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The imaginary part of two-dimensional Fourier-transform spectra in the rephasing and nonrephasing modes
is used to analyze the homogeneous and inhomogeneous broadening of excitonic resonances in semiconductor
nanostructures. Microscopic calculations that include heavy- and light-hole excitons as well as coherent biex-
citonic many-body correlations reveal distinct differences between the rephasing and nonrephasing spectra. A
procedure is proposed that allows separation of disorder-induced broadening in complex systems that show
several coupled resonances.
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In the past decades, various optical techniques have been
used to investigate and unravel the structure of electronic
states in semiconductor nanostructures and other material
systems.1–5 Spatially resolved linear optical measurements
give information about homogeneous and inhomogeneous
broadening separately. Typically, however, they provide only
general information, e.g., the total linewidth. On the other
hand, nonlinear experiments have been applied successfully
to obtain much more detailed information about the nature of
excited states, the coupling among them, and many-body ef-
fects. In addition, different nonlinear optical techniques were
used to investigate the amounts of homogeneous and inho-
mogeneous broadening �see Ref. 5 and references therein�.

Pump-probe measurements provide one-dimensional
spectral information that cannot distinguish between homo-
geneous and inhomogeneous broadening. Hole burning can
find the homogeneous contribution to the optical linewidth
and, by comparing to the linear spectrum, provides an esti-
mate of the inhomogeneous contribution. Four-wave-mixing
�FWM� experiments show photon echoes in the time-
resolved �TR� traces.5,6 Their temporal width is determined
by the inhomogeneous linewidth. However, for systems
where more than a single resonance is simultaneously ex-
cited, the width of the echo is ill defined due to beating,5,7,8

in particular, for small inhomogeneous broadening see �Fig.
1�. The time-integrated �TI� trace yields the homogeneous
width, i.e., the dephasing rate. However, in the presence of
more than just a single optical resonance, the decay param-
eter cannot uniquely be determined and a fitting procedure is
needed.

In semiconductor nanostructures, many-body Coulomb
interaction strongly alters the nonlinear optical
response.3–5,9,10 Even at the Hartree-Fock level, e.g., the line
shape of time-resolved FWM is significantly modified and
signals for the wrong time ordering appear.3–5,11,12 Addition-
ally, already in the low-intensity third-order ���3�� limit, char-
acteristic dependencies of the nonlinear transients and spec-
tra on the polarization directions of the incident pulses and
couplings among optically isolated resonances appear due to
many-body correlations.3–5,9,13–17

A detailed microscopic description of interacting excitons

in the presence of disorder is a formidable task. Thus, well-
established knowledge is lacking on this topic. It was, how-
ever, shown that Hartree-Fock renormalizations influence the
temporal width of photon echoes in weakly disordered semi-
conductor quantum wells.18 Very interesting biexciton-
induced polarization-dependent quantum beats have been
measured in strongly disordered quantum wells and were
modeled on the basis of a simplified level scheme in Ref. 19.
Later, it became possible to describe these phenomena on the
basis of a microscopic many-body theory that phenomeno-
logically includes disorder-induced inhomogeneous
broadening.20 Reference 21 includes both biexciton correla-
tions and disorder on a microscopic level. The numerically
computed FWM transients presented there show, in agree-
ment with experiments, a polarization-dependent disorder-
induced dephasing, i.e., a disorder-induced decay of the

FIG. 1. Time-integrated and time-resolved traces for �+�+�+

excitation. The TI �TR� data have been calculated using inhomoge-
neous Gaussian broadening �inhom=1 meV ��inhom=1 and 6 meV�.
Dipole matrix elements are taken to be identical, T2

h,l=1.3 ps.
Straight lines correspond to dephasing times 1.3 and 1.56 ps,
respectively.
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FWM amplitude that depends on the polarization directions
of the incident beams.

Recently, two-dimensional Fourier-transform spectros-
copy �2D-FTS� has been applied to investigate the excitonic
response of semiconductor quantum wells.22–27 This method
enables the simultaneous measurement of the phase and the
amplitude for various polarization directions of the excitation
pulses. 2D-FTS is based on concepts developed in magnetic
resonance.28 Recently, infrared and visible implementations
of 2D-FTS have been used to study vibrational29,30 and elec-
tronic excitations31–33 in molecules. For the analysis of exci-
tons in semiconductor quantum wells, 2D coherent-
excitation spectroscopy �CES� has been used.17,34,35 This
measurement is based on partially nondegenerate FWM36 us-
ing a temporally long pulse and a short pulse, i.e., a spec-
trally narrow pulse and a broad pulse. Therefore, it provides
mainly spectral and little temporal information. Furthermore,
CES has only been used to measure intensities, i.e., it lacks
the phase information provided by 2D-FTS.

In this work, we suggest, on the basis of the aforemen-
tioned microscopic model calculations, that 2D-FTS can be
used for the detailed study of homogeneous and inhomoge-
neous broadening of optical resonances. It is demonstrated
that with this technique, it is possible to extract information
on the disorder-induced broadening, separately for each reso-
nance of a complex coupled system.

The optical pulses are denoted by a, b, c, and s, where a,
b, and c refer to the incident beams and s to the nonlinear
signal. If ki denotes the propagation direction of pulse i, the
signal is monitored in the direction ks=kb+kc−ka. A de-
tailed discussion of the experimental box-configuration setup
can be found in Ref. 22. Depending on the temporal order of
the pulses a and b, one denotes the experimental mode by
rephasing �a preceding b� and nonrephasing �b preceding a�,
respectively. When the signal is time resolved, the rephasing
configuration yields photon echoes if the sample is charac-
terized by an inhomogeneous line, whereas the echoes are
absent for the wrong time ordering,1–5,11 i.e., the nonrephas-
ing mode. �We note that the nonrephasing configuration does
not correspond to negative delay in a two pulse experiment,
which would be equivalent to a arriving after both b and c,
whereas in the nonrephasing configuration c arrives last.�

For the modeling of 2D-FTS of semiconductor nanostruc-
tures, we use a microscopic theory that includes biexcitonic
many-body correlations in the coherent ��3� limit.3–5,13,14 In
order to keep the numerical complexity manageable, we
evaluate this theory for a one-dimensional tight-binding
model. This model has been used successfully to obtain re-
sults for pump-probe spectra, FWM, and CES signals that
are in good qualitative agreement with experiments per-
formed on quantum wells �see Refs. 5 and 20, and references
therein�. Incorporating the typical selection rules for the ex-
citation of heavy- and light-hole excitonic resonances in
III-V semiconductor quantum wells, i.e., two optically un-
coupled three-level systems with circularly polarized
transitions,5,20 allows us to model the dependence of 2D-FTS
on the polarization directions of the excitation pulses, which
is strongly influenced by biexcitonic many-body
correlations.25–27

The microscopic semiconductor Bloch equations for the

interband coherence p and the correlated part of the two-
exciton amplitude B̄ for coupled heavy- and light-hole exci-
tations can be found in Refs. 5, 20, and 25. In the following,
the heavy- and light-hole excitonic resonances are denoted
by h and l, respectively. Their homogeneous linewidths are
modeled by a phenomenological broadening of �hom=� /T2

i ,
with i=h , l. As we are mainly interested in the action of the
homogeneous and inhomogeneous broadening on the spec-
tral features, we assume for simplicity that the magnitudes of
the dipole matrix elements and the dephasing times of the h-
and l-exciton resonances are equal and that the pulse overlap
with these resonances is identical, i.e., the center frequencies
of the pulses are in between the resonances. Such an ideal-
ized situation is not necessary, but it is chosen to most clearly
highlight our approach.

The equations of motion determining the nonlinear optical
polarization P are solved numerically, yielding P�t ,� ,T� as a
function of time t and time separation � between the first two
pulses �a, b for rephasing mode or b, a for nonrephasing
mode�. The delay between the second and third pulses, T, is
not varied and is fixed to zero here, i.e., second and third
pulses arrive at the same time. The nonlinear time-domain
polarization is Fourier transformed with respect to t and �,
yielding P��t ,�� ,T� which, in optically thin structures, is
related to the electric field of the signal by E��t ,�� ,T�
	 iP��t ,�� ,T�. Besides the amplitude �E��t ,�� ,T��, also the
real part R�E��t ,�� ,T��, the imaginary part I�E��t ,�� ,T��,
and the phase of the field can be displayed in the two-
dimensional frequency space spanned by �� and �t. By defi-
nition, �t is positive, which leads to negative �� in the
rephasing case. In these spectra, many signatures depend
sensitively on the strengths and ratio of the dipole matrix
elements, the dephasing times, and the central frequency of
the excitation pulses.25,27

Here, we only consider cocircularly, �+�+�+, polarized
excitation pulses and the same model parameters as used in
Fig. 1. If Coulomb correlations are neglected, i.e., on the
Hartree-Fock level, this setup generates uncoupled h- and
l-exciton transitions. These resonances are, however, coupled
by many-body Coulomb correlations, e.g., biexcitons.5,20,37

In the following, we focus on I�E��t ,�� ,T�� and compare
the nonrephasing and rephasing modes �see Fig. 2�. Both
these modes yield h- and l-excitonic peaks on the diagonal.
The line shapes of the signatures on the diagonal of imagi-
nary 2D-FTS show a dispersive character that allows us to
suggest a method for the determination of the degree of ho-
mogeneous and inhomogeneous broadening. In addition, two
off-diagonal features are visible in Fig. 2, which for this
polarization scenario are solely due to the aforementioned
Coulomb-correlation-induced coupling.27

Figure 2 presents homogeneously �Figs. 2�a� and 2�c��
and inhomogeneously �Figs. 2�b� and 2�d�� broadened imagi-
nary 2D-FTS for both modes. Clearly, the nonrephasing �up-
per panels of Fig. 2� and the rephasing �lower panels of Fig.
2� spectra differ in orientation of the peaks. In the rephasing
case, we see the nodes between positive and negative contri-
butions are oriented parallel to the diagonal. In the non-
rephasing case, however, the nodes are oriented perpendicu-
lar to the diagonal. This constitutes a fundamental difference
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in the character of the spectral signatures in the two modes of
2D-FTS. As in, e.g., dispersive off-resonant pump-probe
spectra, the energetic separation of positive maxima and
negative minima 
�hom, which for the h-excitonic peak is
shown by the arrows in Figs. 2�a� and 2�c�, is proportional to
the homogeneous linewidth of this particular peak. If only
homogeneous broadening is present, the energetic interval

�hom does not depend on the mode of the experiment �cf.
Figs. 2�a� and 2�c�� nor does it depend on polarization direc-
tions of the incident beams �not shown in figure�.

We now phenomenologically incorporate inhomogeneous
broadening into our calculations by convoluting the 2D-FTS
signal along the diagonal with Gaussian functions of width
�inhom.5,35 Clearly, this procedure leads to an elongation of
the peaks along the diagonal for both the rephasing and the
nonrephasing modes. Due to the perpendicular orientation of
the dispersive line shape in the nonrephasing and the rephas-
ing cases �see Figs. 2�a� and 2�c��, the inhomogeneous
broadening acts differently in the two modes. The main dif-
ference is that due to the orientation of the dispersive line
shape along the diagonal in the nonrephasing case, the inho-
mogeneous broadening basically adds to the homogeneous
one, while in the rephasing case, due to the perpendicular
orientation, the homogeneous and inhomogeneous contribu-
tions remain mainly separated.

Also in the presence of inhomogeneous broadening �Figs.
2�b� and 2�d��, we determine the energetic distance between
the maxima and minima of the h exciton along the diagonal
for nonrephasing spectra and perpendicular to the diagonal
for the rephasing spectra, as shown by the arrows in Figs.
2�a� and 2�c�; i.e., we use the same definition of 
� for the
inhomogeneously broadened spectra. To analyze the behav-
ior of 
� when inhomogeneous broadening is added, we
show in Fig. 3 the ratio 
� /
�hom as a function of the input

parameters �inhom /�hom, i.e., the ratio between inhomoge-
neous and homogeneous broadening in the model. The dot-
ted lines display the idealized expectations, i.e.,

� /
�hom=1 for the rephasing case and 
� /
�hom

= ��inhom+�hom� /�hom for nonrephasing mode, respectively.
While for the rephasing situation 
� stays nearly constant as
�inhom increases, Fig. 3 shows a nearly linear increase for the
nonrephasing case. The deviations from the expected depen-
dencies are partly caused by the half-moon shape of the
maxima and minima in imaginary 2D-FTS and due to the
overlap between the excitonic peaks. In our particular case,
we modeled a rather wide quantum well with quite small
energetic separation between the h and l excitons, and there-
fore, the overlap between these resonances rises significantly
with increased inhomogeneous broadening. This leads to an
increase of the rephasing curve above 1 in Fig. 3, which
would be absent for a larger energetic distance between the
resonances, e.g., narrower quantum wells.

In the nonrephasing case, the inhomogeneous broadening
leads to a partial cancellation of the negative and positive
contributions to the imaginary-part spectrum, which does not
happen in the rephasing situation. Therefore, we expect a
different behavior of the amplitude at the positions of the
excitons when including inhomogeneous broadening for the
two modes. This is, indeed, the case, as is shown in the inset
of Fig. 3, where we have plotted the maximum of the
h-exciton amplitude as function of the inhomogeneous
broadening. As expected, the decay of the nonrephasing am-
plitude with inhomogeneous broadening is clearly stronger
than that of the rephasing peak; i.e., one can also use the
ratio between the rephasing and nonrephasing amplitudes as
a measure of the degree of inhomogeneous broadening.

In summary, we have investigated two-dimensional
Fourier-transform spectroscopy for a model system which
includes heavy- and light-hole excitonic resonances, coher-
ent biexcitonic Coulomb correlations, and inhomogeneous
broadening. The emphasis of this work lies on the differ-

14 18 22

Emission energy (meV)

14 18 22

−22

−18

−14

A
bs

or
pt

io
n

en
er

gy
(m

eV
)

14

18

22

−1

0

1

(c) (d)

(a) (b)

FIG. 2. �Color� Normalized imaginary-part spectra for �+�+�+

excitation. For nonrephasing �rephasing� mode, �a� ��c�� homoge-
neously and �b� ��d�� inhomogeneously broadened spectra are
shown. In �b� and �d�, the spectra have been broadened by a
Gaussian of width �inhom=0.6 meV. Dipole matrix elements are
taken to be identical, T2

h,l=1.3 ps and T=0. The arrows in �a� and
�c� indicate 
�hom of the h exciton. All energies are measured
relative to the band gap, which corresponds to 25 meV in our
calculations.

FIG. 3. Ratio 
� /
�hom for the h peak as function of
�inhom /�hom for inhomogeneous broadenings of �inhom=0., 0.3, 0.6,
0.9, and 1.2 meV and constant homogeneous broadening of �hom

=0.506 meV. The dotted lines indicate the idealized expectations
�see discussion in text�. Inset: Dependence of the maxima of ampli-
tude 2D-FTS at the h exciton on �inhom /�hom.
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ences between the rephasing and the nonrephasing spectra.
In particular, the inhomogeneous broadening influences both
kinds of spectra in a profoundly different way. This behavior
allows us to suggest two-dimensional Fourier-transform
spectroscopy as a method for the determination of inhomo-
geneous broadening in cases where the material system ex-
hibits several, possibly coupled, optical resonances.
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