= +6.1�10−12 eV m or tSO

R = +0.02t0 in Fig. 1�b�,
respectively. It is easy to identify that the charges of carriers
accumulate at the two lateral edges in the former case and at
the middle part in the latter one. This is further manifested by
a comparison of Figs. 1�c� and 1�d�, where the averaged
charge densities with ±� are plotted. For a negative �, in-
creased magnitude will lead to increased accumulation at the

edges, while for a positive �, the same trend happens at the
middle. It should be noted that since we do not consider any
dissipation mechanisms inside our samples, these accumula-
tions should be interpreted as an effect purely due to quan-
tum coherent transport.

To show physical consequences of charge accumulation in
a strip structure, we calculated electric current distributions
in a Hall-bar structure where two additional leads are sym-
metrically attached to the two lateral sides of the original
strip as illustrated in Fig. 2. The current distribution for ei-
ther sign of � in this structure has remarkable consistency
with the charge accumulation in the corresponding strip sys-
tem in terms of that the additional leads act just as the path-
ways for the accumulated charges to flow through. Specifi-
cally, when ��0, charges accumulated at the lateral edges
will flow outward through the two transverse leads and, at
the same time, the net charges will be drawn through the two
longitudinal leads, while when ��0, the charges tend to be
drawn inward through two transverse leads and flow out
through two longitudinal ones, which accounts for the accu-
mulation of charges around the center of the strip-shaped
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FIG. 1. �Color online� Spin-current-induced charge distributions
in a 200�100 nm2 strip, where the spin current is polarized along
ŷ and the distributions are displayed after the spin-independent
background distribution �when �=0� has been subtracted. �a� The
image of charge distribution when �=−6.1�10−12 eV m. �b� The
image of charge distribution when �=6.1�10−12 eV m. ��c� and
�d�	 The averaged �in terms of the longitudinal dimension� charge
distributions along the narrow side of the sample, comparing differ-
ent cases with � having the same sign �negative for �c� and positive
for �d�	 but increasing magnitudes.

BRIEF REPORTS PHYSICAL REVIEW B 76, 153302 �2007�

153302-2



sample. Quantitatively, the induced electric current in each
transverse lead sums up to be typically 2 orders less than the
magnitude of the total circulating spin current. These obser-
vations are also fully consistent with the electric current pat-
terns in Ref. 10, where the linear response approximation are
adopted to produce the results.

So far, we have mainly discussed the charge density and
the electric current distribution induced by a spin current
with in-plane spin polarization �along ŷ�. Yet a tensor as a
spin current is in essence, it is also worthwhile to investigate
the spin current with different configurations of spin polar-
ization and velocity. Without losing generality, we concen-
trate on three cases of spin along x̂, ŷ, and ẑ, respectively.
From the study of these special cases, the generic result for a
spin current with arbitrary spin polarization can be derived,
and also maximum symmetries can be observed therein.
Since one of these cases with ŷ spin polarization has been
presented already, we show the charge distributions induced
in the other two cases in Fig. 3. Compared with the induced
charge distribution shown in Fig. 1�b�, which is calculated
with all the same parameters except for the spin polarization
of the spin current, the induced charge distributions in Figs.
3�a� and 3�b� show clear differences in terms of the spacial
symmetries they possess, that is, the C2v symmetry in the
case when spin polarized along ŷ, the C2 symmetry when
spin polarized along x̂, and the Cs symmetry when spin po-
larized along ẑ.11 This is because the underlying system is

invariant under each operation of the C2v space group com-
bined with an appropriate unitary transformation in spin
space, while in order that the circulating spin current is also
invariant under that combination of transformations, the
valid space-group operations will be limited into a subgroup
of C2v �C2v itself in the ŷ-spin-polarization case, and C2 or
Cs in the x̂- or ẑ-spin-polarization case, respectively�. Ac-
cordingly, the charge distributions induced by different spin
currents will exhibit different symmetry properties. Also it is
easy to infer that the electric current distributions or any
other electric effect induced by a corresponding spin current
will display the same spatial symmetry as long as the struc-
tural symmetry of the system is preserved, which is actually
a general yet rigorous limitation and has been justified in all
our calculations that are shown or not shown here.

Moreover, the relevance of the spin polarization of spin
current to the induced charge accumulation also lies in the
differences between the average distributions along the trans-
verse of the strip resulted from spin currents which are po-
larized in different directions. In particular, Figs. 1�c� and
1�d� show that the charges of carriers tend to accumulate,
depending on the sign of �, either at both of the two lateral
edges or around the center of the sample when the spin cur-
rent is polarized along ŷ. When the spin current is polarized
along ẑ, however, it can be observed from Fig. 3�b� that the
charge accumulation, on average, will have opposite signs
near the two lateral edges, which is closely related to as well
as consistent with the reciprocal version of the spin Hall
effect,8,12 and was reported to be observed in platinum
wires.6 In another case where the spin current with x̂ spin
polarization is considered, the pattern of the charge accumu-
lation �shown in Fig. 3�a�	 is more complex in the sense that
there are reversed accumulating trends at the two sides of the
transverse plane passing through the symmetric center,
which is determined by the C2 symmetry of this system men-

FIG. 2. Charge current distributions after two additional leads
are connected to the lateral edges of the strip in Fig. 1. The direction
and magnitude of local current density are indicated by the
orientation and length of arrows, respectively. The transverse
electric currents are both flowing outward in �a�, where
�=−6.1�10−12 eV m and the ratio of the total induced electric
current to the circulating spin current Ic / Is=2.57�10−2 e

�/2 ,
or both flowing inward in �b�, where �=6.1�10−12 eV m and
Ic / Is=1.14�10−2 e

�/2 .

FIG. 3. �Color online� Spin-current-induced charge distributions
in a 200�100 nm2 strip, where the spin current is polarized along
x̂ in �a� and along ẑ in �b�. �=6.1�10−12 eV m and the distribu-
tions are displayed after the spin-independent background distribu-
tion has been subtracted.
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tioned above. While after average has been taken over the
longitudinal dimension, it can be reasonably expected that
the opposite accumulations of two halves will tend to cancel
each other and produce a weakened net effect with sym-
metrical distribution about the transversal center. In contrast
to that in the ŷ-spin-polarized case, in either case with the x̂
or ẑ spin polarization, the averaged distribution along the
traverse does not change under the reversal of the sign of �.
Besides, we notice that the electric effects induced by differ-
ent spin currents are actually contributed by different ranks
of power with respect to �, which is also manifested when
the sign of � is reversed. Specifically, when the spin current
is polarized along x̂ or ŷ, it is mainly the linear � that is
responsible for the induced electric effects, while in the
ẑ-spin-polarized case, it is the second rank, i.e., �2, playing
the role.

We conclude this Brief Report by evaluating the accessi-
bility of an experimental observation to the electrical
patterns investigated here. From the data plotted in Fig. 1�c�,
we estimate roughly the electrostatic potential difference
�V to be of the order of 0.1 mV between either of the peaks
and the valley of the charge distribution as long as
��3�10−12 eV m. In a realistic semiconductor quantum
well with the Fermi energy typically being tens of meV, the

electronic potential difference will increase to at least several
meV or tens of kelvins subject to increasing RSOC. This
implies that the temperature requirement for observing these
patterns can be well satisfied within current experimental
conditions. Regarding these features as well as the sample
size, we propose the use of Kelvin probe force microscopy13

in observing the charge accumulation predicted here. On the
other hand, we point out that the present work may also
account for a recent experimental observation of the spin-
current-induced electric currents,7 which possess the key fea-
tures exhibited in Figs. 1 and 2, that is, there is no Hall
voltage while the electric currents circulate through x chan-
nels to y channels. Quantitatively, the experiment is consis-
tent with the calculated ratio of the induced charge current to
the spin current captioned in Fig. 1. In short, the spin current
with in-plane spin polarization may produce measurable
charge accumulations or electric currents with a different be-
havior, and the underlying effects may open a promising way
to the electrical detection of spin currents.
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