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We study a model for the pinning of vortices in a two-dimensional, inhomogeneous, type-II superconductor
in its mixed state. The model is based on a Ginzburg-Landau �GL� free energy functional whose coefficients
are determined by the mean-field transition temperature Tc0 and the zero-temperature penetration depth ��0�.
We find that if �i� Tc0 and ��0� are functions of position and �ii� �2�0��Tc0

y with y�0, then vortices tend to be
pinned by regions where Tc0 and therefore the magnitude of the superconducting order parameter � are large.
This behavior is in contrast to the usual picture of pinning in type-II superconductors, where pinning occurs in
the small-gap regions. We also compute the local density of states of a model BCS Hamiltonian with d-wave
symmetry, in which the pairing field � is obtained from the Monte Carlo simulations of a GL free energy.
Several features observed in scanning tunneling spectroscopy measurements on YBa2Cu3O6+x and
Bi2Sr2CaCu2O8+x are well reproduced by our model: far from vortex cores, the local density of states spectra
have a small gap and sharp coherence peaks, while near the vortex cores, they have a larger gap with low,
broad peaks. Additionally, also in agreement with experiment, the spectra near the core do not exhibit a
zero-energy peak which is, however, observed in other theoretical studies.
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I. INTRODUCTION

It is generally believed that vortices in type-II supercon-
ductors tend to be pinned in regions where the gap is small.1

This is true because a vortex, being a region where the gra-
dient of the superconducting order parameter is large, locally
increases the gradient part of the free energy. Since this local
increase is less in regions where the gap is smaller than av-
erage, the vortex tends to migrate to such regions, according
to this picture.

In this paper, we describe a simple model for vortex pin-
ning in an inhomogeneous two-dimensional �2D� supercon-
ductor, in which the vortices tend to be pinned in regions
where the gap is larger than its spatial average. The model is
based on a Ginzburg-Landau �GL� free energy functional in
which both the mean-field transition temperature Tc0 and the
zero-temperature penetration depth ��0� are functions of po-
sition but are correlated in such a way that regions with large
Tc0 also have large ��0�. This assumption seems to apply to
some of the high-Tc cuprate superconductors: according to
scanning tunneling microscopy �STM� experiments on
cuprates,2–9 regions that have a large gap �proportional to Tc0
in this model� also have a single-particle local density of
states �LDOS� with low, broad peaks, suggestive of a low
superfluid density in these regions �proportional to 1/�2�0��.
Our model is a generalization of an earlier approach intended
to treat inhomogeneous superconductors in zero magnetic
field.10

In order to further test this vortex pinning model, we also
examine the quasiparticle LDOS near the vortex cores within
this model. The proper theoretical description of this
LDOS near the cores is one of the unsolved issues in the
field of high-Tc superconductivity. STM experiments on
YBa2Cu3O6+x �YBCO�11,12 and Bi2Sr2CaCu2O8+x
�Bi2212�,13–16 show that the LDOS near vortex cores in those
materials has the following characteristics: a dip at zero en-
ergy, small peaks at energies smaller than the superconduct-

ing gap, and low, broad peaks at energies above the super-
conducting gap. Those features contrast with the spectra
shown by conventional superconductors near vortex cores,
where the LDOS usually has a peak at zero energy in clean
superconductors �i.e., those with a mean free path larger than
the coherence length�17,18 or is nearly energy independent in
dirty superconductors.18,19

The zero-energy peak in the LDOS near vortex cores of
clean conventional superconductors can be understood in
terms of electronic states with subgap energies bound to vor-
tex cores.20,21 However, the structure of the spectra near vor-
tex cores of cuprates is still lacking an explanation. Several
authors have suggested that this structure is due to some type
of competing order which emerges within the vortex cores
when superconductivity is suppressed by a magnetic
field.22–26 Some of those models, and other descriptions of
the spectra near vortex cores, have used the Bogoliubov–
de Gennes method to solve various microscopic
Hamiltonians,22,27–31 such as BCS-like models with d-wave
symmetry. One recent model for the LDOS near the vortex
cores, proposed by Melikyan and Tesanovic,30 used a
Bogoliubov–de Gennes approach to a tight-binding Hamil-
tonian. These authors found that, if a homogeneous pairing
field is used in the microscopic Hamiltonian, the LDOS ex-
hibits a zero-energy peak on the atomic sites that are closest
to the vortex cores; this peak is, however, absent from all
other sites near the vortex cores. On the other hand, they
found that introducing an enhanced pairing strength for elec-
trons on nearest-neighbor atomic sites near the vortex cores
leads to a suppression of the zero-energy peak, thus obtain-
ing a better agreement with experiment. They speculate that
the enhancement could be due to impurity atoms that pin the
vortices, to a distortion of the atomic lattice by the vortex
itself or to quantum fluctuations of the superconducting order
parameter. The assumption of an enhanced pairing strength is
consistent with the model that we describe in this paper.

In our model, having introduced this correlation between
the GL parameters, we anneal the system to find both the
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magnitude and the phase of the superconducting order pa-
rameter that minimize the GL free energy at low tempera-
tures. Since the magnetic vector potential enters the GL free
energy functional, this procedure naturally leads to vortex
formation. The vortex cores can be identified in our simula-
tions as regions with a large phase gradient. We find that, in
inhomogeneous systems, vortices tend to be pinned in re-
gions where the superconducting gap is large. For compari-
son, we also perform a similar annealing procedure for ho-
mogeneous systems. In this case, contrary to inhomogeneous
systems, the magnitude of the superconducting order param-
eter is reduced near vortex cores. Thus, the assumption that
the gap is large in regions with small superfluid density in
inhomogeneous systems, originally intended to model super-
conductors in a zero magnetic field,10 leads naturally to pin-
ning of the vortices in large-gap regions. This approach
might therefore be complementary to that of Ref. 30 men-
tioned above.

To connect our vortex pinning model to previous studies
of the LDOS near vortex cores, we have also studied a mi-
croscopic Hamiltonian for electrons on a lattice. This is a
tight-binding model in which electrons on nearest-neighbor
sites experience a pairing interaction of the BCS type with
d-wave symmetry.10,32 The LDOS is obtained by exact nu-
merical diagonalization of this Hamiltonian. We take the
pairing strength between electrons on nearest-neighbor sites
to be proportional to the value of the superconducting order
parameter as determined by the GL simulations using the GL
functional just described.

Using this combination of a GL free energy functional
and a microscopic d-wave BCS Hamiltonian, we find that a
number of experimental results on cuprates are reproduced
well by our model for inhomogeneous systems. For example,
far from vortex cores, the LDOS shows sharp coherence
peaks. Near the vortex cores, our calculated LDOS does not
show a spurious zero-energy peak; instead, it exhibits a large
gap, as well as low, broad peaks which occur at energies
larger than the value of the superconducting energy gap ob-
served far from vortex cores. Also, in agreement with experi-
ment, the LDOS curves near vortex cores are similar to those
in the large-gap regions in systems with quenched disorder
but zero magnetic field10; this connection is discussed in Sec.
III. One feature not captured by our model is the existence of
small, low energy peaks in the LDOS observed near the vor-
tex cores.

The rest of the present paper is organized as follows. In
Sec. II, we present the GL free energy functional, as well as
the microscopic Hamiltonian. In Sec. III, we present results
for homogeneous and inhomogeneous systems in a magnetic
field, as well as results for inhomogeneous systems in a zero
magnetic field for comparison. Finally, in Sec. IV, we con-
clude with a discussion and a summary of our work.

II. MODEL

A. Ginzburg-Landau free energy functional

We use a model for a single layer of a cuprate supercon-
ductor in a perpendicular magnetic field based on a GL free
energy functional of the form described previously,10
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In Eq. �1�, the first and second sums are carried over M
square �XY� cells, each of whose area is equal to the zero-
temperature GL coherence length squared �0

2 of a square lat-
tice into which the superconductor has been discretized for
computational purposes. The third sum is carried out over
nearest-neighbor cells 	ij
. Here,

�i �
�i

E0
, �2�

where �i is the complex superconducting order parameter of
the ith cell, E0 is an arbitrary energy scale �which we take to
be the hopping constant thop�200 meV�,

t �
kBT

E0
�3�

is the reduced temperature, T is the temperature, and kB is the
Boltzmann constant. Also, �i�0� is the T=0 penetration depth
and tc0i�kBTc0i /E0, where Tc0i is the mean-field transition
temperature of the ith cell. Therefore, in discretizing the su-
perconductor, we have assumed that ��0�, Tc0, and � are
constant over distances of order �0. Finally,

Ai�j� =
2e

	c


i�

j�

A� �r�� · dr� �4�

is the integral of the vector potential A� �r�� from the center of

cell i, located at i�, to the center of cell j, located at j�, and
K1�	4d / �32�9.38�
m*2�B

2�, where �B
2 �5.4�10−5 eV Å3

is the square of the Bohr magneton, m* is twice the mass of
a free electron, e is the absolute value of its charge, and d is
the thickness of the superconducting layer. In all of our simu-
lations, we use periodic boundary conditions. A gauge for the
magnetic field that allows this is given in Refs. 10 and 33
�see, e.g., Eq. �51� of Ref. 10, which gives this gauge choice
explicitly�.

We note that the connection between the local superfluid
density ns,i�T� and penetration depth �i�T� is such that
ns,i�0��1/�i

2�0�.10 Thus, the quantity 1 /�2 in Eq. �1� is a
way of describing the local superfluid density, which varies
over a length scale of �0.

We will be using the above free energy functional at both
T=0 and finite T. Although we call this a “Ginzburg-Landau
free energy functional,” this name is really a misnomer since
the original GL functional was intended to be applicable only
near the mean-field transition temperature. Strictly speaking,
the correct free energy functional near T=0 should not have
the GL form but would be expected to contain additional
terms, such as higher powers of ���2. We use the GL form for
convenience, and because we expect that it will exhibit the
qualitative behavior, such as vortex pinning in the large-gap
regions, that would be seen in a more accurate functional.
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We assume that the magnetic field is uniform, which is a
good approximation for cuprate superconductors in their
mixed state, provided that the external field is not too close
to the lower critical field Hc1. In the cuprates, the approxi-
mation is satisfactory because the penetration depth is of the
order of thousands of angstroms, while the intervortex dis-
tance for the fields we consider is �100 Å. We employ a
gauge that permits periodic boundary conditions, such that
the flux through the lattice can take any integer multiple of
hc /e.10,33 Thus, the number Nv of flux quanta hc / �2e� must
be an integer multiple of 2.

The procedure for choosing the parameters �i�0� and tc0i

is similar to that used in Ref. 10. Basically, in most of the
system � regions�, we take �i�0����0�, where ��0� is the
in-plane penetration depth of a bulk cuprate superconductor
���0��1800 Å in Bi2212, for example�, while tc0i is deter-
mined from the typical energy gap in the LDOS as observed
in STM experiments. However, we will also introduce re-
gions �� regions� in which tc0 and ��0� are larger than those
bulk values. Throughout this paper, when we refer to a “gap
in the LDOS,” we mean the distance between the two peaks
in the LDOS spectra. This is the same gap definition used in
Ref. 4.

In Ref. 10, we generally introduced inhomogeneities in
the superconducting order parameter �i by assuming a bi-
nary distribution of tci0, randomly distributed in space: 
cells with a small tci0 and � cells with a large tci0. We also
assumed a correlation between �i�0� and tc0i of the form

�i
2�0� = �2�0�� tc0i

tc0
�y

, �5�

with y=1. More generally, Eq. �5�, with y�0, accounts for
the fact that in STM experiments, regions with a large gap

seem to have a small superfluid density �low and broad
peaks.�

In the present paper, instead of randomly distributed �
cells, we introduce two square regions with only � cells,
while the rest of the lattice is assumed to have only  cells.
We make this choice to study the effects of these inhomoge-
neities on field-induced vortices. We also consider a more
general model than Ref. 10, allowing y to have values other
than only y=1.

As shown in Eq. �36� of Ref. 10, in the absence of thermal
fluctuations, the coupling constant JXY,ij between cells i and j
is approximately

JXY,ij�t� �
2�9.38���1 − t/tc0i��1 − t/tc0j�

�i�0�� j�0�
K1. �6�

�The factor of K1 is missing in Ref. 10.� If t� tc0i and
t� tc0j, then

JXY,ij�t� �
2�9.38�K1

�i�0�� j�0�
. �7�

If we further choose a binary distribution of tc0i, that is,

tc0i = �tc0 if i is on an  cell

ftc0 if i is on a � cell,
� �8�

where f is any positive number �typically f �1�, then

JXY,ij�t� �
2�9.38�K1

�2�0� �
1 if i and j � 

1

fy/2 if i �  and j � � or if i � � and j � 

1

fy if i and j � � . � �9�

This expression shows that in regions with a large gap, the
coupling between XY cells is small, reflecting the large pen-
etration depth in those regions.

B. Microscopic Hamiltonian

Besides using a GL free energy to explore vortex pinning
in an inhomogeneous superconductor, we have also studied
the LDOS of a corresponding microscopic model Hamil-
tonian, given by10

H = 2 �
	i,j
,�

tijci�
† cj� + 2�

	i,j

��ijci↓cj↑ + c.c.� − ��

i,�
ci�

† ci�.

�10�

Here, �	i,j
 denotes a sum over distinct pairs of nearest-
neighbor atomic sites on a square lattice with N sites, cj�

†

creates an electron with spin � �↑ or ↓� at site j, � is the
chemical potential, and �ij denotes the strength of the pairing
interaction between electrons at sites i and j. Finally, we
write tij as
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tij = − thope
−iA

i�j�
� , �11�

with

A
i�j�
� =

e

	c


i�

j�

A� �r�� · dr� . �12�

Here, the integral runs along the line from atomic site i,

located at i�, to the atomic site j, located at j�, and thop�0 is
the hopping integral for nearest-neighbor sites on the lattice.
Note that the prefactor in Aij� involves the factor of hc /e due
to a single electronic charge and is thus twice as large as that
in Aij, which involves the charge of a Cooper pair.

Following Ref. 10, we take �ij to be given by

�ij =
1

4

��i� + �� j�
2

ei�ij , �13�

where

�ij = ���i + � j�/2 if bond 	i, j
 is in the x direction

��i + � j�/2 + 
 if bond 	i, j
 is in the y direction,
�

�14�

and

� j = �� j�ei�j �15�

is the value of the complex superconducting order parameter
at site j. We will refer to the lattice over which the sums in
Eq. �10� are carried out as the atomic lattice �in order to
distinguish it from the XY lattice.� The first term in Eq. �10�
thus corresponds to the kinetic energy, the second term is a
BCS type of pairing interaction with d-wave symmetry, and
the third is the energy associated with the chemical potential.

The model we present is similar to the one presented in
Ref. 10, the main differences being the inclusion of a vector
potential in the GL free energy functional and the spatial
distribution of the inhomogeneities. Because the vector po-
tential introduces vortices in the system, our results differ
substantially from our previous work.

III. RESULTS

We first present results for homogeneous systems in the
presence of an applied transverse magnetic field equal to two
flux quanta through the lattice at low T. This is the lowest
magnetic field consistent with the periodic boundary condi-
tions. In this case, tc0i and �i�0� are independent of i. Figure
1 shows our calculated maps of � for a homogeneous sys-
tem. In part �a�, the lengths and directions of the arrows
represent the magnitude and phase of � in each XY cell.
Even though tc0i is homogeneous, the magnetic field renders
� inhomogeneous, especially near the vortex cores, where �
has a large phase gradient and a smaller magnitude. This
behavior is familiar from Ginzburg-Landau treatments of ho-
mogeneous type-II superconductors in a magnetic field. Part
�b� of Fig. 1 shows a map of ���, with dark �light� regions
representing small �large� value of ���. The vortex cores are
the darkest regions.

Figure 2 show the LDOS averaged over regions near and
far from the vortex cores of the system described in Fig. 1.
Since ��� is small near the core, we have defined an XY cell
to be “near the core” if ���� ��av� /2 in that cell, where ��av�
is the value of ��� averaged over all the XY cells of the
lattice. All other cells are considered to be far from the core.
Thus, in order to compute the averaged quantities shown in
Fig. 2, we first calculated the LDOS on every atomic site by
exact numerical diagonalization of the Hamiltonian �Eq.
�10�� and then averaged the LDOS over the set of atomic
sites near and far from the vortex cores, as defined above. We
have chosen to enclose nine atomic sites inside each XY cell
for this system because the coherence length in cuprates is
�15 Å, approximately three times larger than the atomic lat-
tice constant, �5 Å.

Figure 2 shows that, in a homogeneous system, the LDOS
far from the core is strongly suppressed near �=0 and ex-
hibits sharp coherence peaks, reminiscent of a d-wave super-
conductor in the absence of a magnetic field. Near the vortex
cores, on the other hand, the gap is filled, and the LDOS is
large near �=0, resembling the spectrum of a gapless tight-

�a� �b�

FIG. 1. Map of the pairing field � over a homogeneous, two-
dimensional superconductor of area 16�0�16�0 in a transverse,
uniform magnetic field B�6 T. The superconductor has been dis-
cretized into XY cells, each of which has an area �0

2 and encloses
nine atomic sites. In part �a�, the length and direction of each arrow
represent the complex value of � within an XY cell. Part �b� shows
a map of the magnitude ��� of the pairing field. Dark �light� regions
represent a small �large� value of ���. Vortex cores can be easily
identified as the darkest regions.
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FIG. 2. Local density of states averaged over two different
groups of XY cells in the homogeneous superconductor described in
Fig. 1: far from the vortex core �full curve� and near the core �dot-
ted curve�. The oscillations in the dotted curve are due to numerical
fluctuations arising from the small number of sites in the core
regions.
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binding model in two dimensions and zero magnetic
field.10,34 The spectrum near the core has considerable nu-
merical noise because it represents an average over only a
few atomic sites. In particular, the rapid oscillations are prob-
ably due to this numerical artifact.

To estimate our magnetic fields, we note that, because of
the numerical implementation of the periodic boundary
conditions,10,35 the field has to be chosen so that the number
Nv of magnetic flux quanta �0=hc / �2e� through the system
is a multiple of 2. Therefore, the magnetic field can be esti-
mated using B=Nv�0 /S, where S is the area of the system
and �0�hc / �2e��2�10−15 T m2. In the present paper, we
use a numerical sample of area S= �48a0�2, where a0�5 Å is
the atomic lattice constant. Therefore, B�Nv�3 T, and for
the systems containing two vortices, B�6 T. The magnitude
of this magnetic field is comparable to that used in STM
experiments.13,14

We now briefly discuss the temperature evolution of
	���2
, defined as an average of 	��i�2
 over all XY lattice
cells i, for systems with homogeneous tc0 in a transverse
magnetic field. Here, 	¯
 denotes a thermal average, ob-
tained using Monte Carlo simulations. Figure 3 shows curves
of 	���2
�t� versus reduced temperature t, for systems of the
same size subject to different magnetic fields and therefore
containing different numbers of vortices Nv. In the zero mag-
netic field case, Nv=0, 	���2
�t� has a minimum as a function
of t, which occurs near the phase ordering temperature. Fig-
ure 3 shows that, as the field is increased, the phase ordering
temperature is reduced, and around Nv=36, it seems to drop
to zero. The fact that 	���2
�t� increases with t for large t is an
artifact of the GL functional, as has been discussed in detail
in Ref. 10 for the case B=0.

We now proceed to show systems with inhomogeneities.
Figure 4 shows gap maps of systems in which tc0i and there-
fore JXY,ij are i dependent. Specifically, two square regions,
of size 4�4 XY cells each, have tc0i= ftc0, with f =3; those

are called � cells, as described in the previous section. The
remainder of the XY cells have tc0i= tc0 and are called  cells.
Clearly, the vortices are pinned in the � regions, where ��� is
large. The fact that ��� is large in � regions is of course due
to the fact that at low temperatures, ��� is roughly propor-
tional to tc0. On the other hand, in order to understand why
the vortices are pinned in the large-��� regions, we note that
JXY,ij at low temperatures can be estimated with the use of
Eq. �9�. For the particular parameters used in this calculation,
namely, y=3 and f =3, JXY,ij is about 27 times smaller within
� regions than in the  regions. Because of this ratio, phase
gradients near the vortex cores cost much less energy in the
� regions than in the  regions, even though ��� is larger in
the � regions. Thus, it is energetically favorable for the vor-
tices to be pinned in the � regions.

Figure 5 shows the LDOS averaged over  and � regions
of the system shown in Fig. 4. This figure shows that, far
from the vortex cores � regions�, the LDOS is very similar
to that of regions far from the core in the homogeneous sys-
tem at low magnetic field �cf. Fig. 2�—both spectra have a
small gap and sharp coherence peaks. However, in contrast
to the homogeneous case, the LDOS of the inhomogeneous
system exhibits a large gap and broadened peaks near the
vortex core. This LDOS spectrum is similar to that calculated
for the large-gap regions of systems with quenched disorder
and no magnetic field in our previous work.10 In the present
case, the gap in the LDOS is large in the � regions, of
course, because of the large value of tc0i and therefore of ���,
near the vortex cores. The peaks in the LDOS in the � region
above the gap are low and broad, on the other hand, because
of the large phase gradient of the superconducting order pa-
rameter in these regions. It is as if the system has lost phase
coherence in those regions due to the presence of the vortex
core. We can more clearly see this point by comparing the
LDOS of a � region containing a pinned vortex core to that
of a � region in a system in a zero magnetic field, in which,
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FIG. 3. Thermal average 	���2
 of the squared magnitude of the
superconducting order parameter versus the reduced temperature t
for a system with a homogeneous tc0 placed in various fields. The
magnitude of the magnetic field is B�Nv�3 T as described in the
text. We can observe that the minimum of 	���2
 �t� versus t �which
is known to occur near the phase ordering temperature in zero mag-
netic field systems �Refs. 10 and 37�� is shifted toward smaller
values of t with increasing magnetic field.

�a� �b�

FIG. 4. Map of the pairing field � in an inhomogeneous, two-
dimensional superconductor of area 16�0�16�0 in a transverse,
uniform magnetic field B�6 T. The superconductor has two � re-
gions where tc0i is large; these correspond to the light regions in �b�.
The system has been discretized into XY cells, each of which has an
area �0

2 and encloses nine atomic sites. In part �a�, each arrow rep-
resents the complex value of � within an XY cell. Part �b� shows a
map of the magnitude ��� of the pairing field. Dark �light� regions
represent a small �large� value of ���. The locations of the two
vortex cores can be identified as the regions with a large phase
gradient in part �a�. They are pinned to regions with a large ���
because of the low value of the coupling between XY cells in those
regions. The present results are obtained from Eqs. �8� and �9�,
using f =3 and y=3.
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therefore, there is no vortex core to be pinned. We now de-
scribe this system.

Figure 6 shows a system at low temperature with two
inhomogeneities, similar to that shown in Fig. 4, but with
zero rather than a finite magnetic field. Clearly, in the ground
state, as expected, the phase of � is almost uniform. Further-
more, and also as expected, ��� is larger in the � regions,
which have a larger value of tc0i. However, when we turn to
the LDOS �Fig. 7�, the LDOS of the � regions is character-
ized by much sharper coherence peaks than that at finite
magnetic field described in the previous paragraph, presum-
ably because of the absence of a large phase gradient.

We have also tested the sensitivity of our results to the
lattice size and to the number of atomic sites per XY cell. To
do this, we performed calculations similar to the ones de-
scribed above, but with 24�24 instead of 16�16 XY lat-
tices, each XY cell containing four instead of nine atomic
lattice sites. Figure 8 shows the results for a 24�24 XY
lattice of an inhomogeneous system in the presence of a
magnetic field. As in the 16�16 case, the vortices are pinned
in the regions with large � and small JXY,ij. Figure 9 shows
that the LDOS for this system both near and far from the
core is nearly the same as that of the 16�16 system shown

in Fig. 5. Likewise, a system with 24�24 XY cells and two
atomic sites per XY cell, but with no magnetic field, is shown
in Fig. 10; the corresponding LDOS averaged over regions
near and far from the core is shown in Fig. 11. The LDOS
shown in this figure has the same features as that of the 16
�16 system shown in Fig. 7. We thus conclude that our
results are not very sensitive to the lattice sizes used nor to
the number of atomic sites per XY cell.

In the calculations described above, we have assumed that
�2�Tc0

y . If y�3, then the vortices are consistently pinned in
the large-gap region. By contrast, if y=1, we find that the
vortices may or may not be pinned in the large-gap region,
depending on where these regions are located within the
computational lattice. The vortices obviously go to the large-
gap region because of the correlation between �2 and Tc0. As
mentioned earlier, this correlation originates in the fact that
large �2 implies a small energy cost to introduce a gradient in
the phase of the order parameter. Such a gradient must exist
near a vortex core; therefore, the vortex prefers to be in a
region where this gradient is energetically inexpensive. Me-
likyan and Tesanovic30 discuss various other possible causes
of larger pinning in the large-gap region; these include quan-
tum fluctuations, distortion of the atomic lattice by the vor-
tices, and the pinning of vortices by impurity atoms. Our
model could be viewed as a special kind of such impurity
pinning, in which the “impurities” are superconducting re-
gions with a large gap and large penetration depth. We have
also looked at how the size of the pinning regions affects the
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FIG. 5. Local density of states averaged over two different
groups of XY cells in the inhomogeneous superconductor shown in
Fig. 4: far from the core �� and near the core ���. In agreement
with experimental results, this figure shows that �i� far from vortex
cores, the LDOS shows sharp coherence peaks, and �ii� near the
vortex cores, the LDOS does not display the unphysical zero-energy
peak obtained in other models. Instead �iii�, it has a large gap, as
well as low and broad peaks.

�a� �b�

FIG. 6. Same as Fig. 4, but for a system at B=0 instead of B
�0. At low temperatures, the phase of � is almost uniform since, in
the absence of a magnetic field, phase gradients cost energy. As
expected, � is larger in the � regions, which have a large value
of tc0i.
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FIG. 7. Local density of states for the system shown in Fig. 6.
The LDOS in the � regions of this system has much sharper peaks
than the LDOS of the � regions for the corresponding system in a
finite magnetic field shown in Fig. 5. This result shows that having
a large gap is not a sufficient condition to observe broadened peaks
near vortex cores; a large phase gradient is also required.

�a� �b�

FIG. 8. Similar to Fig. 4, but the system has 24�24 instead of
16�16 XY cells, each with four instead of nine atomic lattice sites.
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pinning. The pinning is generally more effective for large
pinning regions, probably because the vortex energy is re-
duced by a larger amount if pinned in a region of large pin-
ning area, all other parameters being the same.

Finally, we note the similarity between our calculated
LDOS versus energy curves for regions near the vortex cores
and the corresponding curves for large-gap regions of inho-
mogeneous systems with quenched disorder in a zero mag-
netic field, calculated in our previous work.10 Those similari-
ties have been implied in several experimental papers. For
example, Lang et al.4 discussed the similarity between the
spectra of large-gap regions of inhomogeneous systems at
low temperatures in a zero field and those observed in the
pseudogap regime of some cuprate superconductors. In the
pseudogap region, the phase configuration is disordered and
therefore, possibly like the � region at zero field, both might
be considered as “normal” regions. Likewise, Fischer et al.36

have also noted the similarity of the low-T spectra near the
vortex cores to spectra in the pseudogap regime. Once again,
the similarity may arise because both the interior of the vor-
tex cores and the pseudogap region may be considered as
normal. Thus, both of these reports implicitly suggest a simi-
larity between the low-T spectra in the large-gap regions of a
disordered system at B=0 and the corresponding spectra near
vortex cores at finite B.

IV. DISCUSSION

We have presented a model for the pinning of vortices by
inhomogeneities in a two-dimensional type-II supercon-
ductor at low temperatures. The model is based on a GL free
energy functional, and it is inspired by our previous study10

of the LDOS in an inhomogeneous superconductor in zero
magnetic field. In our model, we have proposed a GL free
energy functional in which regions with a large value of the
superconducting order parameter have a large penetration
depth, as suggested by zero-field STM experiments on cu-
prates. Using an annealing process and Monte Carlo simula-
tions, we have found that the pinning of vortices by those
large-gap regions emerges naturally from the functional form
of our GL free energy. The vortices are attracted to the large-
gap regions, in our model, because the large penetration
depth leads to a small coupling between cells in those re-
gions. Therefore, the phase of the superconducting order pa-
rameter can more easily bend in these regions, and this in
turn allows the large-gap regions to accommodate a vortex
more easily than regions with a small gap. By contrast, in the
absence of quenched inhomogeneities, minimization of the
GL free energy functional yields a spatial configuration in
which the superconducting order parameter is suppressed
near vortex cores.

It is worth commenting further on the qualitative physics
underlying the pinning of the vortices in the region of en-
hanced local Tc0. Basically, this pinning behavior occurs be-
cause, in our model, a locally enhanced Tc0 corresponds to a
locally suppressed superfluid density. This superfluid density
is proportional to the local 1 /�2 and is related to the
Ginzburg-Landau coefficients, as we have described earlier.
The vortices can be more easily accommodated in these
large-Tc0 regions because the large phase gradients which
characterize the vortices cost less energy in such regions.
Although we describe the pinning in terms of the variation of
1 /�2, the pinning is not due to any kind of “magnetic”
forces—the quantity 1 /�2 is just a way of describing the
local superfluid density. Thus, just as in conventional pin-
ning, the vortices are attracted to regions of lower free en-
ergy. The major difference is that the superfluid density �and
1/�2� is inversely proportional to Tc0 in the present model,
rather than being independent of or directly correlated with
Tc0 as in more conventional pinning. This leads to pinning in
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FIG. 9. Local density of states averaged over regions far from
the vortex cores, for the system shown Fig. 8. Results are very
similar to the corresponding system with 16�16 cells, which has
nine instead of four atoms per XY cell and is shown in Fig. 5. Thus,
our results are not strongly dependent on the size of the XY cell or
of the XY lattice.

�a� �b�

FIG. 10. Same as Fig. 6 but for a system consisting of 24�24
instead of 16�16 XY cells, each having four instead of nine atomic
sites.
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FIG. 11. Same as Fig. 7 but for a system of 24�24 instead of
16�16 XY cells, each having four rather than the nine atomic sites.
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a large-Tc0 region rather than a small-Tc0 region. We also
emphasize that, although our pinning results are obtained
using rather elaborate numerical calculations, the underlying
physics is straightforward: the pinning behavior is consistent
with qualitative expectations, given the model.

It may seem strange to consider the spatial variation in
1/�2 as occurring over a scale of �0�15 Å, when � itself is
of order 103 Å or more. However, it should be remembered
that 1 /�2 is related to the coefficients of the Ginzburg-
Landau free energy �see Eq. �1��, and these coefficients are,
in fact, expected to vary over a scale of �0. Thus, the model
is, indeed, reasonable and consistent with the expected phys-
ics. It is the local superfluid density �proportional to 1/�2�
which varies over a scale of �0.

It is also worth commenting on what kind of real systems
could be described by our model. Even if one neglects the
weak Josephson coupling between the layers of a high-Tc
material, there will still be magnetic interactions between
pancake vortices in adjacent layers, so that the system will
not be truly 2D. Likewise, if we wish to use this model to
describe a very thin 2D high-Tc film, there are stray fields in
vacuum extending into the third dimension, which will con-
tribute to the total energy. In both cases, our model is defi-
nitely an oversimplification. Nonetheless, our model does
seem to describe some observed features in real high-Tc ma-
terials, suggesting that it captures some significant physics in
these systems. Thus, we consider our model as a possible
starting point for a fully realistic treatment of either three-
dimensional high-Tc materials or very thin 2D high-Tc layers.

We have connected our work on the pinning of vortices to
continuing efforts by several groups to describe the density
of states near vortices in cuprate superconductors. To do this,
we have studied a model BCS Hamiltonian with d-wave
symmetry, in which the pairing field is obtained from simu-
lations of the GL free energy functional. We use exact diago-
nalization to compute the local density of states on each
atomic site of the lattice described by this Hamiltonian. For
homogeneous systems, we found that the LDOS near the
vortex cores resembles that of a gapless tight-binding model
in two dimensions, with a Van Hove peak at zero energy.
However, when we introduce the inhomogeneities with a
large pairing field and large penetration depth that pin the
vortices, the LDOS near the vortex cores is markedly differ-

ent from that of the homogeneous systems. Namely, this
LDOS exhibits a large gap as well as low and broadened
peaks at energies greater than that of the superconducting
gap far from the vortex core. Also, our calculated LDOS near
the vortex cores in this inhomogeneous case does not exhibit
the spurious zero-energy peak, which is present in several
other theoretical studies but is absent from experiments. All
of these features in our calculations are consistent with re-
sults observed in STM experiments on YBCO11,12 and
Bi2212.13–16

Our results are also consistent with those obtained in Ref.
30, using a somewhat different model. Those authors obtain
better agreement between their calculated LDOS spectra and
experiment,14 if they assume an enhanced rather than uni-
form pairing field near the vortex cores. In particular, intro-
ducing this large pairing field near the vortex core in their
model suppresses the unphysical zero-energy peak. Our ap-
proach, in which a large gap is correlated with a large pen-
etration depth, may help justify the occurrence of this larger
pairing field in the vortex cores.

Finally, we briefly comment on the possible physical ori-
gin of correlation between large gap and large penetration
depth. The origin of the spatial fluctuations of Tc0 observed
in the cuprates may be the local fluctuations in concentration
of charge carriers, which are highly likely since the cuprates
are mostly disordered alloys and the local concentration
would involve an average coherence length, which is only
about 15 Å. However, Tc0 is proportional to the gap �i.e.,
presumably, the pseudogap�, which increases with decreasing
concentration of charge carriers, whereas 1/�2�0� is propor-
tional to the superfluid density, which should decrease with
decreasing charge carrier concentration. Therefore, we ex-
pect Tc0 to be positively correlated with �2�0�, as seen ex-
perimentally and as used in the present model.
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