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This work investigates the magnetically driven ferroelectricity in orthorhombic manganites RMnO3

�R=Gd, Dy, or Tb� from the point of view of the symmetry. The method adopted generalizes the one used to
characterize the polar properties of displacive modulated structures to the case of an irreducible magnetic order
parameter. The symmetry conditions for magnetically induced ferroelectricity are established, and the Landau-
Devonshire free energy functionals are derived from general symmetry considerations. The ferroelectric po-
larization observed in DyMnO3 and TbMnO3 at zero magnetic field is explained in terms of the symmetry of
a reducible magnetic order parameter. The polarization rotation induced in these compounds by external
magnetic fields and the stabilization of a ferroelectric phase in GdMnO3 are accounted for by a mechanism in
which magnetization and polarization are secondary order parameters that are not directly coupled but compete
with each other through their coupling to competing primary modulated order parameters.
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I. INTRODUCTION

In the last decades, the search for novel materials display-
ing enhanced magnetoelectric effect has attracted a great in-
terest due to the potential technological application that can
be envisaged and the subtlety of the physical mechanisms
involved.1,2 Until recently, the magnetoelectric coupling in
insulating and single phase materials has been explored
mainly in the few known multiferroic compounds.3–5 In ma-
terials of this type, such as BiFeO3 �Refs. 6 and 7� or
BiMnO3,8 the coexistence of ferroelectric and magnetic co-
operative orders in the same phase might prompt one to posit
a relatively efficient coupling between the polar and mag-
netic degrees of freedom. However, because of the quite dif-
ferent critical temperatures associated with the magnetic and
polar ordering, the experimentally observed magnetoelectric
coupling in these systems is weak and only very small sig-
natures of the lower temperature magnetic phase are seen in
the dielectric properties. In this respect, the behavior ob-
served may be considered similar to that found in antiferro-
magnetic and ferroelectric hexagonal manganites of the
YMnO3 family.9–11

The situation has been dramatically altered with the dis-
covery of magnetically induced ferroelectricity in several
frustrated magnets, such as the perovskites RMnO3 and
RMn2O5 �R=rare-earth element�, Ni3V2O8, delafossite
CuFeO2, spinel CoCr2O4, MnWO4, and hexagonal ferrites
�Ba,Sr�2Zn2Fe12O22.

12–20 Here, in contrast to the conven-
tional multiferroics, the paramagnetic phase is also paraelec-
tric, and the spontaneous ferroelectric polarization appears to
be directly driven by a transition to a magnetic modulated
phase. Not surprisingly, the observed magnetoelectric cou-
pling is much stronger and gives rise to a wealth of fascinat-
ing phenomena that are currently being investigated.

From a perspective based on symmetry and group theory,
the idea of improper ferroelectricity driven by the condensa-
tion of a primary order parameter of a magnetic nature raises
interesting questions. In the case of the novel frustrated mag-
nets, a key point is to know under which circumstances a

modulated magnetic order parameter can induce ferroelec-
tricity. Improper ferroelectricity driven by displacive lattice
modulation has been extensively investigated over two de-
cades ago in molecular systems such as RbZn2Cl4,
�C�NH3�4�2CoCl4, or �CH3�3NCH2COO·CaCl2 ·2H2O
�BCCD�. In these cases, it has been possible to take advan-
tage of the simple crystallographic structure and irreducible
nature of the modulated order parameter to obtain, from gen-
eral symmetry considerations, common pictures of the struc-
tural phase transitions and precise predictions for the polar or
nonpolar character of a given modulated phase.21–23 Particu-
larly interesting is the case of BCCD, a compound that
shares with the orthorhombic manganites RMnO3 the same
reference space group Pnma �in this work, the standard set-
ting Pnma is adopted for the RMnO3 compounds, as opposed
to the Pbnm setting used in some articles� and displays a
wealth of structurally commensurate or incommensurate
modulated phases. Here, a definite relationship between the
modulation wave number and the direction of the electric
polarization could be established.23

A question naturally arises if the method of analysis used
to investigate the polar properties of modulated displacive
systems can be adapted to the case of the magnetoelectric
compounds and to a situation where the primary order pa-
rameter is of magnetic nature. The case of BCCD, for ex-
ample, has been used to suggest a possible mechanism24 for
the magnetic field induced rotation of the electric polariza-
tion observed in TbMnO3 and DyMnO2.24–26 According to
this suggestion, the electric polarization in these compounds
would result from the secondary lattice modulation �of a dis-
placive nature� magnetoelastically induced by the primary
magnetic modulation. Consequently, a magnetic field could,
by tuning the primary magnetic modulation, modify the sec-
ondary lattice modulation and, as a result, induce a rotation
of the polarization. However, this key role of the lattice
modulation is inconsistent with the well known fact that it is
the primary order parameter that determines the symmetry of
the ordered phase.27,28 Hence, the displacive lattice modula-
tion and the electric polarization must be both seen as sec-
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ondary parameters whose direct coupling to the primary
magnetic order parameter is restricted by general symmetry
conditions.

In general, the complexity of the magnetic structures of
most of the novel magnetoelectric compounds makes the
investigation of their magnetoelectric properties using sym-
metry considerations a difficult task. Among this set of ma-
terials, the rare-earth manganites RMnO3 �R=Gd, Tb, or Dy�
are relatively simple from a crystallographic point of view
and their properties are well characterized experimentally.
They therefore represent appropriate model systems to inves-
tigate further the mechanisms of the remarkable magneto-
electric coupling observed in the class of frustrated
magnets.20,24–26,29–31

This work analyzes the symmetry conditions that allow
for the magnetically induced ferroelectricity observed in the
orthorhombic rare-earth manganites RMnO3 �R=Gd, Tb, or
Dy�. From this analysis, we derive adequate and symmetry
based free energy functionals capable of describing both the
ferroelectricity observed in TbMnO3 and DyMnO3 at zero
magnetic field, the polarization rotation induced in these
compounds by external magnetic fields, and the ferroelectric
phase induced in GdMnO3 by an external magnetic field.

This paper is organized as follows. In Sec. II, we will
briefly review the essential phenomenology of the magneto-
electric effect in the RMnO3 compounds. Section III ana-
lyzes some general aspects related to the compatibility be-
tween a modulated magnetic order and a spontaneous
polarization and establishes the methods of the analysis to be
made. In Sec. IV, we will adapt the analysis made in Ref. 23
for BCCD to the case of a magnetic order parameter and use
the complete irreducible corepresentations of the magnetic
space group of the reference phase to obtain the possible
magnetic space groups of the commensurate phases that can
be originated from the condensation of a magnetic irreduc-
ible order parameter. Sections V and VI analyze the possible
translational invariants that can be constructed from the or-
der parameter components and derive symmetry based Lan-
dau free energy functionals that are capable of describing the
behavior experimentally observed in the orthorhombic man-
ganites.

II. MAGNETOELECTRIC EFFECT IN THE RARE-EARTH
MANGANITES RMnO3

The rare-earth manganites RMnO3 �R=Gd, Tb, or Dy� are
remarkable examples of the novel family of magnetoelectric
materials.12,24,32–34 At room temperature, these compounds
are paraelectric and paramagnetic with a distorted perovskite
structure of orthorhombic symmetry �space group Pnma�. All
the three compounds undergo a phase transition to a mag-
netic incommensurate phase with a modulation wave vector
directed along the a axis �k� = �� ;0 ;0�, ��Ti��0.24 �Gd�,
��Ti��0.28 �Tb�, ��Ti��0.36 �Dy�; Ti�40 K�.32–34 This in-
commensurate modulation corresponds to a collinear ar-
rangement of the Mn magnetic momenta. With further cool-
ing of the Tb and Dy compounds, under zero magnetic field,
��T� approaches and enters into quasicommensurate plateaus
�T�20 K� corresponding approximately to the values �

�0.275 and ��0.375 for TbMnO3 and DyMnO3, respec-
tively. The onset of these plateaus marks a transition from a
collinear to a cycloidal modulation of the Mn magnetic mo-
menta. This modulation remains directed along the same axis
�k� = �� ;0 ;0�� and gives rise to a ferroelectric polarization di-

rected along the b� crystallographic axis.12,24,35,36

At zero magnetic field, GdMnO3 remains paraelectric.
The modulated magnetic order below Ti remains collinear
until the system enters into an A-type antiferromagnetic
phase at about 27 K. The application of a strong magnetic
field �H�5 T� along the a axis induces in this compound a
ferroelectric phase with a polarization oriented along the c
axis. Structural studies indicate that this magnetically in-
duced ferroelectric phase is accompanied by a commensurate
modulation of the Mn momenta corresponding to k�

=� 1
4 ;0 ;0�.31 Also, in the cases of TbMnO3 and DyMnO3, a

similar magnetic field, applied along the a axis, stabilizes a
commensurate plateau with k� =� 1

4 ;0 ;0� and induces a ferro-
electric phase polar along the c axis.12,24,34 An external mag-
netic field is therefore capable of altering the symmetry of
the magnetic structure and rotating the spontaneous polariza-
tion by 90°.

The RMnO3 compounds also show, in addition to the
magnetoelectric effects briefly described above, a strong lat-
tice modulation originated from exchange striction. The
modulate arrangement of the Mn spin moments with a wave
vector k� = �� ;0 ;0� induces a lattice modulation with a wave
vector k�latt= �2� ;0 ;0�.12,35 The superlattice reflections there-
fore correspond to a second harmonic of the magnetic modu-
lation and, together with the electrical polarization, must be
considered as secondary effects of a primary order param-
eter.

III. DESCRIPTION OF THE METHOD

To some extent, the elusive interaction between electric
and magnetic degrees of freedom results from the different
symmetries of the electric polarization �P� and magnetiza-
tion �M� that are expressed by their different behavior under
spatial inversion �i� or time reversal ���. This different be-
havior imposes, for example, that the coupling between static
and homogeneous P and M must necessarily be nonlinear
��± P2nM2m, where n and m integers�. As a result, a homo-
geneous polarization can never result from the onset of a
homogeneous magnetization because this would require the
existence of coupling terms linear in P �Ref. 28� that are, in
this case, forbidden by symmetry. Therefore, if we restrict
ourselves to time independent phenomena, a magnetically
driven ferroelectricity may only eventually occur when the
primary magnetic order parameter is spatially nonhomoge-
neous.

Let us then consider the case of a modulated order param-
eter that is characterized by a single wave vector k� located in
the interior of the Brillouin zone and directed along a line of
fixed symmetry �which corresponds to a � or � line, in the
case of the RMnO3 compounds or BCCD, respectively�. This
modulated order parameter can be written as
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S��x�� = S�eik�·x� + S�*e−ik�·x� , �1�

where S� =S�0ei	
 and 
 is the phase defined with respect to

the underlying discrete lattice. Note that, because S��x�� is a

real quantity, S�k�
*=S�−k�. Also, given its magnetic nature,

�S��x��=−S��x��. Under which conditions does this general
modulated order parameter allow for mixed invariants linear
in P and, therefore, for improper ferroelectricity?

A general nomial constructed from the complex conju-

gated components of S��x�� has the form �S�p�S*�q. Naturally,
if p=q, such a term is independent of the phase of the order
parameter and gives rise to a homogeneous contribution to
the free energy. Moreover, given its magnetic nature, it is
necessarily even under inversion and does not allow for
mixed invariants linear on P. We must therefore look for
terms with p�q, that is, terms that depend on the phase 
 of
the order parameter. Given that the polarization P is transla-
tional invariant, we must consider only those nomials that
are themselves translationally invariants in order to obtain
possible coupling terms of the form �S�p�S*�qP. In general,
these phase dependent terms can be written as �p and p�
integers�

fp�S,S*� = Sp�S*�p−p�� = So
pei	�2p−p��. �2�

Consider now the requirement of translational invariance

of Eq. �2�. Let T̂=ma� i be a Bravais translation of the refer-
ence phase, directed parallel to the modulation wave vector
k� =�a� i

*. Under such operation, fp is transformed as

T̂fp = fpe−2	i��p−2p��. �3�

Hence, for fp invariant under this translation, ��p−2p�� must
be an integer m. This is obviously not possible for p�2p� if
k� is incommensurate with respect to the reference lattice. An
incommensurate order parameter does not allow for phase
dependent translational invariants and, in consequence, can-
not induce an electrical polarization. Incommensurate mag-
netic order and ferroelectricity are mutually incompatible.

On the other hand, if k� is commensurate, the condition
��p−2p��=m can be satisfied and nontrivial translational in-
variants do exist. If, under the symmetry operations of the
reference phase, any of these invariants is transformed as a
polar vector, then a mixed invariant linear in P can be con-
structed and improper ferroelectricity is allowed by symme-
try. We can therefore verify if a given magnetic commensu-
rate phase may or may not be polar by checking the
transformation properties of the order parameter translational
invariants.

Since we have established for an irreducible order param-
eter that improper ferroelectricity can only occur in the case
of a commensurate phase, we may use an alternative method
to investigate whether P is a possible secondary order pa-
rameter. Given the symmetry of the order parameter by
specifying the irreducible representation according to which
it is transformed, we can directly calculate the possible mag-
netic space groups of the ordered phase and check if any of
these groups is compatible with ferroelectricity. Let G denote

the unitary space group and M =G � �E ,�� the magnetic
space group of the paramagnetic reference phase, with E and
� representing the identity and the time reversal operation,
respectively. Let �g ; t�� and ��g ; t�� be elements of G and M
−G, respectively. By definition of order parameter, the sym-
metry of the ordered magnetic commensurate phase will be
described by a magnetic space group M� formed by the uni-
tary and antiunitary operators that leave the order parameter

invariant up to a Bravais translation. That is, if D̂�g� and

D̂��g� are matrices that represent the operations �g ; t�� and
��g ; t�� in the �irreducible� space of the components of the
order parameter and if the conditions

T̂ � D̂�g� � S� = S� , �4a�

T̂ � D̂��g� � S�* = S� �4b�

are verified, then �g ; t�+T� � and ��g ; t�+T� � will belong to M�.
The set of symmetry operations that verify Eqs. �4a� and �4b�
and form the symmetry group of the ordered phase will, in
general, depend on the symmetry of the order parameter, the
commensurate value of � �that is, on the odd �even� value of
the integers in the fraction ��, and the particular phase of the
order parameter with respect to the underlying lattice.

We therefore have systematic methods for determining if
a given commensurate magnetic order parameter can induce
a ferroelectric polarization. They require the knowledge of
the way the different elements of the symmetry group of the
reference phase act on the linear space generated by the com-
ponents of the order parameter. If we assume that the order
parameter is irreducible, this amounts to knowing the com-
plete irreducible corepresentations �CICR� of the paramag-
netic space group for a given commensurate vector k�c in the
interior of the Brillouin zone. In the case pertaining to
RMnO3, the paramagnetic space group of the reference phase
is �Pnma�� and the modulation wave vector of the order
parameter is k� = (��T� ,0 ,0). This vector corresponds to the
wave vector k7 in Kovalev’s tables.37 Following the standard
methods,37–40 we can readily obtain the CICR matrices that
are given in Table I for the generators of the magnetic space
group �C2x, �y, i, and i��. The matrices corresponding to the
other symmetry elements can then be obtained from the mul-
tiplication table of the group and by taking into account that
the antiunitary operators conjugate the coefficients of the
matrices upon which they act.

In the following sections, we will apply these methods to
characterize the potential polar properties of a magnetic com-
mensurate phase and to deduce symmetry based free energy
functionals that are adequate to describe the magnetoelectric
effect in orthorhombic rare-earth manganites.

IV. POSSIBLE MAGNETIC SPACE GROUPS FOR THE
COMMENSURATE PHASES IN RMnO3

As seen above, the magnetic space groups of the possible
commensurate modulated phases, originating from the con-
densation of a given irreducible magnetic order parameter,
can be directly obtained from the inspection of the set of
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unitary �R� and antiunitary �B� symmetry operations that
leave a given irreducible order parameter invariant up to a
Bravais translation of the reference lattice. That is, if the
equations

�e−2	jn� 0

0 e2	jn�	 � �D11�R� D12�R�
D21�R� D22�R� 	 � � ej2	


e−j2	
	
= � ej2	


e−j2	
	 , �5a�

�e−2	jn� 0

0 e2	jn�	 � �D11�B� D12�B�
D21�B� D22�B� 	 � � ej2	


e−j2	
	*

= � ej2	


e−j2	
	 �5b�

are satisfied for a given R or B, then this element will belong
to the magnetic group of the ordered phase. These groups
will depend, in general, on the irreducible representation
considered for the order parameter, on its phase, and on the
type of the modulation wave number, that is, on the odd
�even� value of the integers defining the fraction �. The re-
sults obtained for the case pertaining to the RMnO3 com-
pounds are listed in the Table II. Here, the magnetic space
groups are denoted as M�G� if � is not a symmetry element
or �G��=G � �E ,�� if � is a symmetry element of the group.

It is interesting to consider the particular case of time
reversal and spatial inversion because these operations di-
rectly provide us with two necessary conditions for the exis-
tence of ferroelectricity. Moreover, in the particular case un-
der analysis, the matrices corresponding to these two
operations are found to be independent of the particular irre-
ducible corepresentation considered for the order parameter.
Let us see first the case of time reversal. From the matrix
representing this operation, one finds from Eq. �5b� that � is
a symmetry of the ordered phase if and only if �c
=odd/even. Therefore, in the case under analysis, only this
type of irreducible magnetic order parameter can induce im-
proper ferroelectricity.

For spatial inversion, one finds that, independent of the
modulation wave number type, the operation is always a
symmetry element of the commensurate phase if 
=0. In
this case, a ferroelectric polarization is obviously not allowed
but an improper magnetization Mi may possibly occur. In
fact, for �=odd/odd, Mx, My, or Mz is allowed if 
=0, and
the irreducible order parameter has a symmetry �B1�, �A1�,
or �A2�, respectively, while for �=even/odd, Mx, My, or Mz

is allowed if 
=0 and the irreducible order parameter has a
symmetry �A2�, �B1�, or �A1�. For �=odd/even, no ho-
mogeneous magnetization is allowed because of the exis-
tence of time reversal symmetry. From these results, it may
be possible to identify the symmetry of the irreducible order
parameter related to a given commensurate phase from the
knowledge of the modulation wave number and magnetiza-
tion of that phase.

TABLE I. Matrices representing the generators of the group
�Pnma�� in the four of its complete irreducible corepresentations at
k� =�a�1

*.

C2x �z i� i

�A1� �� 0

0 �* � �� 0

0 �* � �−1 0

0 −1 � �0 1

1 0 �
�B2� �−� 0

0 −�* � �−� 0

0 −�* � �−1 0

0 −1 � �0 1

1 0 �
�A2� �� 0

0 �* � �−� 0

0 −�* � �−1 0

0 −1 � �0 1

1 0 �
�B1� �−� 0

0 −�* � �� 0

0 �* � �−1 0

0 −1 � �0 1

1 0 �

TABLE II. The possible magnetic space groups of the commen-
surate phases for the different symmetries of the order parameter.

�=
2k+1

2m+1

=0 
=

	

2

�A1�
Pnma�P1

21

m
1� Pnma�Pnm21�

�B2� Pnma�Pnma� Pnma�P21ma�

�A2�
Pnma�P11

21

a � Pnma�Pn21a�

�B1�
Pnma�P

21

n
11� Pnma�P212121�

�=
2k

2m+1

=0


=
	

2

�A1� Pnma�Pnma� Pnma�P21ma�

�B2�
Pnma�P1

21

m
1� Pnma�Pnm21�

�A2�
Pnma�P

21

n
11� Pnma�P212121�

�B1�
Pnma�P11

21

a � Pnma�Pn21a�

�=
2k+1

2m


=0

=

2k+1

4m
	

�A1� �P1
21

a
1�� �Pna21��

�B2� �P1
21

a
1�� �Pna21��

�A2� �P1
21

a
1�� �Pna21��

�B1� �P1
21

a
1�� �Pna21��
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Also, in the case of �=odd/odd, or �=even/odd, time
reversal symmetry is broken and ferroelectricity is not al-
lowed even if the unitary subgroup is compatible with the
onset of a spontaneous polarization. In fact, as we will see in
the next section, the symmetry of the order parameter does
not allow, in these cases, coupling terms linear in P. Inter-
estingly, the symmetry of a commensurate phase with �
= �2k+1� /2m is independent of the irreducible representation
of the order parameter and allows for a ferroelectric polar-
ization directed along the c axis if 
= ��2k+1� /4m�	.

V. LANDAU FREE ENERGY DENSITY AND
MAGNETOELECTRIC COUPLING FOR AN

IRREDUCIBLE ORDER PARAMETER:
THE CASE OF GdMnO3

The potential polar properties of a magnetic commensu-
rate phase induced by a given irreducible order parameter
can also be investigated by analyzing the transformation
properties of the translational invariants. This alternative
method is adequate if one wants to discuss the thermody-
namics of the phase transition within the scope of the
Landau-Devonshire theory. In this section, we will briefly
discuss this approach in order to characterize the type of
magnetoelectric coupling that may be at the origin of a fer-
roelectricity induced by a magnetic irreducible order param-
eter.

As seen in Sec. III, for a commensurate phase with �
=n /m, the nontrivial translational invariants that depend on
the phase of the order parameter are nomials of the form
�S�p�S*�q �p�q�. In this case, given that S and S* are com-
plex numbers, the analytical form of these translational in-
variants is determined by the image induced in the complex
plane by the translational subgroup of the reference phase.
For a wave number �=n /m, this image is isomorphic to the
group Cm.41 Then, as shown in Refs. 27 and 41, any homo-
geneous polynomial defined in the space of the complex
numbers that is invariant under Cm may be expressed as
linear combinations of terms of the type S0

m cos�m
� and
S0

m sin�m
�. Because of the different parity of these terms
under spatial inversion, a coupling term linear in P must
necessarily be of the form PS0

m sin�m
�. Consider now the
restrictions imposed by the requirement that the mixed term
be invariant under time reversal. Because �P= P and �S0
=−S0, the mixed term will be invariant only if m is even.
That is, in agreement with the analysis of the preceding sec-
tion, only magnetic commensurate phases of the type �
=odd/even can support a ferroelectric polarization. Con-
versely, the translational invariants of the form S0

m cos�m
�,
being even under spatial inversion and odd under time rever-
sal if m is odd, allow for mixed invariants linear on a mag-
netization. In this case, an improper magnetization may oc-
cur.

With the inclusion of terms of the form S0
2m cos�2m
�,

which are globally invariant and give rise to umklapp terms
in the free energy density whenever � is commensurate, the
trivial invariants of the type S0

2n, and additional magnetic or
electric terms, one finds the following Landau free energy
densities:

f1 =
�

2
S0

2 +
�

4
S0

4 + ¯ + �MS0
m cos�m
� + �S0

2m cos�2m
�

+ �MS0
2M2 +

M2

2�M
− MH if � �

odd

even
�6�

and

f2 =
��

2
S0�

2 +
��

4
S0�

4 + ¯ + ��S0
2m cos�2m
� + ��MS0�

2M2

+
M2

2�M
− MH + ¯ + �PS0�

m sin�m
� + �PS0�
2P2

+
P2

2�P
if � �

odd

even
. �7�

In order to discuss the thermodynamics of the lock-in
transition, we need to include the analysis of the possible
stability of an incommensurate phase �although these phases
are necessarily nonpolar�. For this purpose, the incommen-
surate phase can be described as a distorted commensurate
phase. Consequently, we must include in the free energy ex-
pansion terms that depend on the spatial derivatives of the
order parameter. If we assume that the spatial variations of
the order parameter are slow, we can consider only the con-
tributions of its first order derivatives and limit ourselves to
lower order terms. In such a case, we find the following four

possibilities: ��S� /�x� , ��S�* /�x� , �S��S�* /�x±S�*�S� /�x�, and

��S� /�x�� ��S�* /�x�. The first two of these terms are naturally
forbidden by symmetry because they are not invariant under
spatial inversion, a symmetry operation of the space group of
the paramagnetic phase. The third term with the sign “�”

can be written as �1/2��d�S� ·S�*� /dx� and gives rise to a con-
tribution to the free energy that is, in fact, homogeneous

��F�
�d�S� ·S�*� /dx�dx�S0
2�. The fourth term ��S� /�x�

� ��S�* /�x�= �S0
2��
 /�x�2+ ��S0 /�x�2� does not depend on the

phase of the order parameter and is always allowed by sym-
metry. In particular, it is invariant under time reversal and
spatial inversion. The third term with the sign “�”, the Lif-
shitz term, may or may not be allowed depending on the
symmetry of the system. In the case of the rare-earth man-
ganites RMnO3, because the prototype space group contains
inversion and the wave vector k� space is located inside the
Brillouin zone, such an invariant is allowed.27 In fact, under
the spatial symmetry operations of the space group of the

reference phase, S��S�*−S�*�S� transforms exactly as x� if k� �x�.

However, under time reversal, S��S�*−S�*�S� changes sign.
Therefore, the Lifshitz invariant must be explicitly written as

j�S��S�* /�x−S�*�S� /�x�=S0
2��
 /�x�, where j=�−1. �Obviously,

the two relevant terms ���S� /�x�� ��S�* /�x� and

j�S��S�* /�x±S�*�S� /�x�� are invariant under the unitary or non-
unitary symmetry operations of the magnetic space group of
the reference phase and cannot be linearly coupled to the
electric polarization. For example, a term of the type
P�S�S* /�x−S*�S /�x� is not possible if P is itself not invari-
ant under all the spatial operations of the reference group.�
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With these terms allowing for incommensurate distortions
of the commensurate phases, the free energy densities �Eqs.
�6� and �7�� become

f1� = f1 − �S0
2 �


�x
� +

k

2
�S0

2 �


�x
�2

+  �S0

�x
�2	 , �8�

f2� = f2 − �S0�
2 �


�x
� +

k

2
�S0�

2 �
�

�x
�2

+  �S�0

�x
�2	 , �9�

for ��odd/even and �=odd/even, respectively.
Let us now see the case of GdMnO3. The magnetic modu-

lation observed in this compound below Ti corresponds to a
simple collinear modulation of the magnetic momenta of the
Mn ions. If we assume that this structure results from the
condensation of a irreducible magnetic order parameter, then
the previous results show that a magnetically driven ferro-
electricity is only possible in the case of a magnetic modu-
lated commensurate phase of the type �=odd/even. Consis-
tently, the polar phase induced in this compound by an
external field corresponds precisely to the stabilization of the
lowest possible order of this type of modulation ��= 1

4a�1
*�.

However, at zero field, the system remains paraelectric. Let
us now analyze how the free energy densities given above
may allow us to describe the stabilization of the ferroelectric
phase by an external magnetic field.

In Eqs. �8� and �9�, the magnetization M and the polariza-
tion P are secondary order parameters that can be eliminated
by imposing the conditions �f1� /�M =0 and �f2� /�M
=�f2� /�P=0, corresponding to thermal equilibrium. These
equations lead to

�f1�

�M
= 0 ⇒ M = �̄M�H − �S0

m cos�m
�� ,

�f2�

�M
= 0 ⇒ M = �̄M� H ,

�f2�

�P
= 0 ⇒ P = − ��̄PS�0

m sin�m
�� , �10�

where, �̄M =�M / �1+2�M�S0
2�, �̄M� =�M� / �1+2�M� �S0�

2�, and
�̄P=�P / �1+2�P�PS0�

2� represent renormalized magnetic and
electric susceptibilities. The substitution of Eq. �10� into Eqs.
�8� and �9� gives

f1� =
�

2
S0

2 +
�

4
S0

4 − �S0
2 �


�x
� +

k

2
�S0

2 �


�x
�2

+  �S0

�x
�2	

+ � −
�2�̄M

2
�S0

2m cos2�m
� − � sin2�m
� −
1

2
�̄MH2

+ �S0
m�̄MH cos�m
� , �11�

f2� =
��

2
S�0

2 +
��

4
S�0

4 + − �S�0
2 �
�

�x
�

+
k

2
�S0

2 �
�

�x
�2

+  �S0�

�x
�2	 + ��S�0

2m cos2�m
��

− �� +
�̄P�2

2
�S�0

2m sin2�m
�� −
1

2
�̄M� H2. �12�

In the case of f1�, which expresses the free energy density
for a commensurate phase with ��odd/even, one can di-
rectly see that the phase of the order parameter 
=0 is fa-
vored if ��0. In such a case, a spontaneous magnetization
proportional to S0

m may occur. In addition, the application of
an external magnetic field gives rise to a magnetostatic term
that is linear in H. The effect of such a term in the relative
stability of the phase is determined by the sign of the coef-
ficient �. If � is positive, the field increases the energy and
tends to destabilize the phase. On the other hand, in the case
of a commensurate phase �=odd/even, such a term is for-
bidden by symmetry. Here, the coupling between the external
magnetic field and the order parameter is simply expressed in
f2 by a renormalization of the magnetic susceptibility and,
consequently, only the usual magnetostatic term �H2 is al-
lowed.

The above functionals therefore suggest a simple mecha-
nism for the stabilization of a ferroelectric phase by an ex-
ternal magnetic field in the case of GdMnO3. Consider, for
example, a set of modulated phases of a common symmetry
except for the different wavelengths of the magnetic modu-
lation. Below a certain temperature, several modulations may
correspond to relative minima of the free energy and com-
pete for absolute stability. If, at a given temperature and zero
magnetic field, the free energy density of the stable commen-
surate phase corresponds to Eq. �6� with ��0, then an ex-
ternal field increases the energy of the phase and may give
rise to a first order transition to another commensurate phase
with a different modulation wavelength, provided this other
phase is less affected by the field. As seen, this can only
occur if the modulation wave is of the type �=odd/even, for
which a linear coupling in the field is not allowed by sym-
metry. In other words, above a certain threshold, the cost in
energy required to change the wavelength of the modulation
wave to a value compatible with ferroelectricity is smaller
than that necessary to maintain the low field stable magnetic
modulation. Magnetization and polarization are secondary
order parameters that are not directly coupled but compete
with each other via their coupling with competing primary
modulated order parameters.

VI. CASE OF A REDUCIBLE ORDER PARAMETER:
TbMnO3 AND DyMnO3

The analysis given above can also be applied to the case
of the similar systems �Tb,Dy�MnO3. Let us consider first
the situation at zero magnetic field in which the ferroelectric
phase, observed in these compounds below Tc�28 K, corre-
sponds to a cycloidal magnetic structure. For 28 K�T
�41 K there exists an incommensurate collinear modulation
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that is nonpolar, as expected given the incommensurate na-
ture of the magnetic order.

The cycloidal ferroelectric structure can be seen as result-
ing from the simultaneous condensation of two irreducible
order parameters Si and Sj of symmetry i and  j, respec-
tively. This phase is often referred to as incommensurate25,42

because ��T� shows a quasiplateau and slightly depends on
temperature.25 However, this phase may also be seen as a
disordered commensurate phase in which the C domains are
separated by discommensurations, that is, regions where the
phase of the order parameter varies rapidly. The spontaneous
polarization is originated from the modulated regions that are
characterized by a reducible order parameter that is trans-
formed as the Krönecker product of its components �=i

�  j�. Then, the onset of an electric polarization along a

given crystallographic direction �P� k� is allowed only if i

�  j � *�P� k� contains the totally symmetric representation
of the space group.43–46 As shown in Ref. 43, this requires, as
a necessary condition, that the sum over the wave vectors
characterizing the three order parameters vanishes �k�i+k� j

+k�Pk
=0�. Given that k�Pk

=0, this selection rule imposes that
we must consider all pairs of vectors of the stars of k�i and k� j

such that k�i+k� j =0. In terms of the transformation properties
of possible mixed invariants involving the components of Si,
Sj, and Pk, this condition imposes that the lowest order cou-
pling between the reducible order parameter and an electric
polarization must necessarily involve combinations of mixed
forms of the type Si

*SjPk and SiSj
*Pk. We can therefore inves-

tigate the possible onset of a ferroelectric polarization by
analyzing if the translational invariants of the type SiSj

*±SjSi
*

transforms as components of a polar vector. This can be eas-
ily done with the help of the matrices of Table I and the
results are given in Table III. Note that the transformation
properties of these invariants are similar to those of the sym-
metric ��� or antisymmetric ��� Dzyaloshinskii-Moriya in-

teraction D� ·S�n�S�n+1.47,48 In particular, they are always even
under time reversal because they correspond to the product
of two components that are odd under this operation. There-
fore, we need only to consider in Table III the unitary sym-
metry operations of the paramagnetic space group.

As seen in Table III�b�, the translational invariants of the
form SiSj

*+SjSi
* are always even under inversion. They give

rise to a coupling of the type �SiSj
*+SjSi

*��kl�q� =0� between
the magnetic order parameter and homogeneous lattice
strains �kl�q� =0�, the symmetry of which depends on the
symmetry of the primary order parameter. Note that the
transformation properties of terms of the type SiSj +Sj

*Si
*, to

which a wave number �q� �= �2k�� corresponds, are similar to
those given in Table III�b�. These terms are of the form
�SiSj�kl�−2k��+Sj

*Si
*�kl�2k��� and are responsible for the onset

of a lattice modulation with one-half of the wavelength of
the magnetic modulation. The symmetry of the primary order
parameter determines the nature of the secondary modulated
lattice strain.

For example, for an order parameter of symmetry 2

� 3, the modulated strain corresponds to the component �xy

of the strain tensor �symmetry B1g�. This shear strain reflects
the breaking of the orthorhombic symmetry that necessarily
occurs in the case of a reducible order parameter. Also, in the
case of a single irreducible order parameter, terms of the type
�SiSi� j j�−2k��+Si

*Si
*� j j�2k��� are allowed. Because SiSi+Si

*Si
*

is transformed according to the totally symmetric represen-
tation Ag of the group D2h, only the diagonal elements of the
strain tensor are, in this case, possible secondary order pa-
rameters.

On the other hand, the mixed translational invariants
SiSj

*−SjSi
* are odd under inversion and, with the exceptions

of the symmetries 1 � 3 and 2 � 4, are transformed as
components of a polar vector �symmetry B1u or B2u�. This
means that polarizations oriented along the b or the c axis,
depending on the symmetry of the magnetic order parameter,
are allowed by symmetry but a polarization oriented along
the a axis �that is, parallel to the modulation wave vector� is
forbidden. The particular case of an induced polarization
along the b axis �symmetry B2u�, as it is experimentally ob-
served in TbMnO3 and DyMnO3 at zero field, can be ob-
tained for a primary order parameter with a symmetry 2

� 3 or 1 � 4. Note that neutron diffraction data25 suggest
that is the first possibility �2 � 3� that occurs in TbMnO3.
If, for example, we assume that this is the case, we can
immediately write the Landau free energy density corre-
sponding to a given modulation wave number.

Let us consider, as one illustrative example, the magneto-
electric effects in the case of homogeneous commensurate
phases �that is, assume that �Si /�x=�
i /�x=0� for a mag-
netic order parameter of symmetry 2 � 3. In such a case,
we must consider the magnetization and the electrical polar-
ization as the relevant secondary order parameters. The other
possible secondary effects, such as the magnetoelastic effects
and the magnetically induced lattice modulation, can be ig-
nored. Accordingly, and for the sake of simplicity, we will
not consider the magnetoelastic terms of the type �SiSj

*

+SjSi
*��kl�q� =0� or �SiSj�kl�−2k��+Sj

*Si
*�kl�2k��� in the free en-

ergy functionals. As seen, we must analyze separately the
different types of modulation wave number �. We can there-
fore write for the cases of �= �2k+1� / �2m+1� or �
=2k / �2m+1� the free energy densities f3 and f4 given by
Eqs. �13a� and �13b�, respectively,

TABLE III. Transformation properties of the lowest order mixed
translational invariants in the case of a reducible order parameter of
symmetry =i �  j.

1 2 3 4

�a� SiSj
*−SjSi

* 1 B1u Au B2u

2 B1u B2u Au

3 Au B2u B1u

4 B2u Au B1u

�b� SiSj
*+SjSi

* 1 Ag B2g B3g B1g

2 B2g Ag B1g B3g

3 B3g B1g Ag B2g

4 B1g B3g B2g Ag
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f3 =
�

2
S2

2 +
�

4
S2

4 + ¯ + �S2
2m cos�2m
2� + ¯ +

��

2
S3

2

+
��

4
S3

4 + ��S3
2m cos�2m
3� + M2��MS2

2 + �M� S3
2�

+ �
i

Mi
2

2�iiM
− M� · H� + �MzS3

m cos�m
3�

+ �Py�S2S3
* − S3S2

*� + Py
2��PS2

2 + �P�S3
2� +

Py
2

2�P
, �13a�

f4 =
�

2
S2

2 +
�

4
S2

4 + ¯ + �S2
2m cos�2m
2� + ¯ +

��

2
S3

2

+
��

4
S3

4 + ��S3
2m cos�2m
3� + M2��MS2

2 + �M� S3
2�

+ �
i

Mi
2

2�iiM
− M� · H� + �MyS2

m cos�m
2�

+ ��MxS3
m cos�m
3� + �Py�S2S3

* − S3S2
*�

+ ��PS2
2 + �P�S3

2�Py
2 +

Py
2

2�P
. �13b�

Here, we have taken into account that, for the considered
symmetry of the order parameter, only the magnetization Mz
is allowed for �= �2k+1� / �2m+1�, while Mx and My can
occur if �=2k / �2m+1�. Also, because SiSj

*−SjSi
* is indepen-

dent of k�, Py is in both cases a possible secondary order
parameter, whose value can be obtained from the condition
�f /�Py =0:

Py =
− ��S2S3

* − S3S2
*�

2��PS2
2 + �P�S3

2� + �P
−1 . �14�

As seen, if S2=0 or S3=0, Py =0, that is, this polarization
vanishes in the case of an irreducible order parameter. Also,
Py =0 if the two order parameters S2 and S3 are in phase
�
2−
3=0� and Py will be maximized if the two order pa-
rameters have a phase difference of 
2−
3=	 /2.

For the reasons clarified in the preceding sections, the
case �= �2k+1� /2m must be considered separately. Here, on
one hand, a linear coupling of the primary order parameters
with a magnetization is forbidden by symmetry. On the other
hand, and as seen in Sec. IV, we have always Pz as a sec-
ondary order parameter. Hence, because SiSj

*−SjSi
* does not

depend on the wave number, we have here a potential com-
petition between two polarizations Py and Pz. For =2
� 3 and �= �2k+1� /2m, the free energy density must be
written as

f5 =
�

2
S2

2 +
�

4
S2

4 + ¯ + �S2
2m cos�2m
2� + ¯ +

��

2
S3

2

+
��

4
S3

4 + ��S3
2m cos�2m
3� + M2��MS2

2 + �M� S3
2�

+ �
i

Mi
2

2�iiM
− M� · H� + �Py�S2S3

* − S3S2
*�

+ Pz��S2
m sin�m
2� + ��S3

m sin�m
3��

+ ��PS2
2 + �P�S3

2��Py
2 + Pz

2� +
Py

2

2�yyP
+

Pz
2

2�zzP
. �15�

If � ,���0, the phases 
2=
3=	 /2 will be favored. In
this case, Py =0 and

Pz =
− ��S2

m sin�m
2� + ��S3
m sin�m
3��

2��PS2
2 + �P�S3

2� +
1

�zzP

.

Let us finally consider the effect of an external magnetic
field and the rotation of the polarization from Py to Pz that is
experimentally observed in TbMnO3. The mechanism sug-
gested by Eqs. �13�–�15� for the rotation of the polarization
under a magnetic field is entirely similar to that described for
the stabilization of the ferroelectric phase in GdMnO3. Here
again, due to the presence of coupling terms linear on Mz if
�= �2k+1� / �2m+1� or on Mx and My if �=2k / �2m+1�, the
magnetostatic energy of the commensurate phase stable at
zero field, polar along the b axis, can be strongly increased
by an external field applied along the c axis �if �= �2k
+1� / �2m+1�� or along the a or b axis �if �=2k / �2m+1�� if
��0 or ���0. Consequently, above a certain threshold, it
may become energetically favorable to diminish this magne-
tostatic energy by slightly adjusting the value of modulation
wave number and the phase of S2 and S3 to the values ��
= �2k+1� /2m� and 
2=
3=	 /2, respectively, for which
terms linear on M are forbidden. As a consequence of this
discontinuous transition, the polarization rotates from the b
axis to the c axis.

VII. CONCLUSION

The analysis made in the present work on the magneto-
electric coupling in the orthorhombic manganites RMnO3 is
purely phenomenological and based on general symmetry
arguments. The method adopted allows us to draw several
general conclusions about the compatibility between mag-
netic modulated order and ferroelectricity. We have seen that
the lattice modulation observed in the rare-earth compounds
is not an essential ingredient for the stabilization of the ferro-
electric state. Being a secondary effect, it cannot determine
the symmetry or the polar properties of the ordered phase.
Note that although an incommensurate magnetic modulation,
for example, may induce a lattice modulation with �latt=2�,
it is incompatible with the onset of a spontaneous polariza-
tion. This incompatibility is solely determined by the pri-
mary order parameter: symmetry forbids, in this case, a lin-
ear coupling between the order parameter and P. We have
also shown that from the vantage point of symmetry, an ir-
reducible commensurate order parameter �for example, a
simple collinear magnetic modulation� may induce improper
ferroelectricity. The fact that this possibility is not realized at
zero field in GdMnO3, for example, results from accidental
reasons. Finally, we have also stressed that the symmetry and
polar properties of the ordered magnetic phase critically de-
pend on the parity of the modulation wave vector and on the
phases of the order parameters.
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In addition, the method provides us with well defined pre-
dictions about the possible space groups generated by the
condensation of a given commensurate order parameter and

gives us adequate and symmetry based free energy function-
als that have the potential to describe the observed phenom-
enology.
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