
Biquadratic antisymmetric exchange and the magnetic phase diagram
of magnetoelectric CuFeO2

M. L. Plumer
Department of Physics and Physical Oceanography, Memorial University, St. John’s, Newfoundland, Canada A1B 3X7

�Received 27 June 2007; published 9 October 2007�

Biquadratic antisymmetric exchange terms of the form −�Cijeij
��si�s j�z�2, where eij is the unit vector con-

necting sites i and j and �=x ,y, due partially to magnetoelectric coupling effects, are shown to be responsible
for the spin-flop helical phase in CuFeO2 at low magnetic field and temperature. Usual biquadratic symmetric
exchange, likely due to magnetoelastic coupling, is found to support the stability of axial magnetic states at
higher fields in this nearly-Heisenberg-like stacked triangular antiferromagnet. A model Hamiltonian which
also includes substantial interplane and higher-neighbor intraplane exchange interactions reproduces the unique
series of observed commensurate and incommensurate periodicity phases with increasing applied magnetic
field in this highly frustrated system. The magnetic-field–temperature phase diagram is discussed in terms of a
Landau-type free energy.
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I. INTRODUCTION

The unusual magnetic properties of the stacked triangular
antiferromagnet �STAF� CuFeO2 have been the subject of
considerable investigation and speculation over the past sev-
eral decades, especially since the recent discovery of an un-
conventional magnetoelectric �ME� coupling induced by
relatively weak magnetic field.1,2 The focus of the present
work is on the surprising sequence of magnetic states which
occur at low temperature with increasing field strength ap-
plied along the hexagonal c axis.1,3–6 These can be charac-
terized with the following spin polarization vectors S and
in-plane periodicities: linearly polarized S �c period-4 �P4�,
helically polarized S�c incommensurate �IC�, linearly po-
larized S �c period-5 �P5�, and axial and canted S period-3

phases. Although the rhombohedral R3̄m crystal symmetry
present at temperatures above the onset of linearly polarized
S �c IC magnetic order in zero field at TN1=14 K allows for
axial magnetic anisotropy, usual spin-orbit coupling is absent
in the S=5/2, L=0 magnetic state of the Fe3+ ions.7,8 �The
extent to which Hund’s rules apply to this semiconductor
with nontrivial electronic structure9 may be questioned.� An-
isotropy may thus be expected to be small so that the origin
of stability of the axial phases is not obvious. The existence
of such a wide variety of magnetic states with different pe-
riodicities in this compound is in contrast with the other
weakly axial STAF’s such as CsNiCl3 which show only
period-3 phases and a typical spin-flop transition.10 Neutron
scattering experiments also indicate a period-2 modulation of
the magnetic order in CuFeO2 along the c axis of the corre-
sponding hexagonal unit cell, suggesting substantial antifer-
romagnetic �AF� interplane coupling.3,6 Such a complex
phase diagram defies explanation through a model Hamil-
tonian based on conventional magnetic interactions.

Remarkably, some important aspects of the magnetic or-
dering �e.g., stability of P4 and P5 states� have been ac-
counted for by a model two-dimensional triangular Ising AF
with very large second- and third-neighbor exchange interac-
tions, J2 /J1=0.45 and J3 /J1=0.75, respectively, where J1 is
the nearest-neighbor �NN� exchange.11–13 The physical origin

of these unusually long-ranged exchange effects is
unknown,7,8 but there is evidence from perturbed angular
correlation measurements that J2 and J3 are substantial.14

Analysis of the model proposed here demonstrates the im-
portance of interplane coupling, J�,7,15 for stabilizing the P4
state with smaller values of J2 and J3, an effect which has
been found in other frustrated systems.16

It has also been emphasized that spin-lattice coupling is
an important effect in CuFeO2, as observed in
magnetostriction1 and in the pressure dependence of TN.17

Such interactions are also believed to be relevant for the
structural phase transition to monoclinic C2/m symmetry
which occurs as the temperature is lowered to about 11 K. It
is near this temperature TN2 that a discontinuous magnetic
phase transition from the linear IC phase to the ground-state
P4 ordered structure occurs.18 It is of interest to note that
although the type of magnetic order is quite different, a simi-

lar C /2m-R3̄m structural phase transition in solid O2 has
been shown to be driven by magnetoelastic coupling.19 Mag-
netoelastic coupling is known to give rise to biquadratic sym-
metric exchange terms of the form HG=−�ijG�rij��si ·s j�2,
where rij =r j −ri,

20 and has been related to the P4-IC phase
transition in Ho.21 This type of coupling can also arise from
higher-order effects within the Hubbard model.22 Such cou-
pling terms favor linearly polarized magnetic order23 and are
shown here to be partly responsible for the stability of the
modulated axial phases with s �H in CuFeO2 at high fields
even in the absence of strong anisotropy.

II. ANTISYMMETRIC EXCHANGE

Key to understanding the magnetic phase diagram of
CuFeO2 is the occurrence of an induced electric polarization
P in the IC spin-flop phase.1 This type of ME effect24 is
atypical due to the fact that the delafossite crystal space

group R3̄m contains inversion symmetry. Coupling between
noncollinear spins at sites i and j and the electric polarization

can be shown to be compatible with R3̄m symmetry if it also
involves the lattice vector rij and is of the form25,26
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HC =
1

2�
ij

C�rij��Pij � eij� · �si � s j�z, �1�

where eij =rij /rij, C�−r�=C�r�, and the subscript z indicates
the ẑ component, parallel to the hexagonal c axis. Such cou-
pling involves only components P� ẑ and should be present
in all crystal systems which contain a symmetry plane where
the spin Hamiltonian is isotropic in s at second order. It has
also been used as a mechanism for electric-field-induced
chirality selection.27

Following Katsura et al.26 and Bergman et al.,28 consider
now adding to the Hamiltonian the lowest-order contribution
in P as a NN sum HP= 1

2AP��ij�Pij
2 . Elimination of P by

minimizing HCP=HC+HP results in a biquadratic antisym-
metric exchange interaction of the form

HCP = −
1

8AP
�
�

�
�ij�

�C�rij�eij
��si � s j� · ẑ�2, �2�

where �=x ,y. It is important to note that, as in the case of
biquadratic symmetric exchange, these antisymmetric terms
of the form 	��si�s j� · ẑ�2 can be deduced purely from sym-
metry arguments applied to a Hamiltonian with only spin
degrees of freedom.23 In the case of CuFeO2, ME coupling
provides for one likely microscopic mechanism. The impact
of HCP on the evolution of spin states with increasing ap-
plied field is demonstrated below.

III. MODEL HAMILTONIAN

The full model Hamiltonian used here to describe the se-
quence ordered states of CuFeO2 incorporates all of the ef-
fects described above. Weak axial anisotropy is introduced in
the form of the exchange �two-site� -type Jz�rij� with pos-
sible physical origins from Fe3+ defects8 or certain forms of
antisymmetric superexchange exchange.29 Anisotropy is also
included in the biquadratic exchange term. For simplicity,
anisotropy of the single-ion type is omitted from the present
analysis. With these considerations, the Hamiltonian can be
written as

H = HJ + HCP + HG + HJz
+ HGz

− H · �
i

s�ri� , �3�

where the first three terms are given above, bilinear exchange
anisotropy is of the form HJz

=�ijJz�rij�si
zsj

z, and biquadratic
exchange anisotropy is given by HGz

=−�ijGz�rij��si
zsj

z�2. The
last term is the Zeeman coupling to a magnetic field H taken
here to be applied along the hexagonal c axis. In addition to
the four quadratic Heisenberg exchange interactions J1, J2,
J3, and J�, NN in-plane and interplane magnetoelectric cou-
plings C1 �Ref. 27� and C� as well as NN in-plane and inter-
plane biquadratic exchange couplings G1 and G� are in-
cluded in the model calculations. The impact of
modifications to the in-plane exchange coupling due to the
monoclinic lattice distortion at low temperature is accounted
for in a model proposed in Ref. 5. This effect was explored
within the present model and was not found to substantially
alter the qualitative results presented above.

As a prelude to a discussion of the specific model Hamil-
tonian, and complimentary to the results of Mekata et al.,11

the effect of interplane exchange coupling on stabilizing the
P4 ground-state phase is demonstrated here. For this pur-
pose, the Ising model is adequate. The quadratic exchange
contributions to the Hamiltonian are written as HJ
=�ijJ�rij�si ·s j, where J�rij��0 for AF coupling and the sum
is over sites within, as well as between, the ABC stacked
triangular layers which form the hexagonal crystal represen-
tation of the rhombohedral structure. Ground-state phases of
Ising spins s � ẑ � ĉ with nonzero J1�0, J2, J3�0, and J�
�0 were determined analytically assuming the spin struc-
tures described by Mekata et al.11 and verified numerically
using the local-field method of Walker and Walstedt.30 Figure
1 demonstrates that long-period P4 and P8 spin configura-
tions are stabilized by interplane exchange even in the ab-
sence of J3 but that third-neighbor in-plane coupling does
serve to enhance the stability of these structures.

With only weak axial anisotropy, an applied magnetic
field tends to destabilize a linear AF spin configuration with
si

z � ẑ. An illustration of the effect of biquadratic symmetric
exchange to enhance the stability of axially ordered states is
shown in Fig. 2. Using the model described above, the evo-
lution of ��Sz�2�= �1/N��i�Si

z�2 �an average over all N sites�
in the P4 phase with increasing H clearly shows this en-
hancement.

IV. APPLICATION TO CuFeO2

The set of parameters required to reproduce qualitatively
the sequence of field-induced spin configurations observed in
CuFeO2 is not unique. Some guidance can be found by esti-
mation of exchange and anisotropy strengths based on the
saturation and spin-flop fields, respectively, as done by Pe-
trenko et al.7 Using their approach and accounting for the six
NN in-plane interactions leads to J1	3 K, with anisotropy
being only a few percent of this value. For simplicity, all of
the anisotropy constants were set to be 3% of their corre-
sponding isotropic coupling strengths, i.e., Jkz=0.03Jk �k

FIG. 1. Ground-state phases of the Ising model on a rhombohe-
dral AF J1�0 illustrating the effect of interplane coupling J��0 on
stabilizing longer-period structures described by Mekata et al. �Ref.
11�. Solid curves correspond to J3=0 and broken curves to J3�0.
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=1,2 ,3�, Jz�=0.03J�, G1z=0.03G1, Gz�=0.03G�. All param-
eters are normalized to the NN in-plane exchange by setting
J1=1. Other parameters of the model were chosen using
guidance from previous model results and to yield a semi-
quantitative representation of the unique sequence of field-
induced phase transitions observed in CuFeO2.

Ground-state phases which minimize the full energy ex-
pression �3� were calculated numerically using the method of
Walker and Walstedt30 with ABC stacked triangular layers of
dimensions L�L�M, where M =1 corresponds to a unit
cell containing all three layers. Periodic boundary conditions
were imposed and spin configurations with in-plane period-
icities ranging from L=1 to L=18 and up to M =4 unit cells
along the c axis were considered. Absolute energy minima
were found by comparing results among calculations using
up to 50 000 different random initial spin configurations.
With this finite-size method, in-plane IC states characterized
by �q ,q� modulations cannot be modeled directly. However,
such states can be deduced by demonstrating a slight reduc-
tion in energy as L increases if q
n /L, where n is an inte-
ger. For example, if the model energy is a minimum for an
IC phase with q
4.5, the method will give a lower energy
with L=9 �n=2� than either L=4 or L=5.

Sets of parameter values which give the correct series of
phases were determined partially through trial and error. One
such choice is J2=0.33, J3=0.3, J�=0.4, C1=0.3, C�=0.1,
AP=1, G1=0.06, and G�=0.02 �where AP=1 conveniently
sets the scale of the magnetoelectric energy, analogous to
setting J1=1�. The ground-state energies as a function of
field corresponding to selected lower-energy periodicities
�L ,M� are shown in Fig. 3 for this set of values. The lowest-
energy states as H increases follow the observed sequence
�4,2�-�IC,2�-�5,2�-�3,1�, with transitions at approximate val-
ues of Hc1
0.75, Hc2
1.75, and Hc3
3.0, following the
notation of Ref. 5. Saturation is found to occur at Hc5

13.5. The phase labeled IC was deduced to be incommen-
surate since in this field regime L=4, 5, 9, and 14 states have
nearly identical energy, with L=9 being the lowest. This con-
clusion is consistent with the observed value of q
2/9.4

Numerical accuracy of the method is limited at larger values
of L. Note that the L=4, 9, and 14 phases have a simple

periodicity of 2 along the c axis �qz=1/2, representing six
triangular layers�. Additional Fourier components qz are also
present in the �5,2� state. These characterizations are consis-
tent with observed neutron diffraction data.3,4,6 At higher
field values, the �3,1� phase is found with M =1 �only three
layers are required�, followed by saturated ferromagnetic
Si

z �c order. Although substantial values of longer-range ex-
change interactions J2 and J3 are required to yield the correct
sequence of phases, they are significantly reduced by inter-
plane coupling from those assumed in Refs. 11–13.

Figure 4 shows the site averaged ��Sz�2� with increasing H
associated with the phases which minimize the energy. Spins
in the �4,2� state are well aligned along the c axis. In the IC
phase �represented by the �9,2� state�, S� ĉ. In the �5,2�
state, moments are aligned mostly along the c axis but are
slightly less oriented in the �3,1� state until the field is close
to H=4. The spin reorientations at the boundaries �4,2�-IC
and IC-�5,2� thus each represent spin-flop transitions. All
transitions are first order. In the IC phases, planar compo-
nents sx�sy have equal magnitude and the biquadratic anti-
symmetric exchange coupling stabilizes a helically polarized

FIG. 2. Effect of biquadratic exchange on the axial component
of spins in the P4 state averaged over all sites with increasing mag-
netic field. Model Hamiltonian �3� was used with 3% anisotropy
and J1=1, J2=0.33, J3=0.3, J�=0.4, and C1=C�=0.

FIG. 3. �Color online� Lower-energy phases �L ,M� as a function
of magnetic field from the model Hamiltonian �3� using parameters
J1=1, J2=0.33, J3=0.3, J�=0.4, C1=0.3, C�=0.1, AP=1.0, G1

=0.06, and G�=0.02 with 3% axial anisotropy.

FIG. 4. �Color online� Site averaged values of �si
z�2 correspond-

ing to the lowest-energy states from Fig. 3.
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spin structure. It is only in the IC state that an induced elec-
tric polarization P� ĉ occurs.1

Figures 5–7 illustrate the spin structures in the triangular
layers at representative field values for each of the ordered
states. The high-field �3,1� phase �↑↑↓� has a similar structure
for each trilayer. In the zero-field �4,2� state �↑↑↓↓� spins on
subsequent trilayers alternate in direction. In the �5,2� phase,
each of the six triangular layers in the magnetic unit cell is of
the form �↑↑↑↓↓� but the relation between spins on alternat-
ing trilayers m=1 and m=2 is more complicated, as found by
Mekata et al.11 In the IC phase represented by the �9,2� struc-
ture of Fig. 7, spins lie in the triangular planes and rotate
from site to site with a nonuniform angle.

Model results on the evolution of the magnetization Mz
= �1/N��iSi

z with applied field are shown in Fig. 8 and may
be compared with corresponding experimental data from
Ref. 5. Key features of the data are reproduced by the model
such as Mz=0 in the �4,2� state, increasing magnetization

with field strength in the IC phase, and plateaus at 1 /5 and
1/3 in the �5,2� and �3,1� states, respectively. Flatter plateau
regions, as seen experimentally, can result from the present
model by increasing the strength of the anisotropy or biqua-
dratic symmetric exchange �see Sec. V below�. Note also
that Mz begins to deviate from the 1/3 plateau at fields above
Hc4
4.5. This represents the transition to the canted �3,1�
state proposed in Ref. 5. The five critical fields resulting
from the present analysis may be compared with the experi-
mental values 7, 13, 20, 34, and 70 T by multiplying the
model field H by a factor �J1S /g�B�
5.6 T. The resulting
model critical-field values, 4.2, 9.8, 17, 28, and 75 T, are in
fair agreement with those deduced from the data, especially
since no particular effort was made to adjust parameters for
this purpose.

V. DISCUSSION AND CONCLUSIONS

A crude estimate of the contribution to biquadratic anti-
symmetric exchange interaction due to magnetoelectric cou-
pling can be found using data on the dielectric constant �

20 and polarization P
400 �C/m2 from Ref. 1. With
three Fe3+ ions per unit cell,8 the corresponding energy per
magnetic ion is very small, EP /N	 P2 / ��0��
0.003 K.
�Note that AP=1/ ��0��.� Equating this to the antisymmetric
exchange energy ECP	C1

2 / �8AP� yields the estimate C1

FIG. 7. �Color online� An illustration of spin vectors �in the
plane� on part of the lattice representing �9,2� magnetic structure at
H=1.25. All spins are reversed in the subsequent trilayer �m=2�.

FIG. 8. �Color online� Site averaged values of �si
z�2 correspond-

ing to the lowest-energy states from Fig. 3.

FIG. 5. �Color online� Schematic representation of three trian-
gular layers �distinguished by color and font size� of the �3,1� and
�4,2� phases where � and � symbols denote spin vectors along the
c axis. In the �4,2� phase, all spin vectors are reversed in the sub-
sequent trilayer �m=2�.

FIG. 6. �Color online� Schematic representation �as in Fig. 5� of
spins on the two sets of stacked trilayers characterizing the phase
�5,2� at H=2.5.
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	0.1, somewhat smaller than the value used in the present
analysis, C1=0.3. Recall, however, that the contribution HCP
to the spin Hamiltonian can be deduced from general sym-
metry considerations and can, in principle, have a variety of
microscopic origins, possibly stronger than from the magne-
toelectric effect, such as higher-order hopping analogous to
symmetric biquadratic exchange.22,29 �Note that an analysis
of the present model with both stronger antisymmetric ex-
change and stronger anisotropy leads to an increase in all the
transition fields as well flatter magnetization plateaus.� Spin-
flop transitions occur when the Zeeman energy EZ=−S ·H
equals the anisotropy energy EA of a magnetic system, �E
=Ez−EA=0. Even very small perturbations can affect the
system in the transition region, particularly for highly frus-
trated systems. In the present case, the small antisymmetric
biquadratic exchange interaction stabilizes the IC phase. This
point is also demonstrated by considering an analysis of the
model Hamiltonian in the absence of the term HCP. The
evolution of lowest-energy states with C1=C�=0 is shown in
Fig. 9, with all other parameters set as above. The IC phase
as characterized above is never stabilized, even when consid-
ering a wider range of values for the other model parameters.

Preliminary analysis of a Landau-type free energy10 based
on a molecular-field treatment of the Hamiltonian �3� indi-
cates that the proposed model captures essential features of

the magnetic-field–temperature phase diagram. In this for-
malism, the free energy is written as a functional of the spin
density s�r�=m+SeiQ·r+S*e−iQ·r, where m is the uniform
magnetization and S and Q represent polarization and wave
vectors, respectively, of the modulated spin structure. In zero
applied field, the observed sequence of transitions from para-
magnetic to linearly polarized IC to P4 states is reproduced.
The stability of the linearly polarized P4 phase is associated
with fourth-order zero-field umklapp terms of the form
�S ·S�2�4Q,G, where G is a reciprocal lattice vector. Simi-
larly, sixth-order terms �m ·S��S ·S�2�5Q,G enhance the sta-
bility of the field-induced linearly polarized P5 state. The
higher-field period-3 phase occurs due to terms of the form
�m ·S��S ·S��3Q,G. The helically polarized IC phase is char-
acterized by S�S* �Ref. 27� as a result of contributions
arising from HCP. Detailed results will be reported else-
where.

The present work demonstrates that the complex sequence
of ordered phases observed in CuFeO2 stabilized by increas-
ing magnetic field strength is a consequence of a high degree
of frustration due to a multitude of competing interactions.
The usual basal-plane period-3 spin structures associated
with the STAF are destabilized by longer-ranged intraplane
as well as interplane quadratic exchange interactions. Weak
axial anisotropy is found to be enhanced by biquadratic sym-
metric exchange, likely due to magnetoelastic coupling.
Magnetoelectric interactions through spin-orbit coupling pro-
vide for one mechanism that gives rise to a different type of
biquadratic antisymmetric exchange term which serves to
stabilize the helically polarized spin-flop phase. The model
Hamiltonian proposed here will serve as the foundation for
future work focused on magnetoelastic effects, spin
excitations,15 and finite-temperature effects. Many of the fea-
tures of the present model are likely relevant to other re-
cently examined magnetoelectric STAF’s.31
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