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The interplay of spin glass physics and the Kondo effect is discussed for a model of dilute magnetic alloys.
The physics is analyzed in terms of the distribution of internal magnetic fields. Using this approach, we
determine the phase diagram of the model; we determine the properties of the model in the phases with broken
ergodicity.

DOI: 10.1103/PhysRevB.76.144429 PACS number�s�: 75.50.Lk, 72.15.Qm, 75.30.Hx, 75.10.Nr

I. INTRODUCTION

The problem of magnetic impurities in metals has been of
considerable interest for some time.1,2 Magnetic impurities
cause spin-flip scattering of the conduction electrons; they
give rise to the Kondo effect3 with its dynamically generated
scale, the Kondo temperature TK. The physics behind this
dynamically generated scale is a correlated many-body state,
where the impurity spin is locked in a singlet with a cloud of
electrons—the Kondo screening cloud.1 The Kondo tempera-
ture reflects the size of the screening cloud. In addition to the
Kondo effect, the conduction electrons mediate an effective
interimpurity interaction—the Ruderman-Kittel-Kasuya-
Yosida �RKKY� interaction;4 as the impurities are in random
positions, it is a random interimpurity interaction. In mag-
netic alloys, the RKKY interaction can give rise to ferromag-
netism; it can also give rise to a spin glass phase having
many metastable states.2

Recently, the resistivity ��T� of gold wires doped with
very dilute amounts of iron was measured; signs of both the
Kondo effect and spin glass physics were observed in ��T�.5
In these systems, the concentration of iron was more dilute
than in alloys where spin glass physics was observed previ-
ously; in describing these systems, a proper treatment of both
the Kondo effect as well as spin glass physics is necessary.
Motivated by these experiments, in this work we consider a
model to understand the properties of very dilute magnetic
alloys and, in particular, the effects of coherence between
partially screened impurities.

The rest of this paper is organized as follows. In Sec. II,
we describe the model considered in this work and the ap-
proach employed to treat the model. Rather than use the
replica formalism which is typically used to treat spin
glasses2 and which has been used in previous works studying
the interplay of random interimpurity interactions and the
Kondo effect,6,7 in this work we employ an approach moti-
vated by the seminal work of Ref. 8. More specifically, rather
than average over the random interimpurity interaction in the
beginning �which one does in the replica formalism�, we
treat one configuration of random interimpurity interactions
at a time and perform the average over the random interim-
purity interactions in the end. In Sec. III, we consider the
physics via an Ansatz for the distribution of fields, which is
equivalent to a “replica-symmetric ansatz” within the replica
formalism. Using this ansatz, we determine the phase dia-
gram of the model considered in this work. In Sec. IV we

discuss the physics within the phases with broken ergodicity;
in particular, we present results for the distribution of inter-
nal fields. By necessity, our analysis in this section is prima-
rily numerical. Previous works studying the interplay of
Kondo physics and random impurity interactions focussed on
the “replica-symmetric” phase�s�;6,7 the properties of the
glass phase itself were not discussed. Section V presents
some concluding remarks and possibilities for future work.

II. THE MODEL AND APPROACH

We begin with a model of conduction electrons interact-
ing with a dilute collection of randomly placed magnetic
impurities H=H0+Hsd, where H0 is the free Hamiltonian of
the conduction electrons and

Hsd = �
i

J0� · S�ri� . �1�

In Eq. �1�, �i is the spin operator of the ith magnetic impurity
�located at ri�; S�ri� is the conduction electrons’ spin opera-
tor at ri; J0 describes the coupling between the conduction
electrons and the magnetic impurities. In this work, we focus
on the case of spin-1 /2 impurities; we take the interaction
between the conduction electrons and the magnetic impuri-
ties to be antiferromagnetic J0�0.

To make progress, we integrate out high-energy conduc-
tion electrons; we focus our attention on the conduction elec-
trons’ degrees of freedom with wavelengths much larger than
the distance between impurties. More specifically, we inte-
grate out conduction electrons in the regime D��E�D,
where D is half the conduction electrons’ bandwidth, and D�
is an energy satisfying D��vF /R �vF is the Fermi velocity;
R is the average distance between impurities.� Upon doing
this, an effective interimpurity interaction—the RKKY
interaction—is generated.9 Therefore, to describe the system
for E�D�, we have the effective Hamiltonian

H = H0 + Himp, �2�

where Himp=Hsd+HRKKY with

Hsd = �
i

�Jxy��i
+S−�ri� + H.c.� + Jz�i

zSz�ri�� , �3a�
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HRKKY = −
1

2�
i�j

Ki,j�i
z� j

z. �3b�

Equation �2� is the Hamiltonian we analyze in this work to
understand the physics occurring at distances sufficiently
larger than the interimpurity spacing—it is the Hamiltonian
we employ to understand the interplay of spin glass physics
and the Kondo effect in dilute magnetic alloys. As before, H0
in Eq. �2� is the free Hamiltonian of the conduction elec-
trons; now, however, we consider only those degrees of free-
dom in a regime about the Fermi energy with E�D� �as the
higher energy degrees of freedom have been integrated out.�
As before, Eq. �3a� describes the interaction between the
conduction electrons and the magnetic impurities, and is re-
sponsible for the Kondo effect. The parameters �Jxy ,Jz� in
Eq. �3a� are to be understood as renormalized parameters
�from integrating out the high-energy conduction electrons�.
Note that we will consider an anisotropic interaction Jxy

�Jz in what follows. It is known that the Hamiltonian with
Jxy �Jz has the same low energy physics as the isotropic
limit Jxy =Jz.1 Finally, Eq. �3b� is the effective interimpurity
interaction that was generated upon integrating out the high-
energy conduction electrons; �Ki,j� are the �random� interim-
purity couplings. To simplify the analysis in what follows,
we have taken the interimpurity interaction to be an Ising
interaction. Physically, such an interaction could arise due to
crystal field effects; it is relevant to magnetic alloys such as
ZnMn and AgMn.2

To analyze Eq. �2�, we treat the interimpurity interaction
in mean-field theory. This approach, which is motivated by
the seminal work of Ref. 8, has recently been used to study
the transverse field Ising glass.11 This approach is valid to
describe the finite temperature properties within the glass
phase. It is not expected to describe the properties at T=0 or
the critical behavior at a phase transition, as fluctuations are
ignored. In this approximation, Himp��i=1

N Himp
i , where

Himp
i = Jxy��i

+S−�ri� + �i
−S+�ri�� + Jz�i

zSz�ri� − hi�i
z, �4�

where

hi = �
j

Ki,j	� j
z
 �5�

being an effective, random field acting on impurity i due to
the rest of the impurities. The �	� j

z
� are to be determined
self-consistently. As the fields �hi� are random, physical
quantities must be averaged over the distribution of fields

P�hi� = ���hi − �
j

Ki,j	� j
z
�

Ki,j

, �6�

where 	¯
Ki,j
denotes averaging over the distribution of cou-

plings Ki,j. Note that information about the various phases
which arise is contained in P�hi�.

To proceed further, we expand the conduction electron
operator in spherical waves centered about each impurity.
Furthermore, we approximate by ignoring the overlap be-
tween conduction electron wave functions centered about
different impurities. This approximation is justified, provided
the concentration of impurities is sufficiently dilute and the

distances between impurities are large—the effects ignored
are subleading, being suppressed by powers of �kFR�.9 �kF is
the Fermi wave vector.� In this approximation, each impurity
is coupled to its own bath of conduction electrons. As we are
taking the interaction between the conduction electrons and
the impurity to occur at a point �see Eq. �4��, only a single
harmonic—namely, the s-wave channel—couples to the
impurity.10 Focussing on this s-wave channel, we can write
an effective one-dimensional model for the conduction elec-
tron bath centered about each impurity. Our Hamiltonian be-
comes H=�i=1

N Hi, where Hi=H0
i +Himp

i with

H0
i = − ivF� dx�R,i,s

† �x�R,i,s + ¯ , �7�

Himp
i = 2�vF	xy��i

+JR,i
− �0� + �i

−JR,i
+ �0�� + 2�vF	z�i

zJR,i
z �0�

+ hi�i
z. �8�

In Eq. �7�, �R,i,s destroys a �right-moving� electron with spin-
s in the bath centered about the ith impurity, vF is the Fermi
velocity, the ellipses represent higher harmonics, which do
not couple to the magnetic impurities. In Eq. �8�,

JR,i

 �0� = �1/2��R,i,s

† �0��s,s�

 �R,i,s��0� ,

with ��s,s�

 � �
=x ,y ,z� being the Pauli matrices; 	xy =Jxy�0

and 	z=Jz�0 are dimensionless couplings ��0 is the conduc-
tion electrons’ density-of-states�.

In what follows, it will prove useful to utilize the boson
representation of one-dimensional fermions.12 To do so, the
electron operator is written as

�R,i,s �
1

�2�

exp�i�4��R,i,s� ,

where �R,i,s is a chiral Bose field, and 
 is a short-distance
cutoff �
�vF /D��. It will also prove useful to form charge
and spin fields �R,i,�/�= ��R,i,↑±�R,i,↓� /�2. In terms of these
variables,

Hi = vF� dx��x�R,i,��2 + ��x�R,i,��2 +
vF	xy



��i

+e−i�8��R,i,��0�

+ �i
−ei�8��R,i,��0�� + vF	z�2��i

z�x�R,i,��0� + hi�i
z. �9�

Notice that only the spin fields couple to the magnetic impu-
rities; the charge fields decouple.

From Eq. �9� along with Eq. �6�, we can readily under-
stand the properties of the system and, in particular, how
they are affected by Kondo physics. To treat the Kondo ef-
fect nonperturbatively, we perform a unitary transformation

U = exp�i�z�R,i,��0��

with =����2−1�, which ties �part of� the conduction elec-
trons’ spin to the impurity.12 Then, we introduce new fermion

fields, di��i
−, and �̃R,i�ei�4��R,i,�. Upon performing these

transformations, Hi becomes
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Hi = vF� dx��x�R,i,��2 − ivF� dx�̃R,i
† �x�̃R,i

+ vF	xy�2�



�di

†�̃R,i�0� + �̃R,i
† �0�di� + hi�di

†di −
1

2


+ vF
�2��	z − �1 −

1
�2

��di
†di −

1

2
�̃R,i

† �0��̃R,i�0� .

�10�

For the remainder of this work, we will focus on the Tou-
louse point, 	z=1–1/�2. The Toulouse point is known to
have the same low-energy fixed point as the SU�2� symmet-
ric Kondo model. However, the analysis simplifies at this
point in parameter space—the marginally relevant operator
near the ultraviolet fixed point �responsible for the Kondo
logarithms� is fine-tuned away; similarly, the leading irrel-
evant operator near the infrared fixed point is also fine-tuned
away.12

Up to now, our discussion was quite general; in order to
proceed further, an explicit form of the interimpurity interac-
tion is needed. To be able to make further progress analyti-
cally, we take the �Ki,j� to be infinite ranged with a Gaussian
distributed interaction between pairs of impurities as in the
Sherrington-Kirkpatrick �SK� model13

P�Ki,j� =� N

2�K2 exp�−
N

2K2 �Ki,j − K0/N�2� . �11�

In Eq. �11�, we have formally allowed for ferromagnetic or-
dering via K0. �For the systems we are interested in and for
which our approach is intended to describe, the density of
magnetic impurities is too low to expect ferromagnetic or-
dering. However, it is interesting to formally consider the
influence of ferromagnetic ordering within the context of this
model.� While actual spin glass materials have interactions
which are finite ranged, the results obtained from this
infinite-ranged model are useful for understanding finite-
ranged spin glass models and, hence, actual spin glass mate-
rials. Both finite- and infinite-ranged models have a complex
free energy landscape with many metastable states; the
phases that appear in the infinite-ranged model also arise in
finite-ranged models. �The distribution of internal fields
P�hi� has the same qualitative behavior in the various phases
in both models.14,15� A key difference, however, between the
finite- and infinite-ranged models is that the infinite-ranged
model has broken ergodicity, while finite-ranged models are
believed not to.16 However, the same relaxation phenomena
that happens among metastable solutions in the infinite-
ranged model �within a particular broken ergodicity phase� is
expected to occur among metastable states in short-ranged
models.2 Hence, the salient features of our results are ex-
pected to be relevant to actual spin glass materials.

The Hamiltonian of Eq. �2� with P�Ki,j� given by Eq. �11�
has been considered in other works. In addition to being
relevant to metals doped with magnetic impurities, this phys-
ics is also relevant to heavy fermion materials6 and possibly
high-temperature superconductors.7 More generally, it has
potential relevance to systems having both magnetic mo-

ments and itinerant electrons. In other treatments, the replica
formalism was used. Furthermore, these works considered
primarily a replica symmetric ansatz for the order parameter;
properties of the spin glass phase itself were not discussed.
Here we present a description of the various phases, includ-
ing the phases with broken ergodicity, in terms of the distri-
bution of internal fields �Eq. �6��.

III. GAUSSIAN FIELD DISTRIBUTION

We now analyze the physics contained in our model. In
this section, we treat the impurity spins in the simplest
approximation—we take them to be uncorrelated and inde-
pendent of the �Ki,j�; this gives rise to a Gaussian distribution
of internal fields. We use this distribution of internal fields to
determine the phase diagram of the model. The approach
presented in this section is equivalent to a “replica symmetric
ansatz” when the replica formalism is used. This is because
the physics underlying the replica symmetric ansatz and the
Gaussian distribution of internal fields is the same—
correlations between different impurity spins are ignored.

A. Distribution of fields and mean-field variables

We begin by computing the distribution of fields P�hi�. To
do so, we use a Fourier representation of the delta function;
then Eq. �6� becomes

P�hi� =� d	

2�
� j=1

N � N

2�K2 � dKi,j

�exp�−
N

2K2 �Ki,j − K0/N�2 + i	�hi − �
j

Ki,j	� j
z
� .

If we assume 	� j
z
 to be uncorrelated between different sites

and independent of the �Ki,j�, the intergrals can be readily
carried out. Indeed, performing the integrals over the �Ki,j�
and then the integral over 	, we obtain17

P�hi� =
1

�2�K2q
exp�− �hi − K0m�2/�2K2q�� . �12�

In Eq. �12� m�	�i
z
 and q�	�i

z
2, where the overline denotes
averaging with respect Eq. �12� itself. This assumption of
	� j

z
 being uncorrelated between different sites and indepen-
dent of the �Ki,j� is equivalent to a replica-symmetric ansatz
using the replica formalism.17 As is well known, this as-
sumption breaks down at low temperatures; the resulting
phase is one with broken ergodicity and many metastable
states. The breakdown of Eq. �12� and the resulting phase�s�
will be discussed below.

Using Eq. �10�, we can readily understand the properties
of the phases described by the field distribution in Eq. �12�.
To do so, we begin by determining m and q self-consistently.
Computing 	�i

z
, we find

	�i
z
 =

1

�
Im���1

2
+

Tk

4�T
+ i

hi

2�T
� , �13�

where ��z� is the digamma function,18 and TK

=2�vF�	xy�2 /
 is the Kondo temperature at the Toulouse
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point. Using Eq. �13� and averaging over the internal fields
with Eq. �12�, we obtain

m =� dy
�2�

exp�− y2/2�
1

�
Im���z�� , �14a�

q =� dy
�2�

exp�− y2/2�
1

�2 �Im���z���2, �14b�

where

z = �1

2
+

TK

4�T
 +

i

2�T
�K�qy + K0m� . �15�

It is worth noting that if we ignore the Kondo effect, i.e., if
we consider TK→0,18

lim
TK→0

Im���z�� = � tanh��yK�q + K0m��

�=1/T�. Hence, Eqs. �14a� and �14b� reduce to the self-
consistent equations determining m and q in the SK model.13

B. Almeida-Thouless instability

Now we consider the stability of the phases described by
Eq. �12�. More specifically, we consider the occurrence of
the Almeida-Thouless instability,19 which marks the transi-
tion to a state with broken ergodicity. To this end, we con-
sider the spin glass susceptibility

�SG =
1

N
�
i,j

	��i,j�i�m → 0��2
Ki,j
,

where

�i,j�i�m� = − 	T�i
z���� j

z
�i�m�

is the Matsubara representation of the imaginary time spin
correlation function; as before, 	¯
Ki,j

denotes averaging
over the distribution of �Ki,j�. Since we are considering an
infinite ranged model, �SG is given by ladder diagrams of the
type shown in Fig. 1;20,21 we obtain

�SG =
��i

0�i�m → 0��2

1 − K2��i
0�i�m → 0��2

, �16�

where

�i
0�i�m → 0� =

1

2�2T
Re����1

2
+

TK

4�T
+ i

hi

2�T
�

with ���z� being the trigamma function,18 and the overline
denotes averaging with respect to the field distribution, Eq.
�12�.

The phases described by the field distribution in Eq. �12�
are stable provided �SG�0. More explicitly, we must have

1 � �K�2� dy
�2�

exp�− y2/2�
1

4�4 �Re����z���2, �17�

where z is given by Eq. �15�. Note that if we ignore the
Kondo effect TK→0 �Ref. 18�

lim
TK→0

Re����z�� = 2�2 sech4��yK�q + K0m��

�=1/T�. Hence, Eq. �17� reduces to the equation determin-
ing the AT instability in the SK model.19 By definition/
construction, �SG is a positive-definite quantity. �SG becom-
ing negative tells us that our assumption leading to Eq.
�12�—the assumption that the internal fields at different sites
are uncorrelated—breaks down. The resulting phase is one
with broken ergodicity; the distribution of internal fields in
this phase is not described by Eq. �12�.2

It is worth noting that the criterion in Eq. �17� for the
instability to a phase with broken ergodicity would also be
obtained if the replica formalism were used �albeit with con-
siderably more difficulty�.2,20,21 More specifically, the crite-
rion in Eq. �17� is obtained in the replica formalism by con-
sidering Gaussian fluctuations about the replica symmetric
ansatz.19 The same criterion �Eq. �17�� arises in two �seem-
ingly� different approaches because the assumptions behind
the replica symmetric ansatz and the field distribution in Eq.
�12� are the same, namely, that the impurity spins are uncor-
related and are also independent of the �Ki,j�.

C. Phase diagrams

We now examine the physics contained in Eqs. �14a�,
�14b�, and �17�. We first consider the case where K0=0; we
begin by determining the spin glass transition temperature
Tg. Expanding the right-hand-side of Eq. �14b� in powers of
q, we find Tg is determined by

1 =
K

2�2Tg
����1

2
+

TK

4�Tg
� , �18�

where ���z� is the trigamma function.18 For TK=0, Eq. �18�
reduces to Tg=K /4, which is the spin glass freezing tempera-
ture of the SK model with spin-1 /2 impurities. Also, using
an asymptotic expansion for ���z�, we find that Tg is driven
to zero for Kc=�TK /2. Turning to Eq. �17� and performing
the integral with q→0, the result is the right-hand-side of
Eq. �18�. Hence, from Eq. �18� the inequality in Eq. �17� is

n1

n2

j

i

FIG. 1. Diagram contributing to the spin glass susceptibility.
Solid lines denote impurity fermion propagators, wavy lines denote
the interimpurity interaction Ki,j, dashed lines denote averaging
over the distribution of �Ki,j�. The fermion particle-hole bubbles are
averaged over the distribution of fields Eq. �12�.
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never satisfied; the phase described by the field distribution
in Eq. �12� is never stable. Therefore, Tg itself marks the
transition to a state with broken ergodicity. The spin glass
freezing temperature Tg determined from Eq. �18� is shown
in Fig. 2.

Now we consider the case where K0�0. To simplify
things a bit, we formally consider the T→0 limit. �As noted
above, the approach considered in this work is not appropri-
ate to consider the T→0 limit. However, we formally con-
sider this limit, as it allows us to understand the competition
between TK and K0 in the simplest context �without the com-
plication of a finite temperature�.� By numerically integrating
Eqs. �14a�, �14b�, and �17�, we determined the phase diagram
in the K0-TK plane; the results are shown in Fig. 3. We find
three distinct phases to arise: a spin glass phase, a ferromag-
netic phase, and a “mixed” phase. In the spin glass phase, the
spontaneous magnetization vanishes m=0, and the inequality
in Eq. �17� is violated. In the ferromagnetic phase, m�0 but
the inequality in Eq. �17� is satisfied. In the mixed phase,
m�0; the inequality in Eq. �17� is violated as well. Hence,
the field distribution is given by Eq. �12� in the ferromag-
netic phase, but not in the spin glass and mixed phases. No-
tice that Eq. �12� is stable over a substantial region in the
K0-TK plane.

IV. BROKEN ERGODICITY PHASES

Having determined the phase diagram�s� and, in particu-
lar, the regimes of stability of Eq. �12�, we now determine
P�hi� in the phases with broken ergodicity. Recall that P�hi�

in Eq. �12� was obtained by assuming the �	�i
z
� are uncorre-

lated and independent of the �Ki,j� As discussed above in
Sec. III B, this assumption breaks down in the glass
phases—in the glass phases, 	�i

z
 for the ith spin must be
computed self-consistently, taking into account correlations
with all the other �	� j

z
�∀ j. To this end, we perform a “spa-
tially unrestricted mean-field” calculation to determine the
�	�i

z
� and, hence, the hi in Eq. �5�. Using 	�i
z
 in Eq. �13�, the

�hi� are determined via

hi = �
j�i

Ki,j
1

�
Im���1

2
+

TK

4�T
+ i

hj

2�T
� . �19�

In Eq. �19�, we are not considering the contribution from
the reaction term. Similar to other works, we have found the
reaction term to give severe problems with convergence.22 It
is well known that the mean-field equations without the re-
action term overestimates the glass freezing temperature
Tg;2,8 properties near the glass transition are not expected to
be described correctly. Indeed, Ref. 23 considered a spin-
glass model where the reaction term vanishes; it was found
that the properties near Tg were different from the SK model.
However, both the model considered in Ref. 23 and the SK
model were found to have similar properties in the low-
temperature phase. In particular, the free enery landscape of
both models was very complex with many metastable states.
It has been found in conventional spin glasses that the prop-
erties within the various phases are described reasonably
well when the reaction term is not considered.24 Hence, Eq.
�19� is expected to capture the essential physics of the glass
phase.

In Fig. 4, we show results for P�hi� determined numeri-
cally by Eq. �19� �and Eq. �6�� in the spin glass and mixed
phases. The results were generated by considering 1000 im-
purity spins averaged over 100 realizations of the �Ki,j�. Fig-
ure 4�a� shows P�hi� at T=0 and K0=0 for several values of
TK. We see that P�hi� has weight shifted from smaller to
larger hi, compared to Eq. �12� �with m=0�. This occurs

0 0.1 0.2 0.3 0.4 0.5 0.6
T

K

0

0.05

0.1

0.15

0.2

0.25

T
g

Spin Glass

FIG. 2. Phase diagram in the TK-Tg plane �for K0=0� deter-
mined from Eq. �18�.

0 0.5 1 1.5 2
K

0

0

0.5

1

1.5

T
K

Spin Glass
Ferromagnet

"Mixed"

FIG. 3. T=0 phase diagram in the K0-TK plane.
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h

i

0

0.6

P(h
i
)

0.5
0.3
0

T
k

/ K

(a) (b)

FIG. 4. �Color online� �a� P�hi� with K0=0 for various values of
TK. �b� P�hi� with TK /K=0.6 for various values of K0. Main figure:
�black� solid line—K0=0; �red� dashed line—K0=1.1 K. Inset:
�black� solid line—K0=0; �green� dashed line—K0=0.9 K.
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because the system lowers its energy when the impurity
spins are aligned with the internal fields acting on them �see
Eq. �4��. Moreover, P�hi� has a linear suppression for small
hi. We found that P�hi� in Fig. 4�a� could be fit reasonably
well by a function of the form

P�hi� = � 	1

���
+ 	2

�hi�
�

+ 	3
2hi

2

����
exp�− hi

2/�� , �20�

where �, 	1, and 	2 are fitting parameters. �	1 ,	2�1; 	3
=1−	1−	2.� The values of �, 	1, and 	2 determined by a
least-squares fitting procedure are given in Table I; the fits to
Eq. �20� are shown by solid lines in Fig. 4. Notice that for
TK=0, 	1=0 and 	2=1, hence P�hi���hi�exp�−hi

2 /��.14 For
TK�0, P�hi� has a finite intercept for hi→0, hence 	1�0.
This occurs because for TK�0, screening of the impurity
spins due to the Kondo effect reduces the effective magni-
tude of their moments, and hence reduces the effective field
they can produce. As a result, the probability for hi at a site
to be zero is increased, compared to the case where TK=0.

We now consider the case where K0�0. Figure 4�b�
shows results for P�hi� at T=0 and TK=0.3 K for several
values of K0. Throughout the spin glass phase K0�1, there is

essentially no change in P�hi�. Indeed, the inset of Fig. 4�b�
shows P�hi� for K0 near the boundary between the spin glass
and mixed phases, K0=0.9 K. For comparison, results for
K0=0 are also shown; the results are practically identical.
The main pannel in Fig. 4�b� shows results for P�hi� in the
mixed phase. Here, we see that P�hi� is similar to the spin
glass phase at small hi, namely, there is a linear suppression
in P�hi�. However, while P�hi� is symmetric about hi=0 in
the spin glass phase, P�hi� is asymmetric in the mixed phase
due to the nonzero magnetization.

V. CONCLUDING REMARKS

To summarize, we discussed the interplay of spin glass
physics and the Kondo effect in a model for dilute magnetic
alloys. Rather than use the replica formalism, the physics
was analyzed in terms of the distribution of internal fields
P�hi�. Utilizing this approach, we determined the phase dia-
gram of the model and, in particular, discussed properties of
the glass phase that arises. The approach employed in this
work could be utilized/extended to consider an SU�2� invari-
ant interimpurity interaction as well as the Dzyloshinskii-
Moriya interaction. Furthermore, this approach should allow
one to compute various experimentally measurable quanti-
ties.
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