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The lattice anomaly, i.e., the lattice distortion and the elasticity change, caused by the appearance of
superconductivity �SC� is studied by use of the BCS theory. The BCS Hamiltonian with any attractive inter-
action between electrons is introduced for crystals with the symmetry D4h, so that the s-wave, dx2−y2-wave, and
dxy-wave SC’s may appear. The microscopic parameters in the Hamiltonian are expanded in powers of distor-
tions u up to their first order, so as to make the Hamiltonian satisfy the crystal symmetry. The free energy of
the system as a function of SC order parameters �SOP� and u’s is obtained to reveal the properties of the lattice
anomaly. The temperature dependence of the equilibrium distortion and the elastic constants in the SC phases
with the different SOP’s is calculated. The calculated distortion is shown to give its temperature dependence
consistent with the observation. The elastic constants obtained can exhibit not only softenings but also hard-
enings below the transition temperature Tc, depending on the microscopic parameters. This behavior of elastic
constant is just that observed in some high-Tc cuprates.
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I. INTRODUCTION

Since high-Tc superconductivities �SC� were found in
some perovskite-type cuprates,1 findings of new SC com-
pounds have succeeded. In these SC compounds, not only
the conventional SC but also unconventional SC ’s have been
observed. For example, the SC’s in MgB2,2 Sr2RuO4,3 and
PuRhGa5 �Ref. 4� are considered to be of s-wave, p-wave,
and d-wave SC’s, respectively. In experimental studies of
SC’s appearing in real compounds, various measurements
such as those of NMR, thermal conductivity, specific heat,
and others5 have been done. Also measurements of bulk
properties of crystal lattices, i.e., the lattice distortion and the
elasticity change caused by SC have already been performed
to clarify the properties of SC’s and the role of SC-lattice
coupling in the appearance of SC.6,7 Unfortunately, however,
it seems difficult at present to get full information on SC
from the measurements on the lattice properties. In this pa-
per, therefore, we aim to relate the lattice anomaly to micro-
scopic quantities, so that the measurement on the lattice
properties may be a more microscopic probe into SC’s in real
compounds.

Usually, the experimental results on the lattice anomaly
caused by SC have been interpreted by use of the two theo-
ries, i.e., Ginzburg and Landau �GL�’s theory8,9 and Testar-
di’s theory.10 In the former theory,8,9 the free energy as a
function of SC order parameter �SOP� � and distortions u is
expanded near Tc in powers of � and u so as to conserve the
symmetry of the SC-lattice system. This theory is helpful to
analyze the experimental results, but cannot be suitable for
description of the phenomena in a wide temperature region
including absolute zero. Moreover, it is not easy to know
from the analyses of experiments what happens in SC states
in real compounds. In the latter theory,10 on the other hand,
the free energy is assumed to have a form as �f�T /Tc� in the
all temperature region, where � and Tc are functions of
stresses �. This theory removed a difficulty at low tempera-
tures in the GL theory and clarified relations between the
lattice anomaly and some thermodynamic quantities, which

supplied a helpful guide in analyses of observations. Never-
theless, it can hardly give detailed information about the ori-
gin of the lattice anomaly.

To get more insights into SC’s from measurements on the
lattice anomaly, we start with the BCS theory.11 Here, we
assume that any of the conventional and unconventional SC
states result from formations of electron pairs by possible
attractive interactions and are described by extended BCS
Hamiltonians, irrespective of mechanisms of electron attrac-
tion. The microscopic parameters in the BCS Hamiltonian
are introduced phenomenologically, but the Hamiltonian it-
self should satisfy the symmetry of the electron-lattice sys-
tem. On the basis of the BCS Hamiltonian thus obtained, we
see how the bulk distortion and the elastic change are caused
by the appearance of SC and how those depend on the mi-
croscopic parameters in the BCS Hamiltonian. This theoret-
ical procedure is made for both s-wave and d-wave SC states
in order to compare their lattice anomalies.

In the next section, we introduce a model of the electron-
lattice system in SC compounds. The Hamiltonian suitable
for this model system is diagonalized in Sec. III to give the
free energy as a function of �’s and u’s. Sections IV and V
are devoted to derive the equilibrium distortions and the elas-
tic changes for some different wave states of SC, respec-
tively. Characteristics of the lattice anomaly are seen more
explicitly in Sec. VI by making numerical calculations. The
results are compared with experiments in Sec. VII. In the last
section, VIII, concluding remarks and discussion are given.

II. MODEL SYSTEM AND ITS HAMILTONIAN
FOR THE APPEARANCES OF THE s-WAVE AND

d-WAVE SUPERCONDUCTIVITIES

Putting into mind cuprate superconductors, we consider
compounds with tetragonal crystals whose structural symme-
try is D4h. In the compounds, the band electron system is
assumed to be of the two-dimensional �2D� nature and to
have a Fermi surface which has a cylindrical shape along the
fourfold rotation axis, say the z axis, of the crystal. It is
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further assumed that this electron system is able to make the
appearance of the s-wave and d-wave SC’s and the SC’s
couple to bulk distortions through various physical quanti-
ties. Without going into detail of mechanisms of attractive
interaction, we construct the BCS Hamiltonian in the pres-
ence of bulk distortions under requirement of the symmetry
of the starting crystal.11 As the result, the total Hamiltonian
of this electron-lattice system consists of the elastic energy
Hela, the band electron energy Hele, and the energy of elec-
tron interaction Hint:

H = Hela + Hele + Hint. �1�

When the s-wave and d-wave SC’s appear in the present
2D electron system, it is sufficient to take into account the
following normal modes of distortion:

u1,u3�A1g�;u2�B1g�;u6�B2g� , �2�

where the irreducible representations of D4h which each dis-
tortion mode belongs to are also given. Then, the first term in
Eq. �1�, Hela, is given by

Hela =
1

2
V�c1u1

2 + c2u2
2 + c3u3

2 + c6u6
2� , �3�

where V is the crystal volume in the absence of the distor-
tions and c’s are the elastic constants corresponding to each
mode. The expressions of u’s and c’s in terms of the compo-
nents of the strain tensor eii� and the elastic stiffness con-
stants cjj�, respectively, are given in Appendix A.

For the electron band responsible for the appearance of
SC, we introduce an effective band, which is parabolic in the
kx−ky plane and has a sufficiently large mass in the kz direc-
tion. The second term in Eq. �1�, Hele, under the distortions is
approximated to be

Hele = �
k,�

�̃kck�
+ ck�, �4�

�̃k =
�2

2m�

��̃1�kx
2 + ky

2� + �̃2�kx
2 − ky

2� + 2�̃6kxky� − �̃ , �5�

where ck� is the annihilation operator of the electron with
wave vector k and spin � and m� is the electron mass in the

kx−ky plane. In Eqs. �4� and �5�, the constants �̃ and the
chemical potential �̃ are all defined to be quantities of dis-
torted crystals.

The final term in Eq. �1�, Hint, on the other hand, can have
the form

Hint = −
1

Vk̃F�
4

�
k,k�

��g̃1�kx
2 + ky

2��kx�
2 + ky�

2�

+ g̃2�kx
2 − ky

2��kx�
2 − ky�

2� + 4g̃6kxkykx�ky�

+ g̃12��kx
2 + ky

2��kx�
2 − ky�

2� + �kx�
2 + ky�

2��kx
2 − ky

2��

+ 2g̃16�kxky�kx�
2 + ky�

2� + kx�ky��kx
2 + ky

2���

	c−k�↓
+ ck�↑

+ ck↑c−k↓, �6�

where k̃F� is the Fermi wave number in the kx−ky plane and

g̃’s are interaction constants, which are again defined for dis-
torted crystals. One of g̃1, g̃2, and g̃6, at least, should be
positive for the appearance of SC. �k� in Eq. �6� means a

summation over k under ��̃k � 
�̃c, �̃c being a cut energy to
exclude the energy region of normal electrons.

By taking into account the crystal symmetry, the constants

�̃’s and g̃’s can be expanded in powers of u’s up to their first
order as follows:

�̃1 = 1 − �1u1 − �1�u3, �̃2 = − �2u2, �̃6 = − �6u6,

g̃1 = g1�1 + �1u1 + �1�u3�, g̃2 = g2�1 + �2u1 + �2�u3� ,

g̃6 = g6�1 + �6u1 + �6�u3� ,

g̃12 = g12u2, and g̃16 = g16u6. �7�

Here, �’s, ��’s, g’s, �’s, and ��’s are new constants, which no
longer depend on u’s.

III. FREE ENERGY OF THE
SUPERCONDUCTIVITY-DISTORTION SYSTEM

In order to derive the free energy of the system, we first
diagonalize Hele+Hint by applying the mean field approxima-
tion to Hint. The superconducting order parameters �SOP�
that we are interested in are as follows:

�1 =
g1

Vk̃F�
2

�
k

��kx
2 + ky

2�	ck↑c−k↓
 , �8�

�2 =
g2

Vk̃F�
2

�
k

��kx
2 − ky

2�	ck↑c−k↓
 , �9�

�6 =
2g6

Vk̃F�
2

�
k

�kxky	ck↑c−k↓
 , �10�

where 	 
 means the thermal average. We call in the follow-
ing the SC’s with �1, �2, and �6 the s-wave, dx2−y2-wave,
and dxy-wave SC’s, respectively. Except for normal electrons

with ��̃k��̃c, the resultant mean-field Hamiltonian for Hele
+Hint becomes HBCS, which is given by

HBCS = �
k�

��̃kck�
+ ck� −

1

k̃F�
2

�
k

����̃1
*�kx

2 + ky
2� + �̃2

*�kx
2 − ky

2�

+ 2�̃6
*kxky�ck↑c−k↓ + H.c.� + VẼs, �11�

where

�̃1 =
g̃1

g1
�1 +

g̃12

g2
�2 +

g̃16

g6
�6, �12�

�̃2 =
g̃2

g2
�2 +

g̃12

g1
�1, �13�
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�̃6 =
g̃6

g6
�6 +

g̃16

g1
�1, �14�

and

Ẽs =
g̃1

g1
2 ��1�2 +

g̃2

g2
2 ��2�2 +

g̃6

g6
2 ��6�2 +

g̃12

g1g2
��1

*�2 + �1�2
*�

+
g̃16

g1g6
��1

*�6 + �1�6
*� . �15�

By making the usual procedures, HBCS is diagonalized to
become

HBCS = �
k

�Ẽk��k↑
+ �k↑ + �−k↓

+ �−k↓� + �
k

���̃k − Ẽk� + VẼs,

�16�

where

Ẽk = ��̃k
2 + �1/k̃F��4��̃1�kx

2 + ky
2� + �̃2�kx

2 − ky
2� + 2�̃6kxky�2�1/2.

�17�

Equations �16� and �3� give the free energy F�� ;u� of the
SC state, which is subtracted by the electron free energy of
the normal state, as

F��;u� = Hela − �
k

�� 2

�
ln� cosh��Ẽk/2�

cosh���̃k/2�
� + VẼs,

�18�

where �=1/kBT with the Boltzmann constant kB, and tem-
perature T. From Eq. �18�, we see that the different SOP’s
cannot coexist in an equilibrium state with the crystal sym-
metry D4h, but can if the crystal symmetry is lowered by
distortions.

To avoid complications of various expressions, we first
consider the case where only �1 and �2 can coexist under the
distortions u1 and u2. Then, it is convenient to scale kx and ky
by

k̃x = ��̃1 + �̃2 kx, k̃y = ��̃1 − �̃2 ky , �19�

so that the Fermi surface distorted by the lattice distortions

becomes a circle in the k̃x− k̃y plane. After the summation

over k in Eq. �18� is replaced with the integrations over k̃
and � defined by

k̃ = �k̃x
2 + k̃y

2, � = tan−1�k̃y/k̃x� , �20�

the free energy in the present case is shown to be expressed
by

F��1,�2;u1,u2� =
1

2
V�c1u1

2 + c2u2
2� + VẼs − 2VD̃�

0

�̃c

d�

	�
0

2� d�

2�
� 2

�
ln� cosh„�Ẽ��,��/2…

cosh���/2�
� .

�21�

Here, D̃ is the electronic density of states per unit volume at

the Fermi energy in the presence of the distortions. We ex-

pand D̃ in powers of u’s as

D̃ = D�1 + �1u1�, D = m�/2�c�2, �22�

where �1 is assumed to be another expansion coefficient to
take into account the u dependence of the density of states12

and c is the lattice constant along the z axis. In the following,
�̃c is replaced with the cut energy in the absence of the dis-
tortions, �c, by assuming that the difference �̃c−�c gives only

a minor contribution to Ẽs, as shown in Appendix B. Ẽ�� ,��
in Eq. �21� can be found by substituting Eqs. �12�, �13�, and
�19� into Eq. �17� to be

Ẽ��,�� = ��2 + ��̃1� + �̃2� cos 2� �2, �23�

�̃1� = �1�1 + ��1 + �1�u1 + ��1 + �1��1u1
2 + ��2 + �1��2u2

2�

+ �2���2 + �2�u2 + �2�1�2 + �1�2 + �2�2�u1u2� , �24�

�̃2� = �2�1 + ��1 + �2�u1 + ��1 + �2��1u1
2 + ��2 + �2��2u2

2�

+ �1���2 + �1�u2 + �2�1�2 + �1�1 + �2�1�u1u2� , �25�

where terms up to the second order of u’s are retained in the

expansion of �̃�’s, and �1 and �2 are defined by

�1 =
g12

g1
, �2 =

g12

g2
. �26�

The free energy in the case where �1 and �6 coexist in the
presence of u1 and u6, F��1 ,�6 ;u1 ,u6�, is derived from
F��1 ,�2 ;u1 ,u2� obtained above. When � is replaced by �

− �� /4� in Eq. �20�, 2k̃xk̃y is changed to �k̃x
2− k̃y

2�. By use of
this fact, F��1 ,�6 ;u1 ,u6� is easily obtained by replacing all
subscripts 2 of quantities in F��1 ,�2 ;u1 ,u2� given by Eqs.
�21�–�26� with the subscripts 6.

The free energies in the presence of u3 instead of u1 are
also obtained as follows: Since u1 and u3 have the same
symmetry properties, the two couple to the SC in the same
way but with different coupling constants. Therefore,
F��1 ,�2 ;u3 ,u2� and F��1 ,�6 ;u3 ,u6� are derived by the
replacements

u1 → u3, c1 → c3, �1 → �1�,

�1 → �1�, �2 → �2�, �6 → �6�, and �1 → �1�, �27�

in F��1 ,�2 ;u1 ,u2� and F��1 ,�6 ;u1 ,u6�, respectively.
In general, the SOP’s can have different phases. In the

following, however, we consider the case where they have
the same phases even when different SOP’s coexist through
Hint. This simplification results only in discarding one of the
� and � signs of u2 or u6 induced by coexisting SOP’s.

IV. DISTORTIONS CAUSED BY THE s-WAVE AND
d-WAVE SUPERCONDUCTIVITIES

First, we study the case of the s-wave SC state, where
�1�0 and �2=�6=0. Then, the linear terms of u’s other
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than those of u1 and u3 vanish in the free energy given by
Eqs. �21� and �23�, so that only the distortions u1 and u3 can
be caused by the SC. Therefore, the free energy
F��1 ,�2 ;u1 ,u2� with �2=0 and u2=0 is sufficient to find the
equilibrium u1, u10. By minimizing this free energy with re-
spect to u1, u10 is found to be

u10 =
1

c1
��2�1 + �1�

��10�2

g1

+ 2D�1�
0

�c

d�
2

�
ln� cosh„�E1���/2…

cosh���/2� � . �28�

The equilibrium �1, �10, in the above equation should satisfy
the gap equation:

�10 = Dg1�10�
0

�c

d�
1

E1���
tanh��

2
E1���� , �29�

where

E1��� = ��2 + ��10�2. �30�

Equation �29� gives the well-known transition temperature of
the s-wave SC phase as

Tc =
2e�

�kB
�c exp�−

1

g1D
� , �31�

with Euler’s constant �.
Secondly, we study the case of the dx2−y2-wave SC state,

where �2�0 and �1=�6=0. Also in this case, u1 and u3 can
be caused by the SC. The equilibrium distortion u10 can be
found by minimizing F��1 ,�2 ;u1 ,u2� with �1=0 and u2=0
with respect to u1 to be

u10 =
1

c1
��2�1 + �2�

��20�2

g2

+ 2D�1�
0

�c

d��
0

2� d�

2�

2

�
ln� cosh„�E2��,��/2…

cosh���/2� � .

�32�

The equilibrium �2, �20, in Eq. �32� should satisfy the gap
equation:

�20 = Dg2�20�
0

�c

d��
0

2� d�

2�

cos2 2�

E2��,��
tanh��

2
E2��,��� ,

�33�

where

E2��,�� = ��2 + ��20�2 cos2 2� . �34�

Equation �33� gives the transition temperature of the
dx2−y2-wave SC phase:

Tc =
2e�

�kB
�c exp�−

2

g2D
� . �35�

Thirdly, we mention the case of the dxy-wave SC state,
where �6�0 and �1=�2=0. u10 in this case is obtained by

replacing all subscripts 2 of quantities in Eqs. �32�–�34� with
the subscripts 6.

In all cases, the distortions u30 can also occur in addition
to u10’s. They are easily found by the replacement u10→u30
together with the replacements given by �27� in Eqs. �28� and
�32�.

V. ELASTICITY CHANGE CAUSED BY THE s-WAVE AND
d-WAVE SUPERCONDUCTIVITIES

We confine ourselves to the isothermal elastic constants of
the SC-lattice system at the static limit of applied stresses.
Such constants are to be derived from the free energies,
which have already been given in Sec. III. Considerable ef-
fects of SC on the elastic constants are expected in the case
where the equilibrium SOP is deviated by distortions through
linear couplings of distortions to the SC. Before going into
detail of its calculation, the procedure for obtaining the elas-
tic constants is outlined on a representative SC state where
�1 and �2 coexist in the presence of u1 and u2, and
F��1 ,�2 ;u1 ,u2� given by Eq. �21� is appropriate. When any
stress is applied to give rise to further distortions �u1 and �u2
from their equilibrium distortions as

u1 = u10 + �u1, u2 = �u2, �36�

the SOP’s deviate from their equilibrium values through the
SC-lattice couplings as

�1 = �10 + ��1, �2 = �20 + ��2. �37�

For obtaining the elastic constants, it can be assumed that
��1 and ��2 are proportional to the distortions as

��1 = �10�11�u1 + �20�22�u2, �38�

��2 = �20�21�u1 + �10�12�u2, �39�

where �’s are the proportional constants depending on quan-
tities in the equilibrium state. We substitute Eqs. �36�–�39�
into Eq. �21� to obtain a new free energy as a function of �u1
and �u2. After this free energy is expanded in powers of �u1
and �u2, the resultant energy increases quadratically with �u1
and �u2.

When the above procedure is extended to SC states with
any SOP’s subjected to any distortions �uj with j=1, 2, 3,
and 6, the total increase of the free energy by the distortions
should have the form

�F��u1,�u2� =
V

2
�C11�T���u1�2 + C22�T���u2�2 + C33�T�

	��u3�2 + C66�T���u6�2 + 2C13�T���u1���u3�� .

�40�

The coefficients C�T� in this equation are the elastic con-
stants which are affected by SC.

A. Elastic constants in the s-wave SC state

We derive C11�T� by use of F��1 ,�2 ;u1 ,u2� with �2=0
and u2=0. The condition �F /��1=0 gives the gap equation
for �1 in the presence of u1 as
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1

g1
�1 + �1u1� = D�1 + �2�1 + 2�1 + �1�u1�

	 �
0

�c

d�
1

Ẽ1���
tanh��

2
Ẽ���� , �41�

with

Ẽ1��� = ��2 + ��1�2�1 + 2��1 + �1�u1� . �42�

From Eqs. �41� and �36�–�38�, �11 is obtained to be

�11 = − � �2�1 + �1 + �1�
K11��10�

+ ��1 + �1�� , �43�

where we have defined K11��10� by

K11��10� = g1D��10�2�
0

�c

d�� 1

E1���
�2

	 �−
1

E1���
tanh��

2
E1���� +

�

2
sech2��

2
E1����� .

�44�

Substituting Eqs. �37� and �38� with Eq. �43� into
F��1 ,0 ;u1 ,0� known from Eq. �21� and expanding the free
energy thus obtained in powers of �u1, we arrive at

C11�T� = c1 +
2��10�2

g1
� �2�1 + �1 + �1�2

K11��10�
+ ��1 + �1�2� .

�45�

C22�T�, on the other hand, is derived by use of
F��1 ,��2 ; ,u10,�u2� with u10�0 by noting that �u2 induces
��2 under �10�0. The induced ��2 should satisfy the gap
equation as

�g1

g2
− K12��10����2 = ��1 + K12��10���2

+ K12��10��1��10�u2, �46�

where K12��10� can be expressed by

K12��10� =
1

2
�1 + K11��10�� . �47�

Equations �46� and �39� give

�12 = − �g2�2 + g1��2 + �1�
g2K12��10� − g1

+ ��2 + �1�� . �48�

Substitution of Eqs. �37� and �39� with Eq. �48� into
F��10,��2 ;0 ,�u2� known from Eq. �21� and its expansion in
powers of �u2 result in

C22�T� = c2 +
2��10�2

g1g2
� �g1��2 + �1� + g2�2�2

g2K12��10� − g1
+ g1��2 + �1�2� .

�49�

C66�T� also is affected by the SC, because ��6 is induced
by �u6 under �10�0 to be proportional to �u6. In a similar
way as in C22�T�, C66�T� is derived by use of

F��10,��6 ;u10,�u6� with u10�0. As a result, C66 can be
obtained by the replacements of all subscripts 2 of quantities
in Eqs. �49� and �47� with the subscripts 6.

B. Elastic constants in the dx2−y2-wave SC state

Parallel calculations of the elastic constants to those in
Sec. V A are made for the case of dx2−y2-wave SC state.
C11�T� in this case is derived by use of F�0,�2 ;u1 ,0� known
from Eq. �21�. The equilibrium condition of �2 gives the gap
equation as

1

g2
�1 + �2u1� = D�1 + �2�1 + 2�2 + �1��

	 �
0

�c

d��
0

2� d�

2�

cos2 2�

Ẽ2��,��
tanh��

2
Ẽ2��,��� ,

�50�

with

Ẽ2��,�� = ��2 + ��2�2�1 + 2��1 + �2�u1�cos2 2� . �51�

Equations �50� and �39� give

�21 = − � �2�1 + �2 + �1�
K21��20�

+ ��1 + �2�� , �52�

where we have defined K21��20� by

K21��20� = g2D��20�2�
0

�c

d��
0

2� d�

2�

	 � cos2 2�

E2��,���
2�−

1

E2��,��
tanh��

2
E2��,���

+
�

2
sech2��

2
E2��,���� . �53�

Equations �37�, �39�, �52�, and �21� give

C11�T� = c1 +
2��20�2

g2
� �2�1 + �2 + �1�2

K21��20�
+ ��1 + �2�2� .

�54�

C22�T� is also affected by the SC, which is derived by use
of F���1 ,�20;u10,�u2� known from Eq. �21�. The gap equa-
tion for ��1 under �u2�0 becomes

g2

g1
��1 = K22��20����1 + �20��2 + �2��u2� + �20�2�u2,

�55�

where we have defined K22��20� by
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K22��20� = g2D�
0

�c

d��
0

2� d�

2�

	
1

�E2��,���2� �2

E2��,��
tanh��

2
E2��,���

+ ��20�2
�

2
cos2 2� sech2��

2
E2��,���� � 2 + K21.

�56�

The last relation in the above equation can be confirmed by
making numerical integrations in Eqs. �53� and �56�. Equa-
tions �55� and �38� give

�22 = − �g1�2 + g2��2 + �2�
g1K22��20� − g2

+ ��2 + �2�� . �57�

Expanding F���1 ,�20;u10,�u2� with u10�0 and Eqs. �38�
and �57� in powers of �u2, we obtain

C22�T� = c2 +
2��20�2

g1g2
� �g2��2 + �2� + g1�2�2

g1K22��20� − g2
+ g2��2 + �2�2� .

�58�

Since �u6 does not couple linearly to ��20���� j� �j=1, 2,
and 6�, the equilibrium SC state cannot be changed by �u6
through the electron interaction. Nevertheless, C66�T� is also
affected by the SC. This is because �u6 changes the band
electron energies to distort the Fermi surface and this dis-
torted Fermi surface becomes favorable for the anisotropic
SC state. As a result, C66�T� is shown to be �c6

− �2�6
2��20�2 /g2��.

C. Elastic constants in the dxy-wave SC state

The dxy-wave SC state affects C11�T� and C66�T�. The
expressions of C11�T� and C66�T� are obtained by replacing
all subscripts 2 of quantities in Eqs. �54� and �58� with the
subscripts 6. Moreover, C22�T� also is affected by the SC for
a similar reason to that described about C66�T� in Sec. V B.

D. Elastic constants C33„T… and C13„T… in the all
wave states of SC

The distortion u3 couples to the SC in the same way as u1,
so that the properties of C11�T� hold also for C33�T� except
for different coupling constants. The expressions of C33�T�
are obtained by making the replacements �27� in the expres-
sions of C11�T� given by Eqs. �45� and �54�. The elastic
constant C13�T� also is affected by the SC, whose expression
is omitted here.

VI. NUMERICAL CALCULATIONS OF THE LATTICE
ANOMALY AND ITS CHARACTERISTICS

In order to see characteristics of the lattice anomaly, we
calculate numerically the distortions and the elastic constants
on the basis of the results obtained in the preceding sections.

Figures 1 and 2 show, respectively, the calculated tem-
perature dependence of u10 in the s-wave SC state and that in

the dx2−y2-wave SC state for some sets of chosen values of
the parameters. As seen from both the figures, the tempera-
ture dependence of u10 exhibits similar characteristics irre-
spective of the SC state. This holds also for the equilibrium
distortion u30. The sign of distortion depends on some micro-
scopic parameters. This is seen from the expressions of u10’s
at absolute zero, which are found from Eqs. �28� and �32� to
be

u10 �
��10�2

c1g1
��2�1 + �1� + �1g1D�1

2
+ ln

2�c

��10�
�� , �59�

in the s-wave SC state, and
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FIG. 1. Temperature dependence of the distortion u10 in the
s-wave SC state. The parameter values g1D=0.41 and �c /kB

=300 K have been assumed as an example, which give Tc=30 K.
The bold lines 1, 2, and 3 have been calculated for �1=1, −2, and
−5, respectively, under common �2�1+�1�=3. The thin lines 4, 5,
and 6 have been calculated for �2�1+�1�=1, −2, and −5, respec-
tively, under common �1=3.
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FIG. 2. Temperature dependence of the distortion u10 in the
dx2−y2-wave SC state. The parameter values g2D=0.82 and �c /kB

=300 K have been assumed as an example, which give Tc=30 K.
The bold lines 1, 2, and 3 have been calculated for �1=1, −2, and
−5, respectively, under common �2�1+�2�=3. The thin lines 4, 5,
and 6 have been calculated for �2�1+�2�=1, −2, and −5, respec-
tively, under common �1=3.
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u10 �
��20�2

c1g2
��2�1 + �2� + �1�1 +

1

4
g2D�� , �60�

in the dx2−y2-wave SC state. In addition, we see in the figures
that the thermal expansion coefficients �, which are the T
derivatives of u10 and u30, always become zero at absolute
zero and exhibit discontinuous changes at Tc. The sign of �
can vary with temperature in some cases of the parameter
values.

Figure 3 shows the calculated temperature dependence of
C11�T� in the s-wave SC state for some sets of the parameter
values chosen. As seen from this figure, C11�T� becomes soft
just below Tc with a discontinuous change at Tc. This discon-
tinuity at Tc arises from the fact that K11��10� in Eq. �45�
becomes zero at Tc as shown in Fig. 4, or in other words, �11

diverges at Tc. Equations �45� and �44� give the change at Tc
in the case of the s-wave SC state as

C11�Tc − 0� − c1 = − 2� kBTc

g1
�2 �2�1 + �1 + �1�2

D���c/kBTc�
, �61�

where ��y� has been defined by

��y� = �
0

y 1

x2�1

x
tanh

x

2
−

1

2
sech2 x

2
�dx . �62�

The softening in C11�T� recovers partially with lowering
temperature. When �1=�1=0 while �1�0, or when �1=0
while �1�0 and/or �1�0, its recovery is not sufficient to
cause a hardening at low temperatures, as seen from Eq.
�45�. When, however, �2�1+�1+�1� is small but ��1+�1� is
large, C11�T� changes to show hardenings at low tempera-
tures. These prove that the change of C11�T� from the soft-
ening to the hardening results from an interference of
changes in the electron band and in the electron interaction.
Figure 5 shows, on the other hand, the calculated tempera-
ture dependence of C22�T� in the s-wave SC state for some
sets of parameter values. Usually, C22�T� becomes soft con-
tinuously below Tc. When ���2+�1�+ �g2 /g1��2� is suffi-
ciently smaller �larger� than ��2+�1� for positive �negative�
values of g2, C22�T� changes to show hardenings at low tem-
peratures, or, in the whole temperature region below Tc. In
order to see a strong �g2 /g1�-dependence of C22�T�, we give
in Fig. 6 the calculated temperature dependence of C22�T� in
the same wave SC state for some different values of g2 /g1.
As seen from this figure, its softening is enhanced when
g2��2g1� approaches to g1. This is because the s-wave SC
state can induce more easily the dx2−y2-wave SC state through
the cross term of the different SOP’s, when the latent Tc of
the dx2−y2-wave SC state is closer to the real Tc of the s-wave
SC state.
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FIG. 3. Temperature dependence of the elastic constant C11�T�
in the s-wave SC state. The assumed parameter values of g1D and
�c /kB are the same as in Fig. 1. The bold lines 1, 2, and 3 have been
calculated for ��1+�1�=−2.5, −1, and 0, respectively, under com-
mon ��1+�1�=2. The thin lines 4, 5, and 6 have been calculated for
��1+�1�=−2.5, −1, and 0, respectively, under common ��1+�1�=2.
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FIG. 4. Temperature dependence of K11��10� for different values
of g1D. �c /kB=300 K has been assumed as an example. The lines 1,
2, and 3 have been calculated for g1D=0.21, 0.29, and 0.41, respec-
tively. The sets of these parameter values give Tc=3, 10, and 30 K
in the cases of the lines 1, 2, and 3, respectively.
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FIG. 5. Temperature dependence of the elastic constant C22�T�
in the s-wave SC state. The same parameter values of g1D and
�c /kB as in Fig. 1, and g2 /g1=−1.9 have been assumed. The bold
lines 1, 2, and 3 have been calculated for �1=1.5, 0.5, and −0.5,
respectively, under common �2=−2.5. The thin lines 4, 5, and 6
have been calculated for �2=−2, −1, and 0, respectively, under
common �1=2.
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Similar calculations to those for the s-wave SC state can
be made also for the dx2−y2-wave SC state. Figure 7 shows
the calculated temperature dependence of C11�T� in the
dx2−y2-wave SC state for some sets of parameter values. Also
in this SC state, C11�T� becomes soft below Tc with a dis-
continuous change at Tc. This behavior is ascribed to the fact
that K21��20� becomes zero at Tc, whose temperature depen-
dence is shown in Fig. 8. Equations �54� and �53� give the
discontinuous change at Tc in the dx2−y2-wave SC state as

C11�Tc − 0� − c1 = −
16

3
� kBTc

g2
�2 �2�1 + �2 + �1�2

D���c/kBTc�
. �63�

The softenings of C11�T� change to hardenings at low tem-
peratures for �2�1+�2+�1� sufficiently smaller than ��1+�2�.

Figure 9 shows the calculated temperature dependence of
C22�T� in the dx2−y2-wave SC state. Again, C22�T� becomes
soft continuously below Tc. The softenings of C22�T� change
to hardenings at low temperatures or in the whole tempera-
ture region below Tc, when ���2+�2�+ �g1 /g2��2� is suffi-
ciently smaller �larger� than ��2+�2� for positive �negative�
values of g1. As in the s-wave SC state, the temperature
dependence of C22�T� in the dx2−y2-wave SC state depends
strongly on g1 /g2, which is seen in Fig. 10. In the latter SC
state, the dx2−y2-wave SC state induces the s-wave SC state in
the presence of the distortion u2.
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FIG. 6. Temperature dependence of the elastic constant C22�T�
for different values of g2 /g1 in the s-wave SC state. The same
parameter values of g1D and �c /kB as in Fig. 1, �2=1.0 and �1

=1.0 have been assumed. The lines 1, 2, 3, and 4 have been calcu-
lated for g2 /g1=−1.9, −1.0 1.0, and 1.9, respectively.
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FIG. 7. Temperature dependence of the elastic constant C11�T�
in the dx2−y2-wave SC state. The assumed parameter values of g2D
and �c /kB are the same as in Fig. 2. The bold lines 1, 2, and 3 have
been calculated for ��1+�1�=−2.5, −1, and 0, respectively, under
common ��1+�2�=2. The thin lines 4, 5, and 6 have been calculated
for ��1+�2�=−2.5, −1, and 0, respectively, under common ��1

+�1�=2.
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FIG. 8. Temperature dependence of K21��20� for different values
of g2D. �c /kB=300 K has been assumed as an example. The lines 1,
2, and 3 have been calculated for g2D=0.42, 0.57, and 0.82, respec-
tively. The sets of these parameter values give Tc=3, 10, and 30 K
in the cases of the lines 1, 2, and 3, respectively. It is noticed that
the temperature dependence of K21��20� is only slightly different
from that of K11��10� shown in Fig. 4.
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FIG. 9. Temperature dependence of the elastic constant C22�T�
in the dx2−y2-wave SC state. The same parameter values of g2D and
�c /kB as in Fig. 2, and g1 /g2=−0.47 have been assumed. The bold
lines 1, 2, and 3 have been calculated for �2=2.5, 2, and 1.5, re-
spectively, under common �2=−2.5. The thin lines 4, 5, and 6 have
been calculated for �2=−2, −1, and 0, respectively, under common
�2=2.
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VII. COMPARISON BETWEEN THE THEORY
AND EXPERIMENTS

The results of the present theory are here compared with
those of experiments performed on high-Tc cupurates. The
theoretical analyses are done by assuming the dx2−y2-wave
SC state in these compounds.

Bi2Sr2CaCu2O8 has the crystal structure with the lattice
constants a�b and c�a ,b, and exhibits the SC with Tc
=90 K. The prominent volume change caused by SC was
observed on this compound by Asahi et al.13 The measured
temperature dependence of the volume change vS−vN is
shown in Fig. 11, where vS and vN are, respectively, the
volumes of a unit cell in the superconducting and normal
phases. If the small orthorhombicity of this compound is
neglected, u10 obtained in the preceding sections can be com-
pared with vS−vN measured. Under the given Tc, we have

the three parameters, �c, D�2�1+�2� /c1, and D�1 /c1, whose
values are chosen so as to fit the calculated curve to the
measured one. The calculated u10 was found to depend on �c
so weakly that the fitting could not determine uniquely the
value of �c. When �c /kB=300 K was employed, the fitting
gave

D�2�1 + �2�/c1 = − 8.3 	 10−3 kB
−2 K−2, �64�

D�1/c1 = − 1.7 	 10−3 kB
−2 K−2. �65�

The calculated curve by use of these parameter values also is
shown in Fig. 11. When other values of �c /kB, 100 K and
500 K, were employed, D�2�1+�2� /c1 and D�1 /c1 had val-
ues near those given by Eqs. �64� and �65� and the curves
were only slightly changed from the one in Fig. 11. As seen
in Fig. 11, the agreement between the calculated and mea-
sured curves is fairly good. The deviation of the calculated
curve from the measured one results partly from a difficulty
in obtaining experimental values of vN below Tc.

13

Nyhus et al.,14 on the other hand, measured the elastic
constant C33�T� of La0.85Sr0.15CuO4 with Tc=37.3 K. The
temperature dependence of C33�T�−c3 measured14 is shown
in Fig. 12, c3 being the elastic constant in the normal phase.
In the calculation of C33�T�−c3, we have the three param-
eters, �c, D��1�+�2��

2, and D�2�1�+�2�+�1��
2. When �c /kB

=300 K was employed, the fitting of the calculated curve to
the measured one gave

D��1� + �2��
2 = 2.2 	 10−2 kB

−2 K−2 Mp, �66�

D�2�1� + �2� + �1��
2 = 4.4 	 10−3 kB

−2 K−2 Mp. �67�

The curve calculated by use of these parameter values also is
shown in Fig. 12. As in the case of the calculation of u10,
other values of �c /kB gave parameter values near those given
by Eqs. �66� and �67� and curves very similar to the one in
Fig. 12. As seen in Fig. 12, the present theory reproduced the
observed discontinuous change of C33�T�−c3 at Tc and its
hardenings observed at low temperatures. However, the
agreement between the calculated and measured temperature
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FIG. 10. Temperate dependence of the elastic constant C22�T�
for different values of g1 /g2 in the dx2−y2-wave SC state. The same
parameter values of g2D and �c /kB as in Fig. 2, �2=1.0 and �2

=1.0 have been assumed. The lines 1, 2, 3, and 4 have been calcu-
lated for g1 /g2=−0.45, −0.25, 0.25, and 0.45, respectively.
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temperature dependences of the volume change vS−vN in
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For the parameter values used, see the text.
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dependences of C33�T�−c3 is not quite sufficient. This result
is again ascribed partly to the difficulty in obtaining experi-
mental values of c3 below Tc.

14

VIII. CONCLUDING REMARKS AND DISCUSSION

In order to analyze the lattice anomaly accompanied by
the appearance of superconductivities �SC�, we have started
with the BCS Hamiltonian, which is constructed for the sys-
tem consisting of SC’s and distortions u. The microscopic
parameters have been introduced into the Hamiltonian so
that itself may satisfy the crystal symmetry. By use of this
Hamiltonian, we have derived a free energy as a function of
the SC order parameters �SOP� and u’s. The free energy thus
obtained makes it possible to clarify how the distortions and
the elastic change originate from the SC state. In the present
analysis, we have taken into account the linear dependences
of the microscopic parameters �7� and the electronic density

of states D̃ in Eq. �22� on u’s. In general, their quadratic
dependences on u’s also can contribute to the elastic
changes.11 In the usual SC compounds such as those with no
strong electron-lattice coupling, we expect that the linear
coupling terms play a major role in the lattice anomaly.
Within this linear-coupling theory, we have obtained the
same mode of distortion and the similar elastic properties in
both the s-wave and d-wave SC states. Moreover, we have
found that not only the softenings but also the hardenings of
the lattice are possible in those SC states.

The results obtained in our theory are compared with
those of the GL theory9 and of Testardi’s theory,10 which
were developed for the s-wave SC state. In the GL theory,
the free energy of the system is expanded directly in powers
of the SOP’s and u’s near Tc. As seen in Appendix C, a
simplified GL theory gives the distortion u� �T−Tc� near Tc

and therefore gives a thermal expansion coefficient � inde-
pendent of T. Testardi, on the other hand, considered the free
energy proportional to �1− �T /Tc�2�2, which is assumed to
hold at all temperatures below Tc.

10 This theory gave a
temperature-dependent �, which has a nonzero slope at Tc
but the zero slope at absolute zero, just as in the present
theory. Such a temperature dependence of � agrees qualita-
tively with �’s which were observed not only for
Bi2Sr2CaCu2O8,13 but also for YBa2Cu3O7−� �Ref. 15� and
HgBa2Ca2Cu3O3+�.16 However, the temperature dependence
of the free energy used in Ref. 10 is different from that
predicted by the BCS theory, even near Tc.

The elastic constants also were studied by use of the GL
and Testardi’s theories.9,10 As shown in Appendix C, the GL
theory gives an elastic modulus, which exhibits a discontinu-
ous change at Tc but is constant below Tc. Testardi’s theory
gave the temperature-dependent elastic moduli of the longi-
tudinal mode with a discontinuous change at Tc and of the
shear mode with a continuous change. The global feature of
these elastic moduli is somewhat analogous to that of ours,
although not only the temperature dependence but also the
microscopic quantities responsible for the elastic anomalies
are different between the theories.

A pioneering work of the experiment on the elastic con-
stants of the SC phase was reported by Alers and Waldorf.17

They observed the clear change of the longitudinal and shear
moduli by the conventional SC states of some 3d transition
monatomic metals. Unfortunately, no detailed analysis of this
elasticity change has been done from a theoretical point of
view. The most conspicuous effect of SC on the elastic con-
stants was found in some high-Tc compounds of A15-type
such as V3Si and Nb3Sn.18 In these compounds, both the SC
and martensitic transitions occur, which interfere with each
other. This interference originates the observed drastic
change of elasticity in these compounds.19,20 This phenom-
enon is not the subject of the present theory. More recently,
extensive and detailed observations of elasticity on the cu-
prate compound system La2−xSrxCuO4 have been reported by
Nohara et al.21,22 They found the clear changes of elasticity
by SC, which accompany the discontinuous or continuous
changes at Tc as predicted. It was also found that the elastic
behavior strongly depends on x and is very sensitive to ex-
ternal magnetic fields. Moreover, some elastic modes exhib-
ited hardenings at low temperatures. This hardening was ob-
served also for other high-Tc compounds.23–25 Evidently, the
elastic anomaly becomes more splendid in La2−xSrxCuO4
with a higher Tc. The whole behavior of elasticity observed
in a wide region of x is too complicated to be systematically
analyzed. Nevertheless, a thorough understanding of the lat-
tice anomaly of the high-Tc compounds surely helps us to
clarify the role of the electron-lattice interaction in the high-
Tc of cuprates. Further experimental and theoretical studies
on the interrelation between SC and lattice will be desirable.

APPENDIX A: NORMAL MODES OF ELASTIC
DISTORTIONS IN CRYSTALS WITH D4h SYMMETRY

When a crystal with the D4h symmetry is subjected to the
strains eii� which can couple to the SOP’s we are interested
in, the elastic energy is expressed by

Hela =
1

2
V�c11�exx

2 + eyy
2 � + c33ezz

2 + c66exy
2 + 2c12exxeyy

+ 2c13�exx + eyy�ezz� , �A1�

where c’s are the elastic stiffness constants in the normal
state. Here, we introduce the normal modes of distortion:

u1 =
1

�2 + �2
�exx + eyy + �ezz� , �A2�

u2 =
1
�2

�exx − eyy� , �A3�

u3 =
1

�2�2 + �2�
�− ��exx + eyy� + 2ezz� , �A4�

u6 = exy , �A5�

where
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� =
4c13

c12� + ��c12� �2 + 8c13
2

, c12� = c11 + c12 − c33. �A6�

In terms of these normal modes, Eq. �A1� is shown to be
written as Eq. �3�, where c’s have been defined by

c1 = c11 + c12 + �c13, c2 = c11 − c12,

c3 = c33 − �c13, and c6 = c66. �A7�

APPENDIX B: EFFECT OF THE CHANGE IN THE CUT
ENERGY BY THE DISTORTION

The cut energy �̃c in Eq. �21� is also affected by u1 and u3
up to the linear order of u’s. Here, the contribution of this

effect to the free energy per unit volume, Ẽs�, is derived.

From Eq. �21�, we see that Ẽs� can be approximated as fol-
lows:

Ẽs� = − 2D�
�c

�̃c

d��
0

2� d�

2�

2

�
ln� cosh„�E��,��/2…

cosh���/2� 
� − 2D��̃c − �c��

0

2� d�

2�
�E��c,�� − �c�

� −
1

2
D�1�2��1�2 + ��2�2�u1, �B1�

for �c� ��1� and ��2�. In Eq. �B1�, we have already expanded
�̃c as

�̃c = �c�1 + �1u1� , �B2�

where �1 is an expansion coefficient and u3 is neglected.

Comparison of Eq. �B1� with Eq. �15� suggests that Ẽs� can
be neglected when g1D�1 and g2D�1 /2 are sufficiently small
compared with 1.

APPENDIX C: A SIMPLIFIED GL THEORY
OF THE LATTICE ANOMALY

In order to compare the results of the present theory with
those of the GL theory, we give here a simplified GL theory
of the lattice anomaly in a SC state. The SC state tested here

has one component of SOP, �, which couples to a distortion
u. Then, the GL free energy is assumed to be expressed by

F = V�a� T

Tc
− 1����2 +

1

2
b���4 +

1

2
cu2 − d���2u� ,

�C1�

where a and b are positive constants, c is an elastic constant,
and d is a coupling constant with any sign. Minimization of
F with respect to ��� and u gives the equilibrium quantities
��0� and u0, which are obtained to be

��0�2 = � ca

cb − d2��1 −
T

Tc
� , �C2�

u0 = � da

cb − d2��1 −
T

Tc
� . �C3�

Equation �C3� gives further a thermal expansion coefficient,

� =
�u0

�T
= −

da

�cb − d2�Tc
, �C4�

which is constant below Tc.
When a further distortion �u from u0 is introduced, the

SOP is changed as ���= ��0�+����. After that, the free energy
is increased by

F − F0 = V��a� T

Tc
− 1� + 3b��0�2 − du0������2

− 2d��0������u +
1

2
c��u�2� . �C5�

Another equilibrium condition of ���� under �u gives

���� = �d/2b��0���u . �C6�

Substituting Eq. �C6� into Eq. �C5�, we arrive at the increase
of the free energy due to �u and an elastic constant in the SC
phase, C, as

F − F0 =
1

2
C��u�2, C = c −

d2

b
. �C7�

The above equations prove that the GL theory gives the elas-
tic constant which becomes soft by a quantity independent of
T below Tc.
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