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Dynamic properties of quantum spin chains: Simple route to complex behavior
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We examine dynamic structure factors of spin-1/2 chains with nearest-neighbor interactions of XX and
Dzyaloshinskii-Moriya type and with periodic and random changes in the sign of these interactions. This
special kind of inhomogeneity can be eliminated from the Hamiltonian by suitable transformation of the spin
variables. As a result, the dynamic structure factors of periodic or random chains can be computed from those
of the uniform chains. Using the exact analytical and precise numerical results available for the uniform
systems, we illustrate the effects of regular alternation or random disorder on dynamic structure factors of

quantum spin chains.
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I. INTRODUCTION: JORDAN-WIGNER FERMIONS
AND DYNAMIC QUANTITIES

Quantum spin chains have received much attention for
more than 70 years for several reasons. First, they provide an
excellent ground for studying rigorously quantum many-
particle phenomena. Second, owing to the tremendous
progress in material sciences (as well as the recent availabil-
ity of optical lattices for trapping atoms in artificial crystals),
many real-life systems, which can be modeled as quantum
spin chains invented by theoreticians, have become avail-
able. This opens the possibility to compare the results of
accurate theoretical calculations with experimental data. Dy-
namic quantities for quantum spin chains are of special in-
terest and importance. On the one hand, their study, as a rule,
is a harder problem in comparison with similar studies of
static quantities. On the other hand, dynamic quantities are
related to experimental data obtained in scattering and reso-
nance experiments, which yield valuable information about
the magnetic structure of materials provided that one has a
reliable theory for their interpretation. Therefore, the theoret-
ical analysis of the dynamic quantities for quantum spin
chains is significant both from theoretical and/or academic
and experimental and/or practical points of view.

Since the early 1930s, the Bethe ansatz has been known
as a powerful method of exploring quantum spin chains.
However, only recently it has become possible to calculate
quantities such as norms of and matrix elements between
Bethe ansatz states, which are necessary to calculate dy-
namic quantities. For recent Bethe ansatz results on the
ground-state dynamic structure factors of the spin-1/2 XXZ
Heisenberg chain, see Refs. 1-3. We also mention here the
field-theoretical approaches for the evaluation of the dy-
namic quantities,4 which, however, are restricted to low-
energy physics only and therefore can only give the dynamic
quantities in a small part of the plane wave vector
rk—frequency o (hereinafter the x-w plane). Traditionally,
those calculations were performed for the Tomonaga-
Luttinger model, which describes one-dimensional spinless
fermions moving in a continuum, with linear dispersion re-
lation. Recently, however, the curvature of the dispersion re-
lation has been taken into account in calculating the proper-
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ties of quantum wires.> The spin-1/2 XXZ chain is a lattice
system closely related to these continuum models. The low-
energy and long-wavelength limit of its ground-state zz dy-
namic structure factor was recently studied by combining
several analytic and numeric techniques.® Recently,” an ex-
tension of the density-matrix renormalization group method
was proposed, which allows for the calculation of real-time
correlation functions of XXZ chains at arbitrary finite tem-
peratures in the thermodynamic limit. However, numerical
limitations presently restrict the time range over which re-
sults are reliable to values comparable to those reached in
complete diagonalization studies.®

Another exactly solvable class of quantum spin chains are
spin-1/2 XY chains. Rigorous analysis of these systems is
based on exploiting the Jordan-Wigner transformation to
spinless fermions.? [For a relation between the Bethe ansatz
method and the Jordan-Wigner approach for the spin-1/2
XXO0 (i.e., isotropic XY) chain, see Ref. 10.] Although after
applying the Jordan-Wigner transformation to the spin-1/2
XY chains one faces a system of noninteracting spinless fer-
mions, the calculation of the spin correlation functions is not
a trivial problem because of the nonlocal character of the
transformation. Thus, the zz spin correlations are related to
the two-fermion (density-density) correlations, whereas, e.g.,
the xx spin correlations are related to many-fermion correla-
tions. Accordingly, the zz dynamics is well studied,!’!?
whereas closed-form expressions, e.g., for the xx dynamic
quantities, are rather scarce'>~!> (see also references in Ref.
16).

In the present paper, we consider several quantum spin
chains with regular alternation or random disorder in the
nearest-neighbor interactions and follow the effect of such
modifications on the dynamic structure factors. The inhomo-
geneity introduced refers mainly to the sign of interactions
and may mimic the ferromagnetic or antiferromagnetic types
of nearest-neighbor exchange coupling. The interest in mod-
els of such a kind is not purely theoretical. Recently, some
organic and inorganic magnets have been recognized as
alternating-sign,’””  random-bond,'®  and  alternating
random-bond'*2! antiferromagnetic spin chains. The dy-
namic study of the quantum spin chain material with bond
randomness BaCu,(Si,_,Ge,),0,, x=0.5, using inelastic neu-
tron scattering revealed that its dynamic structure factor can
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be fitted by the Miiller ansatz'? surprisingly well.'® The cor-
respondence between the dynamic properties of the random-
bond Heisenberg antiferromagnetic spin chain and the
BaCu,(Si;_,Ge,),0; compound has been confirmed numeri-
cally by the quantum Monte Carlo method.?

In our calculation of dynamic quantities, we use appropri-
ate transformations to eliminate the inhomogeneity from the
spin Hamiltonian arriving at the homogeneous model, the
dynamic properties of which are well known. Thus, we re-
duce the complex behavior of dynamic quantities for peri-
odic or random quantum spin chains to the known dynamic
properties of the homogeneous model. In what follows, we
deal with spin-1/2 isotropic XY (XX or XX0) chains since the
dynamic quantities for the more general case of the XXZ
Heisenberg exchange interaction are less known.

The paper is organized as follows. To the end of this
section, we introduce the spin model and the quantities of
interest and recall some results for the dynamic quantities
obtained within the Jordan-Wigner fermionization approach,
which are used in the following sections. In Sec. II, we con-
sider the spin-1/2 XX chain with regularly alternating or
random sign of the XX exchange interaction. In Sec. III, we
consider the spin-1/2 XX chain with the Dzyaloshinskii-
Moriya interaction, the sign of which may either vary regu-
larly along the chain (or it has a regularly varying component
in addition to a constant component) or may acquire its sign
randomly. We summarize our findings in Sec. IV.

We consider the following Hamiltonian of a one-
dimensional spin s=1/2 XX model with two-site interac-
tions, which can be examined rigorously within the frame-
work of the Jordan-Wigner approach,’

H= E [Jn(sfzsiiﬂ + Sﬁsi}zﬂ) + D,l(sﬁsﬁﬂ - S%wal) + stz]
n

(1.1)

Here, J, is the exchange XX interaction between neighboring
sites n and n+1, D, is the z component of the
Dzyaloshinskii-Moriya interaction between these sites, and
Q) is the external transverse (z) magnetic field. The sum in
Eq. (1.1) runs over all N sites; the boundary conditions (pe-
riodic or open) are not essential for the quantities considered
below which we calculate in the thermodynamic limit N
— oo,

We are interested in the dynamic structure factors of the
spin model [Eq. (1.1)] (defined most conveniently for peri-
odic boundary conditions, so that m=N is equivalent to m
=0),

N N o
S (K, @) = ]%]E 2 exp(— iKm)J dt exp(iwt)((s;‘(t)sﬁrm>

j=1 m=1
= (s7)sB)).

where a,B=x,y,z. These experimentally accessible quanti-
ties contain important information about the spin model [Eq.
(1.1)]. By symmetry arguments, S,.(x,w)=S,,(x,w),
Syy(K, w)==S, (~K,®). Therefore, in what follows, we may
focus only on S,,(x, ), S,,(x,w), and S_,(«,w). Moreover,
the model [Eq. (1.1)] implies that (s;)=(s?)=0 and hence the

(1.2)

PHYSICAL REVIEW B 76, 144418 (2007)

second term in the parentheses in Eq. (1.2) may be omitted if
a,B=x,y.

Consider first a uniform chain [Eq. (1.1)] with J,=J, D,
=0. Again, by symmetry arguments, S..(x,®) is insensitive
to a sign change of the exchange interaction J— —J, whereas
Sk, 0) =S, (k+ T, 0), S, (k,0)—S,(k+7,0). Next,
from Refs. 11 and 12, we know that

SZZ(Kv w) = J dKanI(l - nK+K1)5(w + AKl - AK+K1)’
(1.3)

where A,=Q+J cos « is the elementary excitation energy of
the Jordan-Wigner fermions and n,=1/[1+exp(BA,)] is the
Fermi function. Obviously, the zz dynamic structure factor
[Eq. (1.3)] is governed by a continuum of two-fermion
(particle-hole) excitations.'? Let us introduce the following
characteristic lines in the k-w plane:

o) |k (lf«l )
=2|sin —sin| ——-a/ ||,
] 2 M

0Pk | K (lf«l )
=2|sin —sin| — + «
] 2 ™M

(k) ‘ . K‘
=2|sin —|,
Y 2

(1.4)

where a=arccos(|Q}|/|J|) varies from /2 (when Q=0) to 0
(when |Q|=|J|). The ground-state S..(k,w) is nonzero for
|Q|<|J| and in a restricted region in the x-w plane (we
assume |k|<m, =0) with the lower boundary w;(«)
=wY(k) and the upper boundary w,(x)=w?(k) if 0=<|«|
<7-2a or w,(k)=w¥(k) if mT-2a<|k|<m. Moreover,
S..(k,w) exhibits a finite jump (increasing its value by 2)
along the middle boundary w,,(k)=w?(k), T-2a<|k| <.
Finally, S..(k,») shows a van Hove singularity along the
curve w,(k)=w® (k). As temperature increases, the lower
boundary becomes smeared out and finally disappears. The
upper boundary is given by w® (k) and S,,(k,®) becomes
field independent in the high-temperature limit.

The xx/xy dynamic structure factor is governed by many-
fermion excitations and therefore is a much more compli-
cated quantity [the two-fermion contribution to S,,(x, w) was
discussed in Refs. 23 and 24]. However, the ground-state
Sk, w) and S, (k,w) can be easily calculated for strong
fields | Q] >1]J],"

Sk, 0) =i sgn(Q)S,, (k. 0) = g Sl —|Q| = J cos x).
(1.5)

Equation (1.5) shows that all the spectral weight in this case
is concentrated along the curve
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o' (k) |
——— = +sgn(J)cos k.
i e
At sufficiently low temperatures (kg7/|J|=0.01,...,0.05),
we know from numerics (see Ref. 16) that although S, (x, ®)
and S,,(x, ) are not a priori restricted to a certain region in
the k-w plane (and indeed these quantities have nonzero val-
ues throughout the k-w plane), nevertheless, their values are
rather small outside the two-fermion excitation continuum
discussed above. More precisely, the xx and xy dynamic
structure factors show washed-out excitation branches
roughly following the boundaries of the two-fermion excita-
tion continuum [see Eq. (1.4)] for J<0 or following these
boundaries shifted along the « axis by @ for J>0. In the
high-temperature limit, we have'®!4

M(K,w)—4|J| 2 +exp| — 7 ,

, N (- Q)2 (w+Q)?
ISX),(K,w)=m eXpl= T [P [

(1.7)

(1.6)

i.e., the xx and xy dynamic structure factors in this case are «
independent and display Gaussian ridges at w==().

Similar results on the dynamic properties of the dimerized
spin-1/2 XX chain (i.e., with J,=J[1-(=1)"8], where 0<
<1 is the dimerization parameter, and D,=0 in Eq. (1.1))
can be found in Ref. 25 (and references therein). The dy-
namic properties of the uniform spin-1/2 XX chain with the
Dzyaloshinskii-Moriya interaction [i.e., with J,=J, D,=D in
Eq. (1.1)] were discussed in Ref. 26.

In what follows (Secs. II and III), we use the results re-
called here to examine the dynamic properties of quantum
spin chains with special types of periodically varying or ran-
domly distributed interspin interactions.

II. SPIN-1/2 XX CHAIN WITH PERIODICITY
AND/ OR RANDOMNESS IN THE SIGN
OF EXCHANGE INTERACTION

In this section, we consider the spin model with the
Hamiltonian [Eq. (1.1)] assuming J,=\,J with \,=+1 and
D, =0, i.e., the exchange interaction between the sites n and
n+1 may be either antiferromagnetic if N,/ >0 or ferromag-

netic if N, /<0 depending on the given sequence
{N\1, ..., Ay} Let us perform a gauge transformation,
St =5 =N Ny NS,
S =5 =N Ny NS,
§o =5 =5, (2.1)

after which the Hamiltonian H transforms into the Hamil-

tonian H of the homogeneous model with exchange constant
J,=J (up to an inessential boundary term). [We denote the
quantities related to the transformed (homogeneous) model
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by a tilde.] Obviously, according to Eq. (2.1), the zz dynamic
structure factor (as well as all thermodynamic quantities)
does not feel an inhomogeneous sequence of signs
{\i,....\y}. In contrast, the xx and xy dynamic structure
factors do depend on {\|,...,\y}. Below, we consider sepa-
rately the cases of periodic sequences and of random se-
quences of signs.

A. Periodic case

We begin with the case of period p=2, i.e., {\,}={1,
—-1,1,-1,...}. After performing the transformation [Eq.
(2.1)], we have §“£j_1=(—1)j+1sgj_1, 5"51»:(—1)]*15%, j
=1,2,... (here and to the end of the paper, a,B=x,y) and
therefore according to Eq. (1.2), we can write

N o0
1
saﬁ(K,w)=52 exp(— ixm) J dt exp(iwt)a,(5¥(1)s%, )

m=1

N w
1
+ 52 exp(- iKm)f dt exp(iwt)bm(lv‘g(t)fzﬁm),
m=1 —0

(2.2)

where {a\,ay,as,...}={1,-1,-1,1,1,-1,-1,...},
{by,by,bs, .. }={=1,-1,1,1,-1,~1,1,...}. Noting that a,,
=[(1=i)/2]exp(imm/2)+[(1+i)/2]exp(3imm/2) and b
=a,,;, we immediately find from Eq. (2.2) that

m

Sapl )—15 < + 2 >+l§ ( +3—77 )
QBK’w_za.BK 2,(0 ZaBK 2,60.

(2.3)

On the left-hand side in Eq. (2.3), we have the dynamic
structure factors for the periodic chain S ,4(«, ), whereas on
the right-hand side (rhs) in Eq. (2.3), the dynamic structure

factors S;QB(K,LU) refer to the uniform chain with the ex-
change constant J; the latter quantities were discussed in Sec.
I. These calculations can be easily extended for periodic
chains of larger periods. For example, for p=3 with {\,}
={1,1,-1,1,1,-1,...} after performing similar calcula-
tions, we arrive instead of Eq. (2.3) at

Sos )—i§<+7—7 )+1~(+ )
a'BK,(l)—g aBK 3,(1) 9 a,BK m, W

4 - S5
+_SaB K+ —,w)]).

9 3 (2.4)

To illustrate the effect of a regularly alternating sign of
exchange interaction on S, (k,w), we display this quantity
calculated according to Egs. (2.3) and (2.4) in Fig. 1. Evi-
dently, in the high-temperature limit owing to the x indepen-
dence of S, (k,w) [see Eq. (1.7)], regular alternation of the
exchange interaction signs does not manifest itself in the xx
dynamic structure factor. However, at low temperatures, it
may lead to rather intricate frequency and/or wave-vector
patterns (see Fig. 1). Interestingly, we may reproduce the
sequence {\,} knowing the number of soft modes k, and
their position. In the limit 7=0 and |Q|>|J|, we may insert
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FIG. 1. S,(k,w) for the spin-1/2 XX chain with periodic se-
quences of exchange interactions (a) {J,-J,J,=J,...}, J=1, and
{J,J,-J,J,J,-J,...} with (b) J=1 and with (¢c) J=-1 for Q
=0.25 at low temperature, S=20.

Eq. (1.5) into the rhs of Egs. (2.3) and (2.4) to find that the
spectral weight is concentrated along the curves which fol-
low from Eq. (1.6) after corresponding shifts along the x
axis.

The results of this subsection are complementary to the
earlier results on thermodynamic and dynamic properties of
periodic spin-1/2 XX chains (see Refs. 2? and references
therein).

B. Random case

We now proceed with the case of randomly distributed
signs of exchange interactions assuming {\,} to be a se-
quence of independent random variables each with the fol-
lowing bimodal probability distribution:

PHYSICAL REVIEW B 76, 144418 (2007)

p(\,) =pd\,+ 1)+ (1-p)o\, - 1), (2.5)

where 0<p=<1. We are interested in random-averaged quan-
tities and denote the average over all realizations of random-
ness as (---)=II,f” d\,p(\,)(---). Random chains of that
type (in fact, for more general XXZ coupling) were studied in
Refs. 30 and 31.

Exploiting the gauge transformation [Eq. (2.1)] and Eq.
(2.5), we find

(708,00 = (1 = 2p) (57 (057,

Introducing the correlation length &=—1/In|1-2p
expression [Eq. (2.6)] can be rewritten as

(2.6)

, the last

N
I

(SIEs

p

exp(— %)@;«ﬂsﬁmx 0
FWP 0 =

A
I

(—l)mexp<—%)<§f(f)§ﬁm>’% p=1.

2.7)

As a result, the random-averaged dynamic structure factors
[Eq. (1.2)] can be written as follows:

W: > exp(— ikm— M)J“” dr exp(iwt)
m=0,+1,+2,... f —0
XSO, (2.8)

Here, 0<p<1/2. If 1/2<p=<1, a factor (-1)" [see Eq.
(2.7)] should be taken into account in Eq. (2.8) and the re-
sulting expression S,4(k,w) for 1/2<p=<1 corresponds to
Sap(k* 7, w) in formula (2.8). We use Eq. (2.8) to compute
S,p(K, ) through the known results for <'s";”(t)'s"ﬁrm> for the
uniform chain with exchange constant J obtained analytically
or numerically'®3? (see Fig. 2).
Let us consider the case T=0,

Q|>|J] when the xx dy-

namic structure factor S, (k, ) is given by Eq. (1.5). In the
site representation, we have

Suman= [ drexions5.,)
= 1%; exp(iKm)gxx(K, w)

1 m
= Zf dk exp(ikm)&(w— |Q| - J cos k)

cos(mky)
= e 0w =[]+ D0+ |- w),
2|J sin k|

(2.9)

where ky=arccos[(w—|Q|)/J]. [In Egs. (2.9)-(2.11), the 6
functions simply indicate the frequency range within which
the equation w—|Q|—J cos k=0 has the solutions k== k.|
Consider first the case 0<p=<1/2. After substitution of Eq.
(2.9) into Eq. (2.8) and some simple calculations, one finds
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FIG. 2. S,.(k,w) for the spin-1/2 XX chain with random-sign exchange interaction J=1, [(a)—(e)] Q2=0.01, and [(1)-(j)] 2=0.25, B
=20. The values of p in Eq. (2.5) are as follows: from top to bottom p=0.1 ({=4.48), p=0.25 (£=1.44), p=0.5 (£=0), p=0.75 (¢
~1.44), and p=0.9 (£~4.43).
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m|

S (k)= > exp(— iKkm — |?>§m(m, )

m=0,x1,%2,...

1

- 2|‘] sin K0| m=0,x1,%£2,...

1

1 1
J sinh E<J cosh E —(w—|Q|)cos K)
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> exp(— iKkm— %)COS(W[KO) o - Q| +]J))6(Q| + /]| - w)

2V (0- 0] (

If 1/2<p=<1, S, (k,w) follows from Eq. (2.10) after the
change x— k¥ 7. One can easily note that Eq. (2.10) trans-
forms into Eq. (1.5) in the nonrandom limit 1/£—0 (i.e., p
—0 or p—1) (to show this, one has to exploit the relation
limp_, {T/[(w—w)?+ %]} =78 (w-w,)). In the opposite
limit of a completely random system 1/¢— (i.e., p—1/2),
Eq. (2.10) becomes

—_— 1
SxxK’w=—0w—Q+JHQ+J—a).
( >2\,m< 1/ + 7)o + ] - )

(2.11)

One immediately recognizes that Eq. (2.11) contains the con-
tribution of only the autocorrelation function (as it should be
since the correlation length £ tends to zero) and since in the
limit considered 4(s7(1)s7)=(1/N)Z, exp(=iA,)," the xx dy-
namic structure factor is proportional to the density of states
of elementary excitations p(E)=(1/N)Z,.8E-A,), ie.,
S, (k,w)=(m/2)p(w) independent of k. For other values of
pS.(k, ) [Eq. (2.10)] is restricted to the frequency region
|Q|-]J] < @< |Q|+]J| and shows square-root singularities as
o—|Q|£|J]. The frequency profiles at fixed x resemble
(although are not identical to) Lorentzian shapes centered
at  w=|Q|+Jcosh(1/&)cos k  with the linewidth T
=|J sinh(1/&)sin «|.

For nonzero temperature, 7+ 0, and for subcritical field
values, [Q|<|J|, Eq. (2.8) must be evaluated numerically
(see Fig. 2). In the case p=1/2, the correlation length &
—0 and one expects only the autocorrelation function to
contribute to the x-independent S, (x,w) and the frequency
shape for any « is determined by the w dependence of

S.(0,w)=[" dt exp(iwt)(Ej‘(t)E;‘) (k-independent stripes near
frequencies which dominate the autocorrelation function).

We note some similarities to recent numerical results on
the spin-1/2 Ising chain in a random transverse field.>* In
particular, the horizontal (k-independent) stripelike patterns
in Fig. 2 resemble the results of Ref. 33 for strong disorder.
This is to be expected since for strong enough disorder, only
local correlations survive and lead to a k-independent dy-
namic structure factor.

The scheme presented here can be also easily adapted to
more complex models where alternation and randomness are
mixed. For example, the ferromagnetic-antiferromagnetic

1 2
o —|Q| - J cosh : cos K) +J% sinh? = sin®

Bw— |0+ DO(Q + /] -w).  (2.10)

random alternating quantum spin chain compound
(CH;),CHNH;Cu(CI,Br;_,); can be viewed as a spin-1/2
random alternating quantum Heisenberg chain,”!

sz (‘IZn—l‘;Zn—l '§2n+‘12n§2n'§2n+1)’ (212)

where J,,_;=J is the weak uniform exchange bond, J,,
=2\,,J is the strong random-sign exchange bond, and {\,,}
is the sequence of independent random variables each with
the bimodal probability distribution [Eq. (2.5)]. If we restrict
ourselves to isotropic XY interactions between spins in Eq.
(2.12), the randomness can be excluded from the Hamil-
tonian by a slightly modified gauge transformation 53, _,
=55y, 5% =55 T15AN,,,, n=2,3,..., obtaining fi-
nally the Hamiltonian of a dimerized XX chain with the pe-
riodically varying exchange couplings J,2J,J,2J,.... The
random-averaged dynamic structure factors can be calculated
analogously to Egs. (2.6)—(2.10).

III. SPIN-1/2 XX CHAIN WITH PERIODICITY
AND/OR RANDOMNESS IN THE SIGN
OF DZYALOSHINSKII-MORIYA INTERACTION

We now consider the spin model with the Hamiltonian
[Eq. (1.1)] assuming J,=J and D,=\,D with \,=+1. (We
note that the case J,=\,J, D,=D may be analyzed on the
basis of the results reported below after exploiting the uni-
tary transformation discussed in Ref. 34.) It is generally
known?03-38 that the Dzyaloshinskii-Moriya interaction D,
can be eliminated from the Hamiltonian H [Eq. (1.1)] (up to
an inessential boundary term) by the spin coordinate trans-
formation

X e X H Yy
5y, — §,=c08 ¢,s), + sin @P,s,,,

y y

§) — 5 =—sin ¢,s), + cos ¢,s),
$e— 5 =8, (3.1)
where ¢n=2f;;]0<pm, @ is an arbitrary angle which is usually
assumed to be zero, and tan ¢,,=D,,/J, m=1,2,.... As a re-

sult, one faces the Hamiltonian H [Eq. (1.1)] without the
Dzyaloshinskii-Moriya interaction, however, with a renor-
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malized XX exchange interaction J,=sgn(J) VJ2+D?2 In the
uniform case, when D, =D, the unitary transformation [Eq.
(3.1)] was used in the recent studies of dynamics of quantum
spin chains.?®3738 In this section, we consider separately the
two cases of periodically varying Dzyaloshinskii-Moriya in-
teraction and of random-sign Dzyaloshinskii-Moriya interac-
tion focusing on the xx dynamic structure factor S, (x,w).

A. Periodic case
We begin with the case p=2 with {\,}={1,-1,1,
-1,...},i.e., D,=(=1)"'D. Then, we have to put in Eq. (3.1)
¢, =(=1)""1p, p=arctan(D/J). Moreover, it is convenient to
assume that @y=—¢/2. Then, ¢,=(—1)"¢/2 and the inverse
transformation to the one given by Eq. (3.1) reads

Sy —cos—v - (- 1)"sm—s'

2 n’
s —(—1)”sm§sn+co ;—D's’y,
=5 (3.2)

By substituting Eq. (3.2) into Eq. (1.2), one immediately
finds that the xx dynamic structure factor S,,(k,w) of the XX
chain with the alternating Dzyaloshinskii-Moriya interaction
D,-D,D,-D,... can be expressed through the xx dynamic

structure factor S, (k, ) of the uniform chain with only XX
exchange interaction J=sgn(J)\J2+D? as follows:

S (K, ) = cos? ggxx(K, ) + sin’ (Epgxx(’( ¥ o).

(3.3)

We notice here that in the case when in Eq. (1.1)
J,=J, D,=D,, that is, for uniform XX and Dzyaloshinskii-

Moriya couplings, the relation for S,.(x,w) is quite
different: S (K, 0)=[S (k- @, 0)+S, (k+ @, w)+ i§xy(f<

—go,w)—igxy(Kﬂp,w)]/Z; here, §aﬁ(K,w) is related to the

uniform chain with only XX exchange interaction J

=sgn(J)\rJ2+D(2) (see Ref. 26). It is worth therefore to con-
sider also the more complicated case of the chain [Eq. (1.1)]
with J,=J and D,=D,—(-1)"D. This choice of a dimerized
Dzyaloshinskii-Moriya interaction covers both limiting cases
(i) of the alternating-sign Dzyaloshinskii-Moriya interaction
when Dy=0 and (ii) of the constant Dzyaloshinskii-Moriya
interaction when D=0. Exploiting the transformation [Eq.
(3.1)] with ¢,,=arctan{{Dy—(~1)"D]/J}, we arrive at a chain
without the Dzyaloshinskii-Moriya interaction but only
with the dimerized XX exchange interaction .7,,
=sgn(J) \/J2+[D0— (=1)"D]?. To find the relation between the
xx dynamic structure factor S, (k,w) of the XX chain with
the dimerized Dzyaloshinskii-Moriya interaction and the dy-

namic structure factors §aﬁ(K, w) of the dimerized XX chain
without the Dzyaloshinskii-Moriya interaction, we proceed
as follows. First, we note that exploiting Eq. (3.1) in Eq.
(1.2) yields
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3
2
1
0
7
6
S
4
3
3

FIG. 3. S,(k,w) for the chain [Eq. (1.1)] with J,=1, D,=D,
—(=1)"D, (a) Dy=0, (b) Dy=0.25, and D=0.5, 1=0.25 at low tem-
perature, 5=20.

S (k)= E E exp(— iKm)foo dt exp(iwt)[cos(¢j,,
j 1 m=1 —%
= $)(S; (057, = sin( @y, — &) ()57, ]
(3.4)

After introducing the notations ¢,=arctan[(Dy+D)/J], ¢,
=arctan[(Dy—D)/J], and ¢*=(¢,£¢,)/2, we can write
Gjsm—dj=me*+(=1){[(-1)"-1]/2}¢". Then, after insert-
ing this result into Eq. (3.4) and some manipulations, Eq.
(3.4) becomes

1 T~ ~ ~
S (k)= 2 cos’ %[SXX(K - ¢ 0)+ S (k+ ¢" o) +iS,(k

- 1 .
=S, (k+ " W) ]+ = sin? %[SXX(K o

_ +
¢",w) 5

-5, w) +§xx(K Fr+e,w) + igxy(K o

-¢"w) - (3.5)

Equation (3.5) in the limit Dy=0 transforms into Eq. (3.3)
since ¢*=0, ¢~ =¢p=arctan(D/J). Equation (3.5) also con-
tains the result of Ref. 26 in the limit D=0 since ¢*
=arctan(Dy/J), ¢~ =0.

In Fig. 3, we illustrate the effect of the dimerized
Dzyaloshinskii-Moriya interaction on the xx dynamic struc-
ture factor at low temperatures. Panel (a) corresponds to the

igxy(K Fa+o )]

144418-7
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case Dy=0 [S,,(k,w) is obtained using Eq. (3.3)], whereas
panel (b) corresponds to the case Dy#0 [S,.(k,w) is ob-
tained using the more general Eq. (3.5)].

B. Random case

Finally, we pass to the case when the Dzyaloshinskii-
Moriya interaction D,=\,D is given by a sequence of inde-
pendent random variables {\,}, each with the bimodal prob-
ability distribution [Eq. (2.5)]. For a specific realization of
the signs of the Dzyaloshinskii-Moriya interaction, we can
eliminate D, from the Hamiltonian H [Eq. (1.1)] by the
transformation [Eq. (3.1)] with ¢,,=\,,¢, ¢=arctan(D/J) ar-

riving at the model H with only XX exchange interaction J
=sgn(J)\J?+D?. To calculate the random-averaged xx dy-
namic structure factor, we need

(550 = cO8(j1m = DS, = sin( D — B))
XGOS (3.6)

J

Noting that

o0+ TN gl = 5o exp(- ig) + (1 - plexplig)}”

1
+ 5[17 exp(i) + (1 - plexp(—ip) "

=[cos? @ + (1 - 2p)? sin® @]"?
X cos{m arctan[(1 — 2p)tan @]},

sinf(\; + -+ + \,)¢] =[cos? @+ (1 - 2p)? sin® @]"?
X sin{m arctan[ (1 — 2p)tan ¢]}
(3.7)

and introducing the notations ép
=—1/In\cos® o+ (1-2p)?sin®> ¢, @p=arctan[(1-2p)tan @],
one finds that

(57(0)s) = exp(— g)[cos(m¢p)<§7(f)§f+m> — sin(mep)
X(EH (057,01 (3.8)

Using Eq. (3.8), the random-averaged xx dynamic structure
factor can be written as follows:

S (kw= > exp(— ikm— M)I“ dt exp(iwt)
m=0,x1,%£2,... gD —©
X[cos(mep)(5;(1)55,,,) = sin(mep)(5; ()5}, ]-

(3.9)

On the rhs in Eq. (3.9), we have the correlation functions of
the uniform XX chain with the exchange constant
sgn(J)\J?+D? We use Eq. (3.9) to calculate S,,(k, w) for the
model with the random-sign Dzyaloshinskii-Moriya interac-
tion through the known results for (E;“Eﬁrm>.16’32 The results
are shown in Fig. 4. The correlation length &, attains its
minimal (nonzero) value —1/In|cos ¢| at p=1/2. A compari-
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son of Figs. 4(c) and 4(h) to Figs. 2(a) and 2(f) shows that
S..(k, ) looks very similar for weak disorder (p=0.1) in the
sign of the exchange interaction, on one hand, and for maxi-
mum disorder (p=1/2) in the sign of the Dzyaloshinskii-
Moriya interaction, on the other hand. It looks as if the
random-sign Dzyaloshinskii-Moriya interaction at p=1/2
does not manifest itself in S, (k, ). This similarity becomes
evident if we notice that the correlation lengths & and &, are
of the same order for the considered conditions (see the cap-
tions to Figs. 2 and 4) and ¢, tends to zero, which cancels
any signals of the Dzyaloshinskii-Moriya interaction due to
formula (3.9).

We can proceed with analytical calculations for the case
T=0, |Q|>J*+D? Comparing Egs. (3.9) and (2.10), we
see that the result we are interested in follows from Eq.
(2.10) after the changes J—J=sgn(J)\J/2+D?% Kk— kK
—sgn(Q)ep. In particular, for the nonrandom case when p
=0 or p=1, we recover the result reported in Ref. 26,
S (k. w)=(712) Slw—|Q|-T cos[ k—sgn(Q) @]}

Interestingly, we can extend the scheme explained above
to more complicated random chains assuming J,
=Jcos[f(\,)], D,=Tsin[f(\,)], where f(x) is an arbitrary
function, for example, f(x)=A+Bx, and \,, is a random vari-
able with an arbitrary probability distribution p(\,,) (not nec-
essarily with the bimodal probability distribution [Eq.
(2.5)]). After exploiting the transformation [Eq. (3.1)] with
¢,=A+B\,,, we arrive at the Hamiltonian H given by Eq.
(1.1) with J,=7, D,=0. (s;(t)s},,,) is again given by Eq.

(3.6); however, Eq. (3.7) now reads

cos[mA + B\, + -++ +\,,)] = |F(B)|" cos(m{A
+arg[F(B)]}),

sin[mA + B\; + -+ + \,,)] = |[F(B)|" sin(m{A + arg[F(B)]}),
(3.10)

where

F(B) = f d\,p(N,)exp(iBN,) = |F(B)|expfi arg[F(B)]}

(3.11)

is the characteristic function of the random variable \,,. Now,
we introduce the notations &p=—1/In|F(B)|, ¢p=A
+arg[F(B)] and arrive at Egs. (3.8) and (3.9). For the model
with the bimodal distribution considered earlier, we
have to put J=sgn(J)\J*+D? A=0, B=arctan(D/J)=¢,
and therefore F(B)=p exp(—ig)+(1-p)exp(i¢), |F(B)
= V/cos2 o+ (1-2p)? sin® @, arg[ F(B)]=arctan[(1—-2p)tan o],
and we reproduce Egs. (3.8) and (3.9) with the expressions
for &5 and ¢p given just before Eq. (3.8).

IV. CONCLUSIONS

To summarize, we have considered a number of inhomo-
geneous (periodic or random) spin-1/2 XX chains, to exam-
ine their dynamic properties. The models considered are dis-
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FIG. 4. S,,(k,w) for the chain [Eq. (1.1)] with J,,=1, D,,=\,,D, where \,, is a random variable with the probability distribution [Eq. (2.5)].
D=0.5, [(a)-(e)] ©=0.01, and [(f)-(j)] ©=0.25, B=20. The values of p in Eq. (2.5) are as follows: from top to bottom p=0.1 (&,
~26.77), p=0.25 (£,~12.31), p=0.5 (£,~8.96), p=0.75 (£,~12.31), and p=0.9 (¢£,~26.77).

144418-9



VERKHOLYAK et al.

tinguished by the possibility to eliminate the inhomogeneity
from the spin Hamiltonian by a suitable unitary transforma-
tion [see Egs. (2.1) and (3.1)] and therefore to reduce the
problem to the well known one for the uniform model. We
use exact analytical and precise numerical data to analyze the
dynamic structure factors of the periodic and/or random
spin-1/2 XX chains. The models considered show rather
complex behavior which, however, can be explained by the
corresponding properties of the basic uniform model. Thus,
for the periodic chains, only the correspondingly modified
characteristic curves [Egs. (1.4) and (1.6)] are seen in the
complex pattern displayed by the dynamic structure factor at
low temperatures. In the high-temperature limit, only Eq.
(1.7) is relevant. In the cases considered, the observed com-
plexity has a simple origin. We also stress here that we have
reported rigorous analytical results for dynamic structure fac-
tors of some periodic and/or random quantum spin chains. In
comparison, direct numerical treatment of random quantum
spin chains would imply many calculations of dynamic
quantities for different realizations of the random couplings
and a subsequent average over these realizations, which al-
together would require an enormous amount of computer
time.

It is interesting to note that the effects of temperature and
of random couplings on the xx/xy dynamic structure factors
are different [compare Egs. (1.7), (2.8), and (2.11)]. Al-
though in both cases only the autocorrelation function deter-
mines the dynamic structure factor (for sufficiently high tem-
perature or sufficiently strong randomness), at high
temperatures, the dynamic structure factor is « independent
and shows Gaussian ridges [see Eq. (1.7)]. This is due to the
Gaussian time decay of the autocorrelation function,'>!#
which should be contrasted to the slow long-time decay of

PHYSICAL REVIEW B 76, 144418 (2007)

the autocorrelation function at low temperatures.

The spin chain models discussed in our study are obvi-
ously of a rather special kind, and it would be highly desir-
able to obtain reliable results also for more general types of
inhomogeneity in the interspin couplings, where not only the
signs but also the absolute values of the couplings vary. For
those more general models, however, the present methods
are not applicable, and different methods or approximations
have to be employed, such as in Refs. 33 and 39, for ex-
ample. The special models treated in our present study will
then be useful in providing a testing ground for the more
general (but possibly less reliable) methods capable of deal-
ing with a broader class of systems.

Finally, the dynamic structure factors provide benchmarks
for determining interspin interactions. In our paper, we have
demonstrated by some examples how periodic modulations
or random variations in the signs of nearest-neighbor inter-
actions manifest themselves in the dynamic structure factor.
We note that the techniques used here for XX chains may
also be applied to study dynamic structure factors of more
general XXZ chains with periodic or random-sign changes in
the XY part of the interactions, provided that sufficiently pre-
cise data for the corresponding uniform systems become
available.
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