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A dynamic cluster quantum Monte Carlo algorithm is used to study a spin-susceptibility representation of
the pairing interaction for the two-dimensional Hubbard model with an on-site Coulomb interaction equal to
the bandwidth for various doping levels. We find that the pairing interaction is well approximated by
3
2Ū�T�2��K−K��, with an effective temperature and doping dependent coupling Ū�T� and the numerically

calculated spin susceptibility ��K−K��. We show that at low temperatures, Ū may be accurately determined
from a corresponding spin-susceptibility based calculation of the single-particle self-energy. We conclude that
the strength of the d-wave pairing interaction, characterized by the mean-field transition temperature, can be
determined from a knowledge of the dressed spin susceptibility and the nodal quasiparticle spectral weight.
This has important implications with respect to the questions of whether spin fluctuations are responsible for
pairing in the high-Tc cuprates.
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I. INTRODUCTION

Recent numerical calculations have shown that the domi-
nant contribution to the d-wave pairing interaction in the
two-dimensional �2D� Hubbard model comes from the spin
S=1 channel.1,2 Motivated by this result, a simple spin-
susceptibility representation of the pairing interaction was
studied.3 Results for a Hubbard on-site Coulomb interaction
equal to the bandwidth and a site filling �n�=0.85 have
shown that the pairing interaction can be well approximated
by a simple random phase approximation �RPA� form,4–7

3

2
Ū2�T���K − K�� , �1�

where K= �K , i�n� denotes momentum and frequency. Here,
it was important that an effective temperature dependent cou-

pling Ū�T� and the dressed spin susceptibility were used in
Eq. �1� instead of the bare U and the perturbative RPA sus-

ceptibility. The coupling Ū�T� was determined by fitting the
low frequency d-wave projected irreducible particle-particle
vertex calculated with a dynamic cluster approximation
�DCA� quantum Monte Carlo �QMC� technique8–11 with the
d-wave projection of the form given by Eq. �1�. Using this

estimate of Ū�T� and the calculated dressed susceptibility
and Green’s function, it was shown that the eigenvalue and
eigenfunction of the homogeneous Bethe-Salpeter equation
in the particle-particle channel are well represented by the
corresponding quantities calculated with the approximate in-
teraction given by Eq. �1�.

Here, we extend this study to explore this approximation
for other fillings and investigate other ways to determine the

coupling strength Ū�T� that do not require knowledge of the
irreducible particle-particle vertex, since this is not experi-

mentally accessible for the cuprates. We first discuss the
DCA QMC technique used to calculate the relevant quanti-
ties and review the fitting procedure used to determine the

temperature dependent coupling Ū�T� from the irreducible
particle-particle vertex. We then examine how well Eq. �1�
can describe the pairing interaction for various site fillings
�n�. We are particularly interested in the low doping regime.
In this case, a pseudogap opens in the density of states and
the low-energy spin excitations,12–16 and it is unclear whether
the form given by Eq. �1� is still a good representation of the
pairing interaction. We then explore two approximations that

estimate Ū�T� from the single-particle spectrum. By assum-
ing that the self-energy is determined by the same interaction
�Eq. �1�� as the particle-particle interaction, one can get a

single-particle estimate for Ū�T�. We first do this assuming
that the exact single-particle spectral weight is known. Next,
we consider a scenario where only limited information is
available for the single-particle spectrum, such as the nodal
spectral weight. In this case, one can use the interaction in
Eq. �1� to self-consistently determine the self-energy and
dressed Green’s function in addition to the effective coupling

Ū�T�. This, of course, assumes that a reliable estimate of the
noninteracting Green’s function is available.

We will study the quality of these approximations by
comparing their respective estimates of the d-wave eigen-
value with the result obtained from the DCA QMC tech-
nique. These DCA QMC calculations are carried out on a
four-site cluster. This means that phase fluctuations are sup-
pressed, and the temperature Tc0 at which the d-wave eigen-
value equals 1 corresponds to the mean-field transition
temperature.17 This temperature provides a natural measure
of the strength of the d-wave pairing interaction.
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II. DYNAMIC CLUSTER QUANTUM
MONTE CARLO TECHNIQUE

To calculate the single-particle self-energy, the pairing in-
teraction, and the spin susceptibility in the 2D Hubbard
model, we use a DCA QMC algorithm.8–11 The dynamic
cluster approximation maps the original lattice model onto a
periodic cluster of size Nc sites embedded in a self-consistent
host. The essential assumption is that short-range quantities,
such as the self-energy and its functional derivatives �the
irreducible vertex functions�, are well represented as dia-
grams constructed from the coarse-grained Green’s function.
For the problem of interest, this is a reasonable assumption
for systems where the correlations that mediate the pairing
are short ranged. To this end, the first Brillouin zone is di-
vided into Nc cells, with each cell represented by its center
wave vector K surrounded by N /Nc lattice wave vectors la-

beled by k̃. The reduction of the N-site lattice problem to an
effective Nc site cluster problem is achieved by coarse grain-
ing the single-particle Green’s function, i.e., averaging

G�K+ k̃� over the k̃ within a cell which converges to a clus-
ter Green’s function Gc�K�. Consequently, the compact
Feynman diagrams constructed from Gc�K� collapse onto
those of an effective cluster problem embedded in a host,
which accounts for the fluctuations arising from the hopping
of electrons between the cluster and the rest of the system.
The compact cluster quantities are then used to calculate the
corresponding lattice quantities.

The pairing interaction is given by the irreducible part of
the particle-particle vertex,

�pp�K;K�� � �pp�K,− K;K�,− K�� , �2�

with K= �K ,�n�. One can also use the DCA to calculate the
spin susceptibility ��Q ,�n�.10,11 We then introduce a d-wave
coupling strength3

−
1
2 �g�K��even

pp �K,�T;K�,�T�g�K���KK�

�g2�K��K
, �3�

with the even frequency, even momentum part of the irreduc-
ible particle-particle vertex,

�even
pp �K,�T;K�,�T� =

1

4
��pp�K,�T;K�,�T�

+ �pp�K,�T,− K�,�T�

+ �pp�K,�T,K�,− �T�

+ �pp�K,�T,− K�,− �T�� �4�

and g�K�= �cos Kx−cos Ky�. The leading low temperature ei-
genvalue of the particle-particle Bethe-Salpeter equation is
then calculated from

−
T

Nc
�
K�

�even
pp �K,− K;K�,− K���̄0

pp�K�����K�� = 	����K� .

�5�

It is found to correspond to an eigenfunction with d-wave
symmetry.1,2 Here, we have coarse grained the Green’s func-

tion legs, �̄0
pp�K��=

Nc

N �k̃�G↑�K�+ k̃��G↓�−K�− k̃��, according
to the DCA assumption. Throughout this paper, we show
results calculated on a 2
2 cluster for a near-neighbor hop-
ping t=1 and a Hubbard Coulomb interaction U=8.

III. SPIN-SUSCEPTIBILITY REPRESENTATION

In Ref. 3, we introduced an effective coupling strength

Ū�T� by requiring that the d-wave coupling strength given by
Eq. �3� be the same at a given temperature when �pp�K ;K��
is replaced by the approximate interaction given by Eq. �1�.

In Fig. 1, we show the results for Ū�T� for three different

fillings. For temperatures T�1, Ū�T� decreases with tem-

perature for all fillings. One also sees that Ū decreases with
increasing doping for all temperatures. This result is consis-
tent with earlier quantum Monte Carlo calculations that
found that the electron-spin fluctuation vertex decreased with
decreasing temperature and increasing doping.18
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FIG. 1. �Color online� The coupling strength Ū�T� versus tem-
perature obtained from fitting the DCA QMC result for the pairing
interaction, Eq. �4�, for U=8 and for different values of the site
filling �n�. We work in units where t=1.
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FIG. 2. �Color online� The d-wave eigenvalue 	d versus tem-
perature obtained from the RPA form �Eq. �1�� �open symbols� and
from the DCA QMC interaction �solid symbols� for different values
of the site filling �n�.
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Using these estimates of Ū�T�, one can then explore how

well 3
2Ū2��K−K�� represents �pp�K ;K�� by comparing the

d-wave eigenvalues. The curves with solid symbols in Fig. 2
show the d-wave eigenvalue versus T obtained from Eq. �5�
with the DCA QMC interaction �pp. The curves with open
symbols show the d-wave eigenvalue obtained from Eq. �5�
when �pp is replaced by 3

2Ū2��K−K��. In these calculations,
we have used DCA QMC results for ��K−K�� as well as the
single-particle propagator G�k� that appears in Eq. �5�.

With Ū�T� determined from fitting �pp, we find for all
fillings that the temperature dependence and size of the
d-wave eigenvalue 	d are reasonably accounted for by the
simple form of the interaction given in Eq. �1�. Since the
DCA QMC calculations have been carried out using an Nc
=4 site cluster, the phase fluctuations are suppressed and the
temperature Tc0 at which the d-wave eigenvalue equals 1
represents a mean-field transition temperature. In Table I, we
list the Tc0 value obtained when �pp is used to determine
	d�T�. The temperature Tc0

�1� at which 	d=1 when �pp is re-

placed by 3/2Ū2�T���K−K�� with Ū�T� determined from
Eq. �3� is also listed in Table I. One sees that this approxi-
mation overestimates the mean-field transition temperature
by order of 10%–30%, depending on the doping. Reasons for
the disagreement at small doping could include the presence
of the pseudogap in the spin excitations and the assumption
of a frequency and K independent coupling strength Ū.

IV. SINGLE-PARTICLE FIT OF Ū„T…

In the previous section, we determined the coupling
strength Ū�T� by fitting the pairing interaction. Next, we ex-

plore how well Ū�T� can be estimated from the single-
particle spectrum by assuming that the self-energy ��K� is
determined by the same form, Eq. �1�, i.e., given by

−
3

2
Ū2�

Q

Gc�K − Q���Q� . �6�

As was done for the pairing interaction and the Bethe-
Salpeter equation �Eq. �5��, we first examine what happens if

we use DCA QMC results for the susceptibility ��Q� and the
single-particle propagator Gc�K�. It was shown in Ref. 19
that this simple representation of the self-energy provides a
useful description of the single-particle spectral weight
A�k ,��. Within this framework, we propose estimating the

coupling strength Ū�T� by requiring that the Matsubara qua-
siparticle weight

Z�K,T� = 	1 −
Im ��K,�T�

�T

−1

�7�

for K= �� /2 ,� /2� calculated with the DCA QMC result for
��K� is the same at a given temperature for the approximate
self-energy given by the form in Eq. �6�.

For the 2
2 cluster, the DCA self-energy ��K� is calcu-
lated for the discrete set of momenta K= �0,0�, �� ,0�, �0,��,
and �� ,��. To obtain the self-energy for k= �� /2 ,� /2�, we
interpolate ��K� according to ��k ,�n�=�Reik·R��R ,�n�,
where R are the distances in the cluster and ��R ,�n� is the
Fourier transform of ��K ,�n�. This interpolation does not
introduce fast Fourier components corresponding to length
scales larger than the cluster and, for the 2
2 cluster, is
guaranteed to preserve causality. For k= �� /2 ,� /2�,
one obtains ��� /2 ,� /2 ,�n�= 1

4 ���0,0 ,�n�+2��� ,0 ,�n�
+��� ,� ,�n��.

From a phenomenological point of view, it is interesting
to see how well the d-wave eigenvalue calculated with the

approximate pairing interaction in Eq. �1� and the coupling Ū
determined from the self-energy reproduces the DCA QMC
result for the d-wave eigenvalue. To the extent that the 2D
Hubbard model gives an appropriate description of the cu-
prates, this will indicate how well angle-resolved photoemis-
sion spectroscopy �ARPES� results can be combined with
inelastic neutron scattering results to provide an estimate of
the strength of the pairing interaction in the high-Tc cuprates.
A similar analysis using Eliashberg equations was applied to
the heavy fermion superconductor UPt3.20,21

Figure 3 shows a comparison of the coupling Ū obtained
from fitting the self-energy �open symbols� and the coupling
obtained from fitting the pairing interaction as described in
Sec. III �solid symbols� for various fillings. The correspond-
ing d-wave eigenvalue one obtains by using the approximate

form of the pairing interaction, 3
2Ū2��K−K��, in Eq. �5� is

shown in Fig. 4. Here, as a comparison, we also plot the
results for 	d obtained if the DCA QMC results for the pair-
ing interaction �pp are used in Eq. �5�. In Fig. 3, one sees that

the single-particle estimate of Ū is smaller than that obtained
from fitting the pairing interaction for all temperatures and
fillings �except at the lowest temperatures for �n�=0.95�. For

�n�=0.95 and T0.65, Ū determined from �pp becomes
larger than the bare interaction U, while the single-particle
estimate remains less than U. This behavior may be related
to the fact that at higher temperatures, there are a number of
contributions which enter in different ways into the pairing
and self-energy channels. At low temperatures, the spin fluc-
tuations become dominant and the two estimates agree. The
result of this discrepancy is that the corresponding eigen-

TABLE I. The superconducting mean-field transition tempera-
ture obtained as the temperature where the d-wave eigenvalue
	d=1 for different values of the site filling �n� and different ap-
proximations. Tc0, Result obtained when the DCA QMC result for
�pp is used; Tc0

�1�, result obtained when �pp is replaced by the RPA

form �Eq. �1�� and Ū is determined from fitting the irreducible

particle-particle vertex; Tc0
�2�, result obtained when Ū is determined

from fitting the model quasiparticle spectral weight using Eq. �6�;
Tc0

�3�, result obtained when Ū and G�K� are determined self-
consistently by fitting the nodal quasiparticle weight. The numbers
in parentheses denote the deviation from the DCA QMC result ex-
pressed in percent.

�n� Tc0 Tc0
�1� Tc0

�2� Tc0
�3�

0.95 0.080 0.100 �25%� 0.108 �35%� 0.105 �31%�
0.90 0.074 0.087 �18%� 0.084 �14%� 0.081 �9%�
0.85 0.067 0.074 �10%� 0.064 �4%� 0.058 �13%�
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value obtained in this approximation can be larger or smaller
than the DCA QMC result for the eigenvalue, depending on
the doping and the temperature. Nevertheless, as shown in
Table I, the errors in the determination of the mean-field
transition temperature are similar in size to the case in which

Ū was determined by a fit that required knowledge of �pp.

V. SELF-CONSISTENT DETERMINATION OF Ū„T…
AND G„K…

In the previous sections, we used DCA QMC results for
the spin susceptibility ��Q� and the single-particle Green’s

function G�K� and estimated the coupling strength Ū�T� ei-
ther by fitting the pairing interaction or the nodal quasiparti-
cle weight. In this section, we go one step further and assume
a scenario where only limited information is available for the

single-particle Green’s function G�K�. In this case, we use
the approximate form �Eq. �6�� for the self-energy ��K� to
determine the dressed Green’s function from the DCA
coarse-grained Dyson equation,

Gc
−1�K,�n� =

Nc

N
�
k̃

�G0
−1�K + k̃,�n� − ��K,�n��−1. �8�

Here, G0�k� is the noninteracting Green’s function, i.e.,
G0�k ,�n�= �i�n−�k�−1 with �k=−2t�cos kx+cos ky�. Equa-
tions �6� and �8� are iterated until self-consistency is

achieved, and the value of Ū entering Eq. �6� is again fixed
by requiring that the quasiparticle weight Z�K ,T� obtained
with this approximation for K= �� /2 ,� /2� is the same as
that obtained from the DCA QMC self-energy. We find that

the estimates one obtains for Ū using this approach are al-
most identical to the values obtained in Sec. IV �see Fig. 3�
and therefore do not show the results.

Using these estimates of Ū�T� and G�k�, one can again
calculate the d-wave eigenvalue and compare it to the DCA
QMC result for the eigenvalue. The curves with open sym-
bols in Fig. 5 show the result for the d-wave eigenvalue
obtained with this approximation, and the curves with solid
symbols display the DCA QMC result. One sees that the
results obtained with this approximation are almost identical
to the results obtained in Sec. IV where the DCA QMC
Green’s function was used. In this case, the temperatures at
which 	d�T�=1 are listed as Tc0

�3� in Table I and one sees that
they are again within 10% to 30% of the DCA QMC Tc0
values. Apparently, the additional renormalized one-loop ap-
proximation �Eq. �6�� of the self-energy that enters the
Bethe-Salpether equation �Eq. �5�� through the propagator
G�k� has only a negligible effect on the d-wave eigenvalue.

We also performed fits of the real frequency spectra with
the corresponding one-loop approximation. On small clus-
ters, we find it difficult to describe the spectra with this

0 0.2 0.4 0.6 0.8 1
0.0

2.0

4.0

6.0

8.0

T

Vd fit, <n>=0.95

Z fit, <n>=0.95
Vd fit, <n>=0.90

Z fit, <n>=0.90
Vd fit, <n>=0.85

Z fit, <n>=0.85

U

FIG. 3. �Color online� The estimate for the coupling strength Ū
versus temperature determined from fitting the DCA QMC self-
energy with the RPA form �Eq. �6�� compared to the coupling ob-
tained from fitting the pairing interaction with the RPA form �Eq.
�1�� for different site fillings �n�.
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FIG. 4. �Color online� The d-wave eigenvalue 	d versus tem-

perature obtained from the RPA form �Eq. �1�� with Ū determined
from fitting the self-energy with the approximate form �Eq. �6��
�open symbols� compared to the eigenvalues obtained from the
DCA QMC interaction �solid symbols� for different site fillings �n�.
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FIG. 5. �Color online� The d-wave eigenvalue 	d versus tem-

perature obtained from the RPA form �Eq. �1�� with Ū and G�K�
determined self-consistently from fitting the self-energy with the
approximate form �Eq. �6�� �open symbols� compared to the eigen-
values obtained from the DCA QMC interaction �solid symbols� for
different site fillings �n�.
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simple approximation. On larger clusters, however, we have
previously shown that the spectra are well approximated by
the one-loop form for the self-energy.19 Preliminary results

on a 16-site cluster indicate that very similar estimates of Ū
are obtained as those presented in this paper.

VI. CONCLUSIONS

In conclusion, this work has shown that the pairing inter-
action in the 2D Hubbard model in the parameter regime
appropriate for the cuprates over a range of dopings is well
described by the spin-susceptibility representation,
3
2Ū�T�2��K−K��. At low temperatures, the coupling strength

Ū decreases with temperature and doping. Close to the su-

perconducting transition temperature, Ū can be well esti-
mated by assuming that the self-energy is determined by the

same interaction, 3
2Ū�T�2��Q�, and requiring that one has the

same nodal quasiparticle weight as the DCA QMC result. In
practice, one would seek to relate this to the renormalization

of the nodal Fermi velocity measured in ARPES studies. Us-
ing this approximation to self-consistently determine the
single-particle propagator that enters the Bethe-Salpeter
equation in the particle-particle channel has only negligible
effects on its d-wave eigenvalue. As a result, estimates of the
superconducting mean-field transition temperature using the
spin-susceptibility representation of the pairing interaction
and the self-energy provide a satisfactory way of measuring
the strength of the d-wave pairing interaction.
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