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The numerical method is used to analyze the critical state of superconducting multilayers. The method is
based on self-consistent solutions of the Ginzburg-Landau system of nonlinear equations, which describe the
behavior of a superconducting plate carrying transport current in a magnetic field, provided that there are no
vortices inside the plate. The field-dependent critical currents computed for plates are used to determine the
critical current as a function of the applied magnetic field strength, local magnetic field, and current distribu-
tions for multilayers in parallel magnetic fields. The mutual influence of the superconducting layers is assumed
to be realized only via a magnetic field. The method makes it possible to account for the peak effect in
multilayered superconductors. Our results give an alternative approach to explain different scaling laws that
describe flux pinning in the two most common commercial superconductors, NbTi and Nb3Sn. A simple
method is proposed for analyzing the critical states of multilayers in magnetic fields of arbitrary strength, based
on elementary transformations of the critical current-density distribution over individual layers in a zero
applied magnetic field.
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I. INTRODUCTION

Most studies on the critical states of superconductors rely
on the theory of the interaction between the vortex system
and crystalline defects.1 Analysis of this problem is compli-
cated by the variety of quantum properties of the supercon-
ductor vortex lattice as an elastic medium described by non-
linear electrodynamics. For this reason, simplifying
assumptions, such as the London approximation for the vor-
tex system or model distributions of the magnetic field in
superconductors, are invoked.1 This frequently leads to poor
agreement between theoretical calculations and experimental
results.2 Even in the simplest case of ordered defects, as in a
multilayer placed in parallel magnetic fields, the calculation
of critical current density is a difficult task. The most inter-
esting results in this area were obtained in Refs. 3 and 4. In
Ref. 3, the Ginzburg-Landau equations were solved to find
the field-dependent critical current density in a multilayer for
a magnetic field strength close to the upper critical field. In
Ref. 4, the critical current was found in the London approxi-
mation by representing the vortex lattice as a set of linear
chains and analyzing their interaction with the layers making
up the multilayer. The scope of both studies was substantially
limited by assuming that the vortex lattice matches the
multilayer structure in the limit of weak order-parameter
modulation. For superconductors of this kind, the last condi-
tion results in low critical current density, whereas a more
interesting case for practical applications are superconduct-
ors with strong pinning centers, i.e., superconducting multi-
layers characterized by large amplitudes of order-parameter
modulation.

We propose here an alternative method for analyzing the
critical state of a superconducting multilayer based on the
exact solution of the Ginzburg-Landau equations for a thin
film.5 Analyses of the behavior of bulk superconductors in
magnetic fields based on the Ginzburg-Landau theory6 have
been presented in numerous studies.7,8 Recent publications

have been focused on mesoscopic superconductors of vari-
ous geometries.9–11 In this paper, we consider a vortex-free
state, in which critical current density is equivalent to depair-
ing current density, as a basis for analyzing the critical state
of superconducting multilayers carrying transport current
perpendicular to a magnetic field applied parallel to their
surfaces. We consider a multilayer consisting of supercon-
ducting layers in the vortex-free Meissner state and assume
that their mutual influence is mainly due to their interaction
with the magnetic field. This approach makes it possible to
develop a rigorous analysis of the properties of these super-
conducting structures. Note that the description of a super-
conducting plate in a parallel magnetic field based on the
model of a vortex-free state has a limited scope. It was
shown in Ref. 12 that vortices begin to penetrate into a film
when the field strength reaches

Hs�D� � �0/D2,

where �0 is the magnetic flux quantum and D is the film
thickness. This field is substantially stronger than the lower
critical field Hc1 characteristic of conventional bulk type II
superconductors. Furthermore, in the limit of D�� �the
magnetic field penetration depth�, the highest “superheated”
field in the unstable Meissner phase corresponds to an even
stronger applied field strength:13

Hs � �o/2��D ,

where � is the coherence length. This field strength restricts
the applicability of our approach in the limit ��1, where �
is the Ginzburg-Landau parameter. Thus, the present ap-
proach is valid in a sufficiently wide range of magnetic field
strengths and film thicknesses. For thin films �D���, the
vortex-free approach is valid up to the upper critical mag-
netic field. In this paper, we consider type II superconductors
with �	1, which are of primary practical interest.
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This area of research is very important, because the
Ginzburg-Landau equations are of fundamental importance
and their exact solutions can be used to deal with various
problems in superconductivity, including validation of these
equations themselves as applied to high-temperature super-
conductors. The results of this study lead to a better under-
standing of the processes taking place in real superconduct-
ing structures. Moreover, to increase the critical current,
artificial pinning structures are often used. For example, the
critical current density of 4.25
109 A/m2 was achieved at
5 T by forming a lamellar type artificial pinning structure
composed of Nb and Nb-50 wt %Ti thin layers.14

II. STATEMENT OF THE PROBLEM

Let us consider a stack of long and wide superconducting
plates of thickness D in a magnetic field H applied parallel to
the layers. Each plate carries transport current perpendicular
to the applied field. The transport current It is defined as the
current density multiplied by the plate thickness, i.e., the
current per unit plate width. The calculation of critical cur-
rent for this structure is divided into two steps. First, a self-
consistent solution to the Ginzburg-Landau equations is used
to find the dependence of the critical current Ic on the applied
magnetic field strength H for an individual plate, which is
assumed to be in the vortex-free state. Second, the critical
current is determined for a multilayer by finding an optimal
distribution of transport current over individual plates.

We write the Ginzburg-Landau equations5 in a Cartesian
coordinate system �x ,y ,z� with the y and z axes parallel to
the plate surface and the z axis parallel to the magnetic field,
assuming that transport current flows along the y axis. The
vector potential A has only one component, A=eyA�x�.
These equations may be written in the dimensionless form:

d2U

dx�
2 − �2U = 0, �1�

d2�

dx�
2 + �2�� − �3� − U2� = 0, �2�

where � is the superconducting order parameter. We intro-
duce dimensionless quantities U, b�x��, and j�x�� instead of
the dimensional potential A, magnetic induction B, and cur-
rent density js:

A =
f0

2��
U, B =

f0

2��2b, b =
dU

dx�

, j�x�� = js� cf0

8�2�3�−1

= − �2U, x� =
x

�
, �3�

where B=curl A, js is the current density, and c is the speed
of light in a vacuum. Since the transport current It carried by
the plate generates the magnetic field

HI =
2�

c
It, �4�

the total field strengths at the plate surfaces are H±HI. Ac-
cordingly, the following boundary conditions correspond to
Eq. �1�:

�b�x�=0 = h − hI, �b�x�=d = h + hI, �5�

where h=H /H�, hI=HI /H�, d=D /�, H�=f0 /2��2.
Equation �2� is subject to standard boundary conditions on

the plate surfaces:1

� d�

dx�

�
x�=0

= 0, � d�

dx�

�
x�=d

= 0. �6�

We remind the reader that the field penetration depth �
and the coherence length depend on the temperature. Thus,
the expressions above depend implicitly on temperature and,
formally, are valid for arbitrary values of T. �Though the
Ginzburg-Landau equations themselves are applicable only
in the limit T→Tc.�

To find a self-consistent solution to Eqs. �1� and �2�, we
use the following iterative procedure. Introducing a trial
function ��x��, we solve Eq. �1� for U�x��. We substitute the
resulting U�x�� into Eq. �2� and use boundary conditions �6�
to find a new ��x��. Then, we solve Eq. �1� and repeat the
procedure until both ��x�� and U�x�� become invariant and
can therefore be adopted as a self-consistent solution to the
system. It is obvious that the solution obtained by this
method is stable with respect to small perturbations �see Ref.
15 for details�. The critical current Ici carried by the ith plate
is set equal to the value of It corresponding to ��x��	0.
Thus, we find the critical current per unit width of a super-
conducting plate as a function of the applied magnetic field
strength h. A more detailed description of this method was
presented in Ref. 17, where we found the temperature depen-
dence of depairing critical current density for several values
of applied magnetic field strength and plate thickness. More-
over, it was shown in Ref. 17 that the expression for the
Ginzburg-Landau critical current corresponding to the zero
applied magnetic field is valid for films of thickness compa-
rable to coherence length and magnetic field penetration
depth. Its value can be estimated by using the Ginzburg-
Landau theory with a constant order parameter:16

Ic =
1

3
6

c

�
Hcm

D

��T�
, �7�

where Hcm is the thermodynamic critical field. This expres-
sion is obtained for D�� ,�.

Proceeding to the second step, we seek the critical current
for the multilayer.17 We assume that adjacent superconduct-
ing layers are separated by relatively thick insulating layers,
i.e., the Josephson coupling between the layers is negligible.
To allow for electrical coupling between the superconducting
layers, we assume that they are connected by superconduct-
ing links at y= ±. We seek such a distribution of transport
current over the layers so that the transition to the normal
state occurs in all layers simultaneously. If hi is the magnetic
field corresponding to the ith layer, then the current per unit
width of the film in the critical state equals the critical cur-
rent Ic�hi�, which is determined by the numerical solution of
the Ginzburg-Landau equations obtained in the first step. Un-
der this condition, each layer in the structure carries a corre-
sponding critical current. The current flowing through the ith
plate generates the magnetic field given by Eq. �4�, which is
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independent of the distance from the plate and is in opposite
directions on opposite sides of the plate. According to the
field superposition principle, we must add up the contribu-
tions of all the layers to find the magnetic field that acts on
the ith superconducting layer:

hi = h + �
j=1

i−1

htj − �
j=i+1

N

htj , �8�

where htj is the dimensionless magnetic field generated by
the transport current carried by the jth layer. The magnetic
field distribution over the layers that corresponds to their
simultaneous transition to the normal state is found by suc-
cessive approximation. First, we set some initial conditions.
For example, we assume that the magnetic field that acts on
each layer is equal to the applied field, and the corresponding
critical current per unit width of the film is Ic�h�. Then, we
combine relations �4� and �8� to find the magnetic field for
the ith layer. Using the previously calculated function Ic�h�,
we determine the critical currents for the layers in the respec-
tive magnetic fields hi and substitute them into Eqs. �4� and
�8� to find new values of hi. The iterative process is termi-
nated when the change in the critical currents from cycle to
cycle becomes negligible. Note that this method can also be
applied to analyze the critical states of multilayers consisting
of different layers.

The magnetic field distribution over a multilayer consist-
ing of similar layers in a zero applied magnetic field can be
found by a simpler method. Suppose that the number of lay-
ers is odd. First, consider a three-layer structure. By virtue of
its symmetry, it is obvious that the central layer is in a zero
magnetic field and the corresponding critical current Ic�0� is
determined by the numerical solution of the Ginzburg-
Landau equations obtained in the first step. The magnetic
field HI3 acting on each outer layer is generated by the other
two:

HI3 =
2�

c
�Ic�0� + Ic3 ,

and the corresponding critical current Ic3 is

Ic3 = Ic�2�

c
�Ic�0� + Ic3� . �9�

This quantity can be found by fitting. It is obvious that there
exists a unique value of Ic3�h=0� satisfying Eq. �9� if the
initial Ic�h� is a monotonically decreasing function. In a five-
layer structure, the three central layers exhibit similar behav-
ior in the critical state, because the magnetic fields generated
by the outer layers compensate each other, and the corre-
sponding critical current

Ic5 = Ic�2�

c
�Ic�0� + 2Ic3 + Ic5� �10�

can also be found by fitting. Adding two outer layers and
calculating the corresponding critical current by the method
described above, we can find the critical current for a
multilayer consisting of any number of layers. The critical
current in the added outer layers can be expressed as

IcN = Ic�2�

c �Ic�0� + IcN + 2�
n=1

L−1

Ic2n+1�� , �11a�

where L= �N−1� /2, and

IcN = Ic�2�

c �IcN + 2�
n=1

L−1

Ic2n�� , �11b�

where L=N /2, for an even or odd number of layers, with
N	2 and N	3, respectively. The critical current of the lay-
ers IcN decreases as the number of layers increases; con-
versely, the magnetic field acting on the external layers in-
creases. The present analysis shows that a unique distribution
of Ici over the layers in a zero magnetic field exists in the
case of a monotonically decreasing Ic�h�. Thus, if the field-
dependent critical current Ic�h� for a single layer is known
�e.g., from experiment�, the distribution of transport current
over the layers in a zero applied magnetic field can readily be
found for the critical state of a multilayer consisting of an
arbitrary number of layers.

An important consequence of the method is that the maxi-
mum value of the critical current of a multilayer Icmax

m �0� is
limited by the upper critical magnetic field of the layers. It is
evident that, if the magnetic field acting on the external lay-
ers reaches the upper critical magnetic field, these layers turn
into the normal nonsuperconducting state; therefore, as the
number of additional layers increases, the critical current re-
mains unchanged. This condition defines Icmax

m �0�:

Is max
m �0� = �

i=1

N

Ici =
c

2�
hc2.

III. CALCULATION RESULTS

Figure 1 shows Ic�h� calculated for �=2 and several val-
ues of the superconducting plate thickness d in the first step.
The curves demonstrate that critical current decreases with
layer thickness for small h, whereas Ic�h� is higher for thin
plates as compared to relatively thick ones at a moderate
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FIG. 1. Critical current vs applied magnetic field h=H /H� for
�=2 and several values of dimensionless plate thickness d �indi-
cated at the curves�.
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field strength. Moreover, thin superconducting plates can
carry relatively low transport currents without dissipation in
much stronger fields, as compared to thick ones. Note also
that, for layers of thickness d=6, the curves of Ic�h� are
indistinguishable, i.e., critical current becomes independent
of plate thickness. It should be noted that, for thick plates,
the upper limit of the applied magnetic field at which the
superconductivity takes place is close to h�hc2=4. A further
increase in the applied magnetic field leads to complete sup-
pression of superconductivity even at zero transport current
in the vortex-free limit. Our calculations show that, for thick
plates, the critical current disappears sharply, rather than
gradually, at h�hc2. This is accompanied by a step of the
order parameter �0 at the boundary from a finite value to
zero. The functions Ic�h� obtained here can be interpreted as
the upper limits for the critical currents carried by supercon-
ducting plates with different thicknesses D in magnetic fields
of different strength h.

Figure 2�a� illustrates the behavior of the average critical
current calculated by the method described above as a func-
tion of the magnetic field,

�Ic� =
1

N
�
I=1

N

Ici, �12�

where N is the number of layers in a multilayer �indicated at
each curve�, for �=10 and d=0.3, i.e., D=3�. When the
number of layers is relatively small �several dozen for lay-
ered structures of the type analyzed here�, the average critical
current is close to the critical current of a single layer. The
magnetic field generated by the layers increases as their
number increases, and their increasing role manifests itself
by a decrease in critical current. This effect weakens as the
magnetic field increases, and the average critical current ap-
proaches the value of Ic�h� for a single layer. Conversely,
�Ic�h�� for the multilayers approaches the linear law �Ic�h��
��hc2−h� with an increase in the number of layers up to a
few thousand.

Let us define a quantity analogous to the bulk pinning
force: Pv�h�= �Ic�h. Note that the individual layers consid-
ered here are in a vortex-free state, i.e., they are inhomoge-
neous only at their boundaries. This model provides a good
approximation of the real state of superconductor-insulator-
superconductor junctions because the formation of the stron-
gest pinning centers is due to vortex-boundary interaction.
Figure 2�b� shows the bulk pinning force as a function of
magnetic field strength calculated by this method. The most
important result demonstrated here is the deviation from the
scaling law, which was found experimentally in the work.18

In accordance with this law, the temperature and field depen-
dences of the pinning force follow scaling laws of the form

PvHc2
n �h/hc2�x�1 − h/hc2�y .

Our calculations demonstrate that as the role played by the
layers increases with their number, the slope �Pv�h� /�h in
the weak-field limit decreases, and the maximum of the
curve of Pv�h� moves toward higher field strengths, while its
shape tends to that described by

pv�h� � h�hc2 − h� . �13�

Figures 3 and 4 show distributions of transport current
and individual magnetic field layers calculated by the present
method for analyzing the critical states of superconducting
multilayers for different N. Figures 3�a� and 3�b� show the
distributions for N=500, while for comparison Figs. 4�a� and
4�b� show the distributions for N=50. Here, �b� denotes the
magnetic induction averaged over the thickness of a layer. In
both cases, the critical current density varies from layer to
layer. At zero magnetic field strength, its distribution reaches
a maximum in the central layers. In accordance with Eqs.
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FIG. 2. Dependence of critical current density �a� and bulk pin-
ning force �b� on applied magnetic field for several structures with
differing numbers of layers �indicated at the curves� for D=3� and
�=10.
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�11a� and �11b�, the critical current of the layers IcN de-
creases as the number of layers increases; conversely, the
magnetic field acting on the external layers increases as the
number of layers increases. When a magnetic field is applied,
the maximum shifts toward one of the multilayer boundaries.

The role played by the layers increases as d increases and
as � decreases. Figure 5�a� shows the �Ic�h�� curve for a
multilayer with �=3 and d=1, i.e., D=3�. Note that the
steplike disappearance of the critical current in a single layer
at h�hc2 results in a series of smaller current steps of the
critical current of the multilayers at strong magnetic fields. In
accordance with Eq. �12�, the value of these steps is in-
versely proportional to N. Evidently, �Ic�h�� tends to a linear
dependence as N increases: �Ic�h����hc2−h� at strong mag-
netic fields. In comparison with Fig. 2�a�, a decrease in �
results in an increasing influence of each layer, and when the
number of layers becomes several dozen, the magnetic field
contribution of the layers becomes comparable to the applied
magnetic field, and �Ic�h�� is significantly smaller than Ic�h�
for one layer when the difference �hc2−h� is comparable to
the upper critical magnetic field hc2. As a result, Pv�h� is
transformed into relation �13� in this case �Fig. 4�b�. How-
ever, the transport current and magnetic field distributions
�Figs. 6�a� and 6�b� over the layers are similar to Ic�N� and
b�N� shown in Figs. 3 and 4.

Note that the transport current distribution predicted for
the critical state is similar to its distribution in a zero field,
but is also shifted toward a boundary. This similarity has the
following simple explanation. It is obvious that the applied
magnetic field h is equivalent to the superposition of the
magnetic fields generated by l virtual layers, if two condi-
tions are satisfied. First, the total strength of the magnetic
fields generated by these layers in each real layer must be
equal to the corresponding applied field strength, � j=1

l htj =h,
where htj is the magnetic field generated by the jth virtual
layer. Second, the transport-current distribution across the
multilayer obtained by combining N real layers with l virtual
ones in the critical state must be similar to the symmetric
critical current-density distribution across a multilayer con-
sisting of N+ l real layers at zero magnetic field strength.
Unlike the number of real layers, the number of virtual layers
increases as h increases. The shift in the distribution with an
increase in the magnetic field looks as if some real layers
become virtual, but new layers “enter” from another bound-
ary at the same time. The value of the shift is determined by
the selection of the number of virtual layers. However, the
central maximum of the critical current in the multilayer ob-
tained by adding l virtual layers will not exactly match the
shifted critical-current maximum in a real multilayer if the
shift is not a multiple of the half-period of the layered struc-
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FIG. 3. Dependence of critical current �a� and local magnetic
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500 for D=3� and �=10. The numbers at the curves are applied
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ture. The error due to this mismatch can be reduced by using
the following algorithm: the maximum of the critical-current
distribution over individual layers is shifted with a step equal
to the multilayer half-period, and then the average critical-
current densities and applied magnetic field strengths corre-
sponding to the resulting distributions are calculated. Based
on this method for calculating Ici, we conclude that, since the
distribution of Ici in a zero magnetic field is unique, the dis-
tribution of Ici in a nonzero magnetic field is also unique.
Therefore, a known Ic�h� for a single superconducting layer
can be used to calculate the average critical current as a
function of magnetic field strength and to determine the dis-
tribution of transport current over a layered structure in the
critical state.

By using this method, we can account for the transforma-
tion of the dependence �Ic��h� into a linear dependence and
Pv�h� into Eq. �13� as the number of layers increases. Evi-
dently, the critical current of a layer structure is equal to the
sum of the critical currents of each layer: Ic

m=�i=1
N Ici. When

we change h, the shift of the current distribution over layers
Ic�N� results in a change in the critical current ��Ic

m�: �Ic
m

=�Ic1
m −�Ic2

m , where �Ic1
m is the critical current of the new real

layers that enter and �Ic2
m is the critical current of new virtual

layers. Since the applied magnetic field is defined by the
critical current of the virtual layers, �h��Ic2

m . As N in-
creases, �Ic1

m tends to zero: �Ic1
m →0. As a result, �Ic

m�
−�Ic2

m �−�h. This explains the transformation of �Ic��h� into
a linear dependence and Pv�h� into Eq. �13�. Our results
provide an alternative approach for explaining different scal-
ing laws that describe flux pinning in the two most common
commercial superconductors, NbTi and Nb3Sn.19 For NbTi,
the scaling law for the pinning is very close to Eq. �13�.
Conversely, for Nb3Sn, the scaling law is close to h0.5�1
−h�2. The first law is of greater interest for practical appli-
cations because the critical current is larger for a strong mag-
netic field h→hc2 than in the second case. Usually, this dif-
ference is explained by the difference between the
microstructures of both materials.19 In our case, the second
scaling law is close to Pv�h� of the multilayer structure when
the magnetic field of the transport current is significantly
smaller than the upper critical magnetic field. Conversely, the
first law �13� results from the influence of the magnetic field
of the transport current. Moreover, the second law can be
transformed into the first law simply by increasing the num-
ber of layers. Our explanation is realistic, since the upper
critical magnetic field of NbTi is significantly lower than Hc2
of Nb3Sn.

Note that the average critical current is a monotonically
decreasing function of magnetic field strength in the model
considered here for multilayers consisting of any number of
identical layers. The resulting transport-current and magnetic
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field distributions over layers are different from those pre-
dicted by using the Bean20 and Anderson-Kim21 models. In
the Bean model, the critical current density is constant across
the sample, and the magnetic field varies as a linear function.
In the Anderson-Kim model, the magnetic field is character-
ized by a parabolic distribution. At moderate field strengths
�1�h�hc2�, the magnetic field distributions shown in Figs.
3�b�, 4�b�, and 6�b� agree with those predicted by the
Anderson-Kim model, whereas the distributions obtained for
strong fields �h�hc2� tend to exhibit linear behavior, as in
the Bean model. Since the magnetic fields generated by the
low critical currents corresponding to strong applied fields
are weak, the transport current is uniformly distributed over
layers in the critical state.

Interesting results are obtained for inhomogeneous multi-
layers consisting of different superconducting layers. Figure
7�a� shows the behavior of the average current calculated by
using the iterative process as a function of the magnetic field.
In this case, the multilayer consists of two types of supercon-
ducting layers having different Ginzburg-Landau parameters:
for the first, ten layers �=3, and for the second, ten layers
�=1. The thickness of each layer equals �. Unlike multilay-
ers consisting of identical layers, the behavior of �Ic��h� de-
pends on the direction of the transport current, i.e., they are
different for the forward �Ic

+� and backward �Ic
−� directions of

the current. Moreover, one of these magnetic field depen-
dences demonstrates the presence of a peak. This is the peak
effect, which is well known in superconductivity and was
first observed by Raffy et al.22 The interpretation of this ef-
fect was given by Ami and Maki3 in terms of commensura-
bility between the multilayer period and the vortex lattice
spacing. Our calculations show that this effect can be ex-
plained by taking into account the heterogeneity of supercon-
ductors. It should be noted that the magnetic field depen-
dences of the individual layers, which form the multilayer
structure, are monotonically decreasing functions, as usual
�see Fig. 7�. Figure 7�b� demonstrates the magnetic field de-
pendences Pv�h� for the forward and backward directions of
the transport current. These dependences are different, as are
�Ic��h� in these cases.

The peak effect is explained by superposition of the ap-
plied magnetic field and the field induced by the current
flowing along the layers. The transport current induces the
magnetic field along the applied field on a boundary of the
multilayer structure and in the opposite direction on the other
boundary. If the current changes its direction, the field also
changes its direction. Thus, on the first boundary, the field of
the transport current is directed along the external magnetic
field and they are added. On the opposite boundary, the field
of the current is directed oppositely to the applied magnetic
field and decreases the total magnetic field. For homoge-
neous structures, the change in the induced magnetic field
has no effect on the �Ic��h� dependence because the structure
is symmetric—all the layers are identical. For inhomoge-
neous structures, this results in different �Ic��h� dependences.
Figures 8�a� and 8�b� demonstrate transport current distribu-
tions over individual layers for these two cases to illustrate
the conclusion. At low applied magnetic fields, the magnetic
field induced by superconducting layers with �=3 exceeds
the upper critical magnetic field of layers with �=1 �hc2

1 � in
both directions of the transport current. Moreover, in the sec-
ond case, when the magnetic field of the transport current is
directed along the applied field, the sum of the external field
and the field of transport current exceeds hc2

1 in any magnetic
field. Conversely, in the first case, there is a range of applied
fields �1�h�5.5� where their sum is smaller than hc2

1 . In
this range, layers with �=1 also carry superconducting cur-
rent in the critical state. As a result, this forms a maximum
on the �Ic��h� dependence in the first case. It is evident that
the ratio Ic

+ / Ic
− depends on the magnetic field. The asymmetry

for critical currents of opposite polarities was first detected
by Kadin et al.23 In the opinion of the author of that study,
the asymmetry is related to the asymmetric profile of the
samples across the layers �niobium deposited on silicon lay-
ers, as it was in the experimental work, may be different
from silicon on niobium layers�. Unlike our work, their ap-
proach does not explain the magnetic field dependence of the
ratio Ic

+ / Ic
−, which was detected in the experiment.

Even a deviation in the physical properties of only one of
the layers can lead to noticeable results. Figures 9�a� and
9�b� show the behavior of the average current and of Pv for
the forward and backward directions of the transport current
as a function of the magnetic field, which were calculated by
using an iterative process. In this case, the multilayer also
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FIG. 7. The same as in Fig. 2, but for a multilayer structure
consisting of two types of superconducting layers having different
Ginzburg-Landau parameters: for the first 10 layers �=3, and for
the last 10 layers �=1. The thickness of each layer equals �. Circles
show the dependences for the forward direction of the current and
crosses show the dependences for the backward direction of the
current. For comparison, the upper and lower dashed lines in Fig.
7�a� show the Ic�h� dependences for an individual layer with �=3
and 1, respectively.
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consists of superconducting layers of two types, and the total
number of layers is 20. The thickness of each layer equals �.
However, the Ginzburg-Landau parameter for the first layer
�=3, and for the last 19 layers �=1. We can see that the
behavior of �Ic��h� and Pv�h� also remarkably depends on the
direction of the transport current. Moreover, the Pv�h� depen-
dences differ drastically from these dependences for homo-
geneous multilayers. The main difference is the presence of
the two maxima on the curves. For a multilayer consisting of
identical layers, there is only one peak on these dependences.
Similar curves with two maxima were detected in experi-
mental works,24,25 which investigated the pinning force in
multilayers. Usually, the existence of the additional maxi-
mum is explained by the matching of the vortex lattice with
the layered structure. In our case, this results from the current
distribution features in the inhomogeneous multilayers.

IV. CONCLUSIONS

The main results of the present study can be summarized
as follows.

The nonlinear Ginzburg-Landau equations are solved nu-
merically to calculate critical current as a function of mag-
netic field strength and both current and magnetic field dis-
tributions over layers for superconducting multilayers in
parallel applied magnetic fields. The method enables one to

calculate these dependences not only for homogeneous but
also for inhomogeneous multilayers. The problem is solved
for vortex-free layers whose mutual influence is entirely due
to their interaction with a magnetic field. A simple method is
proposed for calculating and analyzing the critical states of
layered structures in magnetic fields of arbitrary strength,
based on elementary transformations of the critical current-
density distribution over individual layers in a zero applied
magnetic field. Our results give a new approach for explain-
ing different scaling laws that describe flux pinning in the
two most common commercial superconductors, NbTi and
Nb3Sn. The method makes it possible to account for the peak
effect and the asymmetry for the critical currents of opposite
polarities in multilayered superconductors.

It should also be noted that the results presented here will
not change significantly if the Josephson coupling between
layers separated by a dielectric is taken into account, because
the Josephson current density is lower than the depairing
current density by several orders of magnitude, and its effect
on the order-parameter modulation amplitude and the
transport-current distribution is weak. However, if supercon-
ducting layers are separated by normal-metal layers, the
proximity effect induces superconductivity in the normal
conductors and suppresses the order parameter in the super-
conductors. In the thin normal-metal layer limit, this leads to
weak superconducting order-parameter modulation in the
layered structure. In this case, the Ginzburg-Landau equa-
tions can be solved for a structure placed in a parallel mag-
netic field whose strength is close to the upper critical field.3

Note that weak modulation of the order parameter corre-
sponds to weak interaction between Abrikosov vortices and
the lattice induced by inhomogeneities, i.e., to low critical
current density.
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FIG. 8. Dependence of critical current on the location of a layer
in a structure consisting of two types of superconducting layers
having different Ginzburg-Landau parameters: for the first 10 layers
�=3, and for the last 10 layers �=1 for the forward �a� and for the
backward �b� directions of the current. The thickness of each layer
equals �. Numbers at the curves are applied magnetic field
strengths.
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FIG. 9. The same as in Fig. 7, but the Ginzburg-Landau param-
eters for the first layer �=3, and for the last 19 layers �=1. The
thickness of each layer equals �.
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The vortex-free Meissner state of the layers assumed in
this study is an important restriction. One can say that in our
case the critical current is determined by the vortex forma-
tion conditions in the superconducting plates, and the pin-
ning centers are the boundaries of the plates. The dependence
�Ic��h� obtained here can be interpreted as an upper limit for
the critical current carried by a multilayer in a parallel mag-
netic field. Moreover, it is well known26 that a perfect lock-in
of the Josephson vortices parallel to the layers is possible in
the superconducting multilayers even in a magnetic field di-
rected at a small angle to the layers. Thus, the vortex-free
state in the superconducting layers can exist not only in a
magnetic field applied perfectly parallel to the layers. Of
course, above some critical angle, the perpendicular field
component will induce pancake vortices in the layers, i.e.,
the critical current density in the inclined field will be deter-
mined by the pinning of these vortices.

The results of this study are significant for applied super-
conductivity because artificial pinning structures are often
used to increase the critical current.14 However, the vortices
do exist in superconductors used for practical application,
and their interaction with pinning centers is one of the main

factors that determines the critical current density. Neverthe-
less, the rapid development of technology gives one the hope
that it will soon be possible to create more advanced micro-
structures, specifically for improving both critical current
and the upper critical magnetic field. With this aim, it would
be interesting to prepare a superconductor consisting of a set
of superconducting microrods separated by an insulator.
Thus, the vortex-free limit can be used and the main results
of our paper are correct for this structure, which is very
interesting for practical applications. However, the exact re-
sults can be obtained by solving the two-dimensional
Ginzburg-Landau equations for microrods placed in an ex-
ternal magnetic field.
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