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ac Josephson effect in one-dimensional Tomonaga-Luttinger liquid �TLL� adiabatically connected to super-
conducting electrodes is theoretically investigated. It is found that density fluctuations due to repulsive
electron-electron interactions in TLL inhibit Josephson oscillations, whereas they do not affect time-
independent current part. We also show that the fluctuations reduce supercurrent noise caused by multiple
Andreev reflections. This indicates that the quantum fluctuations in TLL disturb the superconducting phase
coherence spreading across the junction.
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A superconducting weak link is a probable stage for inho-
mogeneous superconductivity. This is because superconduct-
ing phase coherence is sustained across the weak link, and
should be strongly affected by various nature of intermediate
segment sandwiched.1 In general, as the spatial dimension is
reduced, thermal or quantum fluctuations tend to disturb the
long-ranged phase correlation. Then, Josephson effect
through low-dimensional system is essentially exposed to the
disturbances, and is obliterated at low temperatures.2

Specifically one-dimensional �1D� electron systems are
sensitive to interparticle interactions. Focusing on low-
energy regime, they are believed to behave as Tomonaga-
Luttinger liquid �TLL�.3 In such a state, the phase correla-
tions are no longer infinitely long ranged but exhibit only
quasi-long-range order. Then, the correlators decay following
power law.4 On the other hand, a couple of experiments re-
cently reported supercurrent flow5–8 and proximity-induced
superconductivity9 in carbon nanotubes �CNTs� suspended
between superconductors. Since the metallic CNTs are ideal
1D conductors and the excitations in them can be described
as TLL,10 it can be said that these experiments provided eli-
gible stages to investigate superconducting coherence in 1D
correlated systems.

Theoretically, dc Josephson current through TLL has been
studied for the past decade by many authors.11–16 Compared
with dc, however, the study of ac Josephson current was
limited in low transparency region.17 In this work, we inves-
tigate ac Josephson effect through TLL adiabatically con-
nected with superconducting electrodes. As for current-
voltage �I-V� characteristics, it is found that the density
fluctuations due to the repulsive interactions compress the
Josephson oscillations, while the time-independent current is
not affected. We also show that the shot noise caused by
multiple Andreev reflections18 is crucially suppressed. The
suppression can be explained in the framework of Caldeira-
Leggett model, which describes the effect of dissipative en-
vironment on macroscopic quantum tunneling.19 These re-
sults indicate that the low-lying excitations in TLL disturb
the phase coherence across the Josephson junctions.

We suppose identical s-wave superconductors with energy
gap � for the reservoirs �electrodes�. The interfaces between
TLL and the electrodes are modeled as the adiabatic open-
ings of many channels so that we can simulate a bulk super-

conductor with its subdivision narrowed to form a wire. In
the TLL region, the Coulomb interactions are assumed to be
point contact type. For simplicity we neglect the processes
with backscattering and umklapp scattering, i.e., only the
electron density with long wavelength is essential. Then we
approximate that the interactions are switched off abruptly at
the interfaces.

Andreev reflections discussed below are performed by in-
dividual electrons in TLL and the superconductors. Then it is
convenient to employ the method in which single particle
excitations are treated in parallel with the low-energy fluc-
tuations. For that purpose, in the 1D region, we start with the
action using auxiliary fields which incorporate the forward
scatterings;20

S��� =� dtdx�L0��†,�� + L1��� + �
a,s

�a,s�x,t��a,s�x,t�� ,

�1�

where �a,s�x , t�=�a,s
† �a,s is chiral density operator. a=± and

s=± denote direction of movement and spin, respectively. L0
and L1 are the Lagrangian density of free fermions propagat-
ing with Fermi velocity vF and of the density fluctuations
induced by the interactions;

L0 = �
a,s

�a,s
† �x,t�	i

�

�t
+ iavF

�

�x

�a,s�x,t� , �2�

L1 = ��, ĝ−1�� , �3�

with the vector �= ��+↑ ,�−↓ ,�−↑ ,�+↓�T and ĝ being the �4
�4� interaction matrix. Throughout the work, we set �=kB

=1. The auxiliary field �a,s�x , t� acts as a fluctuating electri-
cal potential. Therefore the net quantities of the charge den-
sity and the current are obtained after taking a functional
average in terms of Sind���=�dtdxL1. We can transform the
action to the Gaussian form of chiral fields defined by ��t

+avF�x��a,s�x , t�=�a,s�x , t�.21,22 Thus one can rewrite the
problems to the ones of the free electrons propagating in
integrable internal environment.

Because TLL describes only low-energy physics, we treat
the free fermion part with quasiclassical model to keep con-
sistency in the approximation. In addition the voltage drop in
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TLL is disregarded approximately. One can thus obtain re-
tarded �advanced� Green’s functions in TLL by superposing
formal solutions of the following Eilenberger equation:23

ivF
�

�x
ĝR�A��x,t,t���� + �i

�

�t
	̂z
̂z + �̂�x,t�
̂z, ĝ

R�A��x,t,t�����
−

= 0, �4�

where �¯�− denotes a commutator as well as convolution
integral in terms of the internal time, and

	̂i = 	�i 0

0 �i

, 
̂z = 	1 0

0 − 1

 �5�

with �’s being usual Pauli matrices. Here, quantities with
“hat” denote �4�4� matrices, and those with boldface �2
�2� matrices. The first and third rows correspond to right
and left moving electrons with spin up, whereas the second
and fourth rows to left and right moving holes with spin
down. In a similar fashion, the quasiclassical Green’s func-
tions in superconductors can be calculated. Here we assume
that the influence of the density waves in TLL falls off in the
superconductors, and neglect the charge fluctuations far from
the interfaces. This is because the superconducting energy
gap � in the spectrum prevents the gapless modes from ex-
citing.

Since we focus on the junctions with clean interfaces, the
boundary condition at x= ±L /2 reduces to24

ĝp	±
L

2
− 0,t,t���
 = ĝp	±

L

2
+ 0,t,t���
 , �6�

where p= R ,A ,K� denotes the retarded, the advanced, and
the Keldysh part. We choose zero of energy at Fermi level of

TLL, i.e., the one of the left �right� electrode is shifted to
±eV /2. A quasiparticle in TLL performs a set of back-and-
forth Andreev reflections for each Cooper pair tunneling.
Then, the Green’s functions satisfy recurrence equations for
the transferred charge.25,26 One can easily find that they ac-
quire the phase shift during each Cooper pair tunneling16

�s�t,0� = �a,s	L

2
,0
 + �−a,−s	L

2
,0
 − �L

2
→ −

L

2
� , �7�

which reflects the singlet superconductivity of the electrodes.
This means that TLL modifies the definite phase difference
2eV by �s, whereas the effects of TLL disappear deep in the
electrodes.

Since the Fermi wave number in TLL is shifted by
��a,s�x , t�=�x�a,s /2,21,22 one properly accounts for the ex-
cess charges between the interfaces through consideration of
�s. In addition, the adiabatic interfaces do not hold the
charge number in TLL assuming e2 /2C��, where C is the
capacitance representing the long-range part of the Coulomb
interactions. Then, the boundary values of �’s are not fixed,
i.e., the momentum unit of the density waves is small com-
pared with  /L.16 This claim is in common with the different
procedures in treating TLL with normal metal reservoirs27–31

and usual Fermi liquid between superconductors.1

Firstly we investigate the I-V characteristics. The net ac
Josephson current is calculated by averaging

I�t��� =
e

8
Tr�	̂z
̂zĝ

K�t = t�����

over the density fluctuations. It is expressed as a combination
of harmonics with the period TJ= /eV, i.e., I�t�
=�m=−�

� Im exp�−2mieVt�.25,26,32 The amplitude of mth har-
monics �m�0� is given by

Im =
e


�eV�0,m − �m2� d� tanh	 � + eV/2

2T



��1 − A	� +
1

2
eV
��

n=0

�

�
l=1

m

e2i��+�2l+n�eV�/vF/L�
l=1

n

A�� + 	l +
1

2

eV��

l=1

2m

�R�� + 	l + n +
1

2

eV�� , �8�

where A���= ��R����2 is the Andreev reflection probability
with �R���= (�−���+ i0�2−�2) /�. The effect of the interac-
tions appears only in

� = 	T

D

K�

−1−1 sinh	 L

2LT



�u� sinh	 L

2u�LT

�K�

−1 , �9�

where K� and u� are Luttinger parameter and velocity renor-
malization for the charge density fluctuations. Here K�=u�

=1 is assumed for spin part. D and LT=vF /2T are high-

energy cutoff and thermal length. One can see that the repul-
sive interactions �K��1� inhibit the Josephson oscillations.
Furthermore, the inhibition is more serious as the Josephson
frequency increases. On the other hand, the renormalization
does not appear in the nonoscillating current part with m
=0; the critical current is still 2e� / at absolute zero. This
indicates that the collective fluctuations act only on the An-
dreev phase �the argument of the Andreev reflection ampli-
tude �R� as far as the scattering problem is considered.

The renormalization reflects the algebraic decay of the
singlet superconductivity phase correlation between the two
interfaces.3 As far as the power law is concerned, Eq. �8�
corresponds to the extension of the previous work17 to infi-
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nite order of the tunnel Hamiltonian. However, we cannot
find the u�-dependent amplitude oscillation with the length of
TLL, which is caused by the spin-charge separation.17 This is
because we do not consider here the voltage drop explicitly
in TLL. In studying dc effect, Maslov et al. applied an ex-
tended open boundary condition including Andreev reflec-
tions to TLL so that the fluctuating potentials cannot affect
the phase difference.12 We can apply the condition to the ac
effect alike, which yields no renormalization of the Joseph-
son oscillations. It is, however, out of scope of the present
work where we consider the 1D region is adiabatically wid-
ened at the interfaces.

Although we have investigated the average current so far,
it is well known that current fluctuation also can be used as a
good indicator of the phase coherence. Averin and Imam
predicted that the shot noise in Josephson junctions is en-
hanced by the multiple Andreev reflections,18 which was
verified experimentally, e.g., in atomic point contact33 and
superconductor-semiconductor junctions.34 Hereafter we will
show how the fluctuating potentials in TLL affect this super-
current shot noise. With use of the Green’s functions defined
by ĝ����= (ĝK± �ĝR− ĝA�) /2, the current-current correlation
function can be written as18,35

K�t,t + 	� = −
e2

8
Tr�ĝ��t,t + 	���	̂zĝ

��t + 	,t���	̂z

+ ĝ��t,t + 	���	̂zĝ
��t + 	,t���	̂z� . �10�

Here we focus on zero frequency spectral density of the cur-
rent fluctuation S�0�=�d	 / �2��K�t , t+	���. The bar over K
indicates the average over the time t. For simplicity, we dis-
regard the Andreev reflections for ����� and the relaxations
in the superconductors.

Physically the � fields play a similar role to the measuring
environment, which is introduced to compute electron count-
ing statistics.36 Hence the functional average of Eq. �10� over
them gives the Gaussian statistics of the charge number in
the 1D region. The resultant zero frequency spectral density
is found to be

S�0�
S0

= Re � d�d���
m=0

�
Pm����

�

��
l=1

m

�e−i���/vF/L��R�� − leV��R
*�� + �� − leV�� ,

�11�

with S0=e2� / (22 cosh2�� /2T�). The function Pm��� de-
scribes the energy exchange between an electron and the
internal environment. Within the lowest order of �vF /LD�, it
is given by

Pm��� = �1

2
���� �m = 0�

Cm−1 + 2Cm + Cm+1 �m � 0� ,
� �12�

where ���� is Dirac’s delta function, and

Cm �
1

2D
	T

D

�m−1cosh	 �

2T



���m�
��	�m

2
+ i

�

2T

�2

.

�13�

Equation �13� reminds us of the transition rate derived by
Fermi’s golden rule in Caldeira-Leggett model.19 This shows
that the internal fluctuations disturb the superconducting
phase coherence. The exponent on the temperature is ex-
pressed by

�m = �
m2

2
�K�

−1 − 1� �m;even�

m2

2
�K�

−1 − 1� +
1

2
�K� − 1� �m;odd� . � �14�

The additional exponent in odd m process is originated in the
phase field �a,s�	�= �̃a,s�0�− �̃a,s�	� with

�̃a,s�	� =
1

2
��a,s	L

2
,	
 − �−a,−s	L

2
,	
 − �L

2
→ −

L

2
�� .

This implies that the difference in exponents for even and
odd m owes to the interference between the states before and
after the multiple Andreev reflections. In the processes with
odd number of the Andreev reflections, an injected electron-
like quasiparticle comes back as a holelike quasiparticle with
the fluctuating correlations shouldering. Such an interference
does not occur for even m case because an injected quasipar-
ticle transmits into the other electrode. Besides, when the
repulsive interactions are absent �K�=1�, Cm=���� /4 and the
result in Ref. 18 is rightly reproduced.

Figure 1 illustrate the zero frequency spectral densities as
functions of the bias voltage. One can see that the repulsive
interactions slack the gradient of the shot noise at eV�2�.
Moreover, in the low bias limit eV��, we can replace the
summation in Eq. �11� by the integration. This enables us to
have the asymptotic behavior of the supercurrent fluctuation.
Assuming that the low-energy excitations ����� predomi-
nantly influence the shot noise, the zero frequency spectral
density above can be written approximately as

FIG. 1. Zero frequency spectral densities are plotted as func-
tions of eV /� for different K�’s. Here we set the parameters as T
=0.2��0.1D and L�1.2vF /�.
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S�0� � S0	1 +
�

eV
R
 , �15�

where

R =� d��

cos	 ��

vF/L

 + cos	 ��

vF/L
+

��

eV



1 − ���/eV�2 Pnc/3���� .

�16�

Here nc=Int�1+2� /eV� is the number of possible Andreev
reflections with Int�¯� denoting integer part. Although the
factor R somewhat overestimates the effect of TLL, it pro-
vides compendious scenario. In noninteracting limit, S�0� is
proportional to nce which indicates the existence of large
charge quanta. On the other hand, in the presence of the
repulsive interactions, the coherence-origin excess noise ex-
hibits a peak at some voltage and disappear as eV→0 owing
to the considerably large power. Although it needs some cor-
rections when the relaxations in the superconductors are
taken into account,18 the peak structure is not qualitatively
changed.

In summary, we have investigated the relation between
low-lying fluctuations in TLL and ac Josephson effect. It was
found that the microscopic excitations in 1D configuration

can act as a kind of disturbance, and ac Josephson effect is
essentially exposed to them. The repulsive interactions in
TLL were found to inhibit Josephson oscillations and
coherence-origin supercurrent noise. On the other hand,
time-independent current is not influenced, which indicates
the fluctuations act only on the phase difference. Recently,
Titov et al. showed that the interactions renormalize the An-
dreev phase �not the Andreev reflection probability� with use
of scaling approach.37 Our result is consistent with theirs
within quasiclassical approximation.

In this work, we have restricted ourselves to the perfect
transparency and the large capacitance limit. In tunneling
limit, it is known that the proximity effect enhances the
charge fluctuations.13 Besides, in the regime in which charg-
ing energy becomes relevant, the effective action for �’s has
a mass term at the interfaces.38 In these situations, not only
the average current but also the current noise will need the
large corrections. We think that these are left for the interest-
ing future problems.

We thank K. Kamide and Y. Terakawa for useful com-
ments and discussions. This work is partly supported by a
Grant for The 21st Century COE Program �Holistic Research
and Education Center for Physics of Self-Organization Sys-
tems� at Waseda University from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

1 A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod.
Phys. 76, 411 �2004�.

2 M. Hermele, G. Refael, M. P. A. Fisher, and P. M. Goldbart, Nat.
Phys. 1, 117 �2005�.

3 T. Giamarchi, Quantum Physics in One Dimension �Clarendon,
Oxford, 2004�.

4 C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 �1992�.
5 A. Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat,

I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, and M.
Burghard, Science 284, 1508 �1999�.

6 A. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Gueron, B.
Reulet, I. Khodos, O. Stephan, and H. Bouchiat, Phys. Rev. B
68, 214521 �2003�.

7 A. F. Morpurgo, J. Kong, C. M. Marcus, and H. Dai, Science
286, 263 �1999�.

8 H. I. Jørgensen, K. Grove-Rasmussen, T. Novotny, K. Flensbert,
and P. E. Lindelof, Phys. Rev. Lett. 96, 207003 �2006�.

9 J. Haruyama, K. Takazawa, S. Miyadai, A. Takeda, N. Hori, I.
Takesue, Y. Kanda, N. Sugiyama, T. Akazaki, and H. Takay-
anagi, Phys. Rev. B 68, 165420 �2003�.

10 R. Egger and A. O. Gogolin, Phys. Rev. Lett. 79, 5082 �1997�.
11 R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev. Lett.

74, 1843 �1995�.
12 D. L. Maslov, M. Stone, P. M. Goldbart, and D. Loss, Phys. Rev.

B 53, 1548 �1996�.
13 Y. Takane, J. Phys. Soc. Jpn. 66, 537 �1997�.
14 I. Affleck, J.-S. Caux, and A. M. Zagoskin, Phys. Rev. B 62,

1433 �2000�.
15 J.-S. Caux, H. Saleur, and F. Siano, Phys. Rev. Lett. 88, 106402

�2002�.
16 N. Yokoshi and S. Kurihara, Phys. Rev. B 71, 104512 �2005�;

Physica B 359–361, 606 �2005�.
17 R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev. B 53,

6653 �1996�.
18 D. Averin and H. T. Imam, Phys. Rev. Lett. 76, 3814 �1996�.
19 A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 �1981�.
20 R. L. Stratonovich, Sov. Phys. Dokl. 2, 416 �1958�; J. Hubbard,

Phys. Rev. Lett. 3, 77 �1959�.
21 D. K. K. Lee and Y. Chen, J. Phys. A 21, 4155 �1988�.
22 A. Grishin, I. V. Yurkevich, and I. V. Lerner, Phys. Rev. B 69,

165108 �2004�.
23 G. Eilenberger, Z. Phys. 214, 195 �1968�.
24 A. V. Zaitsev, Sov. Phys. JETP 59, 1015 �1984�.
25 D. Averin and A. Bardas, Phys. Rev. B 53, R1705 �1996�.
26 U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B 50, 6317

�1994�.
27 D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 �1995�.
28 V. V. Ponomarenko, Phys. Rev. B 52, R8666 �1995�.
29 I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040 �1995�.
30 A. Kawabata, J. Phys. Soc. Jpn. 65, 30 �1995�.
31 A. Shimizu, J. Phys. Soc. Jpn. 65, 1162 �1996�.
32 J. C. Cuevas, A. Martín-Rodero, and A. Levy Yeyati, Phys. Rev.

B 54, 7366 �1996�.
33 R. Cron, M. F. Goffman, D. Esteve, and C. Urbina, Phys. Rev.

Lett. 86, 4104 �2001�.
34 F. E. Camino, V. V. Kuznetsov, E. E. Mendez, Th. Schäpers, V. A.

Guzenko, and H. Hardtdegen, Phys. Rev. B 71, 020506�R�
�2005�.

NOBUHIKO YOKOSHI AND SUSUMU KURIHARA PHYSICAL REVIEW B 76, 144509 �2007�

144509-4



35 V. A. Khlus, Sov. Phys. JETP 66, 1243 �1987�.
36 L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845

�1996�.
37 M. Titov, M. Müller, and W. Belzig, Phys. Rev. Lett. 97, 237006

�2006�.
38 M. Oshikawa and A. M. Zagoskin, Superlattices Microstruct. 25,

1177 �1999�.

AC JOSEPHSON CURRENT AND SUPERCURRENT NOISE… PHYSICAL REVIEW B 76, 144509 �2007�

144509-5


