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It was shown by micromagnetic simulation that a current-driven in-plane magnetized magnetic nanocontact,
besides a quasilinear propagating (“Slonczewski”) spin-wave mode, can also support a nonlinear self-localized
spin-wave “bullet” mode that exists in a much wider range of bias currents. The frequency of the bullet mode
lies below the spectrum of linear propagating spin waves, which makes this mode evanescent and determines
its spatial localization. The threshold current for the excitation of the self-localized bullet is substantially lower
than for the linear propagating mode, but finite-amplitude initial perturbations of magnetization are necessary
to generate a bullet in our numerical simulations, where thermal fluctuations are neglected. Consequently, in
these simulations the hysteretic switching between the propagating and localized spin-wave modes is found

when the bias current is varied.

DOLI: 10.1103/PhysRevB.76.144410

INTRODUCTION

It was theoretically predicted' and experimentally
observed*~ that persistent microwave magnetization preces-
sion can be excited in a thin (“free”) layer of a magnetic
layered structure by direct current traversing the structure.
The bias current passing through a magnetic layered struc-
ture becomes spin polarized in the direction of magnetization
of a thicker (“fixed”) magnetic layer, and then can transfer
this induced spin angular momentum to the magnetization of
a thinner (free) magnetic layer. For the proper direction of
the bias current, this spin-transfer mechanism creates an ef-
fective negative magnetic damping in the free magnetic
layer, which, for sufficiently large current magnitude, can
compensate the natural positive magnetic damping and lead
to the excitation of microwave spin waves.>!%-!1

The analytical theory of spin-wave excitation in magnetic
nanocontacts by spin-polarized current performed in linear?
and weakly nonlinear'? approximations showed possibility of
self-sustained excitation of two qualitatively different modes:
linear propagating “Slonczewski” mode® and nonlinear eva-
nescent “bullet” mode.'? The latter mode exists only in in-
plane magnetized case, has a substantially lower excitation
threshold due to its self-localized character and, conse-
quently, vanishing radiation losses, and is believed'? to have
been observed in experiments.””

At the same time, the full-scale micromagnetic simula-
tions of magnetization dynamics in in-plane magnetized
nanocontacts'>'% done using the Landau-Lifshitz-Gilbert
equation with Slonczewski spin-transfer term showed no
self-sustained excited spin-wave states for current densities
below the threshold of excitation of a linear propagating
Slonczewski spin-wave mode.

Thus, it still remains unclear whether the analytically pre-
dicted low-threshold bullet mode!? is an artifact of the small-
amplitude expansion of full equations of motion for the mag-
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netization done in Ref. 12 or it is a physical reality that can
be observed in in-plane magnetized nanocontacts. In the lat-
ter case, it is necessary to understand why the micromagnetic
simulations'3!* failed to reproduce this low-threshold local-
ized spin-wave mode.

It should be noted that a spin-wave mode having proper-
ties similar to the properties of a self-localized spin-wave
bullet'? was found in numerical simulations,'* but for the
current densities that were substantially larger than the insta-
bility threshold for the linear Slonczewski mode.* This high-
current spin-wave mode has many attributes of the self-
localized nonlinear bullet mode: large precession angle,
strong spatial localization, and low frequency [below the fer-
romagnetic resonance (FMR) frequency of the free layer].
However, from the numerical results presented in Ref. 14, it
is not clear whether this mode is really the spin-wave bullet!?
or a strongly nonlinear spin-wave excitation of a qualita-
tively different type related to the formation of vortex-
antivortex ~ pairs in a  current-driven = magnetic
nanocontact.'>!4

The aim of our present paper is to verify the predictions
of the analytical theory'? about the existence of a low-
threshold spin-wave bullet mode using the full-scale micro-
magnetic simulations of the Landau-Lifshits-Gilbert-
Slonczewski (LLGS) equation.

In contrast with the previous numerical studies, where
the simulations of spin-wave dynamics for each value of the
bias current were performed starting from the equilibrium
initial magnetization state, in our current work we, at first,
progressively increase the bias current from zero to suffi-
ciently large above-threshold value, and then progressively
decrease this current to zero value. Using this method, we
were able to observe in our simulations subcritically
unstable'® spin-wave modes (i.e., modes which require finite
amplitude of spin-wave fluctuations to be excited) even in
the absence of thermal noise fluctuations. Starting our simu-
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FIG. 1. (Color online) Sketch of the point-contact device struc-
ture with the coordinate system used in our simulations.

lations from a large magnitude of the bias current (which
corresponds to a strongly nonlinear regime of magnetization
oscillations), and gradually reducing the current magnitude,
we demonstrated that the spin-wave bullet mode!? can, in-
deed, be supported by bias currents that are substantially
lower than the threshold of excitation of the linear Sloncze-
wski mode.3 At the same time, we also demonstrated that the
spin-wave bullet excitation is strongly subcritical (see Ref.
15 for details on subcritical instabilities) and, therefore, it is
not possible to observe it when the bias current is increased
starting from the equilibrium initial conditions (in the ab-
sence of thermal noise) up to relatively large magnitudes of
the bias current. Only at the current magnitudes substantially
exceeding the threshold current of a propagating Sloncze-
wski spin-wave mode the localized bullet mode with the fre-
quency lower than the FMR frequency of the free layer is
excited, in full agreement with the results of previous
simulations.'>!'# Thus, the coexistence of two spin-wave
modes (propagating Slonczewski mode and localized bullet
mode) with different critical currents and different instability
scenarios (linear and subcritical) leads to the hysteretic be-
havior of a magnetic nanocontact when the bias current pass-
ing through it is varied.

FORMULATION OF THE PROBLEM

We studied current-induced spin-wave dynamics in a
magnetic multilayered system consisting of a thick magnetic
“pinned” layer (PL, see Fig. 1) that serves as a spin polarizer,
a thin nonmagnetic spacer, and a thin magnetic free layer
(FL). The thickness of the PL is assumed to be large enough
to prevent any dynamics in this layer. The bias magnetic field
H is applied in the plane of the structure along the z axis. The
bias current / traversing the multilayered structure is applied
within the circular nanocontact area of the radius R, (see Fig.
1).

The dynamics of magnetization M=M(¢,r) of the free
magnetic layer under the action of spin-polarized current is
described by the LLGS equation:

M _ a®] M
py =Y H X M] + M, {MX p ]
ol
+f(r/Rc)ﬁ0[M X (M X p)], (1)

where 7y is the gyromagnetic ratio and H is the effective
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magnetic field calculated as a variational derivative
[He(2,r)=—S6W/M] of the magnetic energy W of the sys-
tem, which includes magnetostatic, exchange, and Zeeman
contributions.

The second term in the right-hand side of Eq. (1) is the
phenomenological magnetic damping torque written in the
nonlinear form'® that is similar, but not identical, to the tra-
ditional Gilbert form used in the previous simulations,'3!#
and My=|M| is the saturation magnetization of the free layer.
Since the spin-torque mechanism of spin-wave excitation is
very efficient, it can lead to rather large magnetization pre-
cession angles very soon above the excitation threshold (see,
e.g., Fig. 10 in Ref. 10). For large precession angles, the
Gilbert damping parameter cannot be considered constant
anymore, and should be replaced by the “damping function”
a(€) having the form'®

a(é) = ag(l+q,9), (2)

where «ag is the dimensionless Gilbert damping constant, ¢,
is a dimensionless phenomenological nonlinear damping pa-
rameter of the order of unity, and £ is the dimensionless
variable characterizing level of nonlinearity of magnetization
precession (see Ref. 16 for details):

~ (IM/1)*

2
wy M

. 3)

where wy;=vyM,.

To determine how important is the role of nonlinear
damping in the current-induced spin-wave excitation, we
used in our simulations two different values of the parameter
q1:q:=0, which gives us the classical Gilbert damping
model, and g;=3, which corresponds to a moderate degree of
damping nonlinearity.

The last term in the right-hand side of Eq. (1) is the Slon-
czewski spin-transfer torque'-? that is proportional to the bias
current /. The function f(r/R,) characterizes the distribution
of current across the nanocontact area. In the simplest case of
uniform current density distribution, f(r/R,)=1 if r<R, and
f(r/R.)=0 otherwise. In Eq. (1), the proportionality coeffi-
cient o is determined by the spin-polarization efficiency &
and is given by the expression®!?

-

o= , 4)
2eM,Sd

where & is the dimensionless spin-polarization efficiency de-
fined in Refs. 1 and 3, g is the Lande factor, up is the Bohr
magneton, e is the absolute value of the electron charge, d is
the FL thickness, and S=mR? is the cross-sectional area of
the nanocontact. In Eq. (1), the unit vector p defining the
spin-polarization direction is parallel to the direction e, of
the in-plane external magnetic field.

In our calculations, we made several simplifying assump-
tions. First, we neglected the constant current-induced (Oer-
sted) magnetic field and the magnetostatic coupling between
the two ferromagnetic layers (FL and PL) of a nanocontact as
we do not believe that in the presence of a sufficiently large
constant bias magnetic field these effects can qualitatively
change the structure of spin-wave modes excited in a nano-
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contact by a spin-polarized current. Second, we assumed that
the magnetocrystalline anisotropy of the free layer is negli-
gibly small. To reduce the computation time, we also ne-
glected the random fluctuations arising from the thermal
noise. Our further investigations have shown that, although
these fluctuations do not change the structure of spin-wave
modes that could be excited in a nanocontact, they might
play an important role in the process of excitation of a par-
ticular spin-wave mode in a laboratory experiment.

In our simulations, we used a set of material parameters
that is typical for the experiments with current-induced spin-
wave excitations in in-plane magnetized nanocontacts with
Permalloy free layer:® FL thickness d=5 nm, nanocontact
radius R.=20 nm, spin-polarization efficiency £=0.25, satu-
ration magnetization of the FL uo,M;=0.8 T, external bias
magnetic field uyH=0.5 T, spectroscopic Lande factor g
=2.0, and FL exchange stiffness constant A,=1.4
X 107! J/m. The Gilbert damping constant was chosen to be
a;=0.01, and the nonlinear damping parameter ¢; was cho-
sen to be g;=0 in the standard Gilbert damping model and
q1=3 in the nonlinear damping model.

The linear analysis of current-induced spin-wave excita-
tions in the nanocontact geometry was performed in Ref. 3
for the case of perpendicular magnetization. This analysis
was based on the linearized Eq. (1) and showed that a linear
propagating spin-wave mode (Slonczewski mode) is excited
at the threshold. The threshold current for this propagating
mode is determined by the sum of two contributions: radia-
tion losses due to the propagation of the excited spin-wave
outside the region of current-carrying nanocontact and dissi-
pation of the current energy inside the nanocontact region,’

D T
I~ 1865+ )

where D is the spin-wave dispersion coefficient determined
mostly by the exchange interaction and I' is the linear spin-
wave damping rate proportional to the Gilbert damping con-
stant ag;.

In the case of an in-plane magnetized magnetic FL linear
propagating mode with the threshold current (5) can also
exist, with parameters I and D having the form'> T
=aglog+wy/2) and D=(Q2A,/My)(wy+wy/2)! opyg,
where wy=vH, wy=vM,, A,, is the exchange constant, and
wpyr=\ wp(wg+ wy) is the FMR frequency in the free layer.
For a typical nanocontact radius of the order of several tens
of nanometers, the main contribution to the linear threshold
current (5) comes from the first term describing radiation
losses. According to the linear theory,’ the propagating spin-
wave mode excited at the threshold is a cylindrical spin-
wave with the wave vector k; =1.2/R,. and frequency

Wy = OpyRr+ Dk% (6)

that is higher than the FMR frequency in the free layer. Due
to its propagating character, the linear cylindrical spin-wave
mode excited at the threshold is relatively weakly localized
near the excitation region (current-carrying nanocontact).
Thus, in the limit of small damping, the squared amplitude
(proportional to the mode power) A>=(My—M_)/2M of the
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linear Slonczewski mode decays with the radial distance r as
) 1
AR~ - (1)

for r>R,.

The nonlinear analysis'? of spin-wave excitations in in-
plane magnetized nanocontact geometry revealed a qualita-
tively different picture. It was shown in Ref. 12 that the
competition between the nonlinearity and exchange-related
dispersion leads to the formation of a stationary two-
dimensional self-localized nonpropagating spin-wave bullet
mode whose frequency is shifted by the nonlinearity below
the spectrum of linear spin-wave modes, i.e., below the FMR
frequency in the FL. This nonlinear mode has evanescent
character with vanishing radiation losses, which leads to a
substantial decrease of its threshold current in comparison
with the linear propagating Slonczewski mode. In contrast
with the linear mode, the bullet mode is strongly localized
and its squared amplitude decays with the distance » much
faster than in the case of the linear propagating mode (7):

1
Alzg(r) ~ ;e‘z‘kB‘r. (8)

Here, kg is an imaginary wave vector of the bullet mode,
related to its frequency by the relation, similar to Eq. (6):

Wp= wFMR_D|kB|2' 9)

Although the analytical theory'? based on the idea of spin-
wave bullet formation is in quantitative agreement with labo-
ratory experiments (see, e.g., Refs. 7 and 8), the numerical
experiments!>!% performed by means of full-scale micro-
magnetic simulations failed to discover any self-sustained
spin-wave modes for bias currents below the threshold cur-
rent (5) of instability of a linear Slonczewski mode. One
possible explanation of this fact is that the instability of the
bullet mode'? is subcritical, i.e., requires a finite level of
initial magnetization fluctuations to manifest itself. In labo-
ratory experiments, the necessary finite level of fluctuations
could be caused by the thermal noise, or the influence of the
Oersted magnetic field, and/or by any other small interaction,
neglected in the micromagnetic model.

To make the excitation of subcritical modes possible
in our simulations, even in the case when the thermal noise is
ignored, we studied spin-wave dynamics with progressively
increasing and decreasing bias current. In this case, one ex-
pects excitation of linearly unstable modes at the increasing
branch of the current variation, while the excitation of non-
linear subcritical modes can be achieved when the current is
progressively decreased starting from a large current value
corresponding to a strongly nonlinear regime of spin-wave
excitation.

12,15

NUMERICAL TECHNIQUE

In our numerical simulations, we used three-dimensional
(3D) finite-difference time-domain micromagnetic code.!7-2°
The dimensions of our computational region have been set as
LXLXd=800x800X5 nm’ and in calculations we used
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3D mesh of 4X4 X5 nm? discretization cells. It was also
necessary to specify the boundary conditions that adequately
describe the experimental conditions in the current-driven
nanocontact.

Because the dimensions of the computational region are
substantially smaller than the physical size of the multilayer
where the nanocontact was made in laboratory
experiments’® and relatively low magnetic damping
(ag=1072) of the FL, we had to impose absorbing boundary
conditions at the edges of the computational region to pre-
vent the reflections of the propagating spin-wave modes
from these boundaries that might occur otherwise. If the ab-
sorbing boundary conditions are not imposed, the interfer-
ence between the waves propagating outward and the ones
reflected from the computational boundaries occurs in nu-
merical simulations, and this purely computational artifact
can lead to the substantial distortions in the computed picture
of the phenomenon and can seriously affect the computed
values of the threshold currents for linear propagating
spin-waves,!31417-22

The problem of finding the exact analytical formulation of
the perfectly absorbing conditions for spin-waves at the
edges of the computational region has not been solved so far.
The attempts to find such conditions in numerical simula-
tions have been undertaken'>!417:18.21 by assuming that mag-
netic dissipation in the magnetic medium of the FL increases
near the borders of the computational region according to a
certain chosen empirical dependence on coordinates. Here,
we are using a similar technique, assuming that in the middle
of the region of computation (0<r<R") the dissipation
might be nonlinear,'® but is independent of the radial coor-
dinate r, while close to the region boundary (R"<r<L/2),
the dissipation is linearly increasing with coordinate and has
the spatial rate c:

ag(1+q,8) if r<R"

&= 1+ etr— R + 18 ifr>R'.

(10)

The parameters of the dissipation function (10) R*=L/2
—40 nm and ¢=100/(L/2—-R") were chosen empirically to
minimize the reflection of the propagating wave in a numeri-
cal experiment. For the geometry under investigation and the
parameters of our simulation, we have numerically checked
that the lowest reflection coefficient for propagating waves is
achieved when the spatial region of damping increase near
the computational region boundary involves about ten grid
cells and the final damping value is approximately 2 orders
of magnitude larger than the Gilbert damping constant ay; in
the middle of the computational region (which corresponds
to a damping value of the order of unity). The further proof
that our choice of parameters of the dissipation function (10)
is reasonable comes from the fact that the threshold of exci-
tation of a linear spin-wave mode numerically calculated us-
ing the dissipation function (10) does not differ from the
analogous threshold analytically calculated using Eq. (5) by
more than 10%. An incorrect implementation of absorbing
boundary conditions would have resulted in a considerable
decrease of the numerical linear threshold Ith, because of the
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reduction of the propagation losses (5) due to the energy
reintroduced by the reflected waves. Using a similar crite-
rion, we have also numerically verified that the computa-
tional region having the size 800 X 800 nm?, which we have
chosen for our simulations, is sufficiently large to give rea-
sonable quantitative values for all the calculated quantities.

In should be noted that reflections at the boundary of the
computational region can also take place because of the in-
homogeneous profile of the static internal magnetic field near
these boundaries. To overcome this problem one usually uses
either periodic boundary conditions'>!42324 or open bound-
ary conditions.'” For the geometry of our simulations, we
used a different approach.

Using the fact that our computational area is much larger
than the typical wavelengths of the excited spin-wave modes
and expecting that the magnetization distributions calculated
in our simulations would be reasonably smooth, we assumed
that the magnetization far away from the nanocontact area is
aligned along the direction (e,) of the external bias magnetic
field. Thus, we assumed that at the actual boundaries of the
computational region, the variable magnetization is fixed and
is parallel to the direction of the bias magnetic field (z axis):

M|boundaries = MOez~ (l 1)

Outside the gridded region, the magnetization is also con-
strained to lie along the bias field direction. The magneto-
static charges appearing at the ends of the calculation region
were consequently discarded.>?

It has been checked numerically that the above described
pinned boundary conditions, acting on both exchange and
magnetostatic fields, worked sufficiently well, i.e., a reason-
ably flat profile of the total effective field has been obtained
in the vicinity of the computational boundaries.

RESULTS AND DISCUSSION

In our numerical simulations, we started from the initial
equilibrium state M=Me_, and progressively increased the
value of the applied bias current (taken with the proper sign
corresponding to the case when electrons flow from FL to
PL?). We found that at the value ItLh=11 mA (which consti-
tutes our numerical threshold current for the excitation of the
linear Slonczewski-like mode?), the initial uniform magneti-
zation state loses its stability, and the system reaches the
limit cycle representing the microwave generation. This
threshold value is the same for both models of dissipation
(with ¢;=3 and ¢,=0) and is quite close to the theoretical
value 75=11.5 mA of the threshold current of linear Slonc-
zewski’s mode calculated using Eq. (5).

As it can be seen in Figs. 2(a) and 2(c), the frequency of
the Slonczewski-like propagating spin-wave mode excited at
the threshold is above the FMR frequency fryr=wryr/2m™
=22.5 GHz and exhibits the expected redshift when the mag-
nitude of the bias current is increased. This result agrees
qualitatively with the results obtained in the previous nu-
merical simulations.'>'* The comparison of the frequency
and wave vector of the excited spin-wave mode obtained in
our current numerical simulations (f,,,=27.2 GHz, k,,,
=6.04 X 10’ m™") with the corresponding predictions of the
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FIG. 2. (Color online) Dependence of the precession frequency f [panels (a) and (c)] and averaged precession angle ¢ [panels (b) and (d)]
in the excited spin-wave modes on the applied bias current /. Panels (a) and (b) correspond to the nonlinear damping model with g; =3, while
panels (c) and (d) correspond to the standard Gilbert damping (g;=0). Arrows indicate the directions of current variation. The lines
corresponding to different modes are indicated by the mode name (linear or “bullet”). The inset in (d) shows the amplitudes of the precession
angle for the linear and bullet modes. The horizontal dashed lines in (a) and (c) show the FMR frequency.

analytical ~ theory®  (f;,=27.5 GHz,  k;,=1.2/R.=6.00
X 107 m~!) shows a satisfactory agreement between them,
which proves the linear and propagating nature of the ob-
served mode. We note that a similar agreement between the
analytic theory® and numerical results for the linear propa-
gating spin-wave mode excited in a perpendicularly magne-
tized current-driven magnetic nanocontact has been demon-
strated in our previous work.!”

If the bias current is further increased in our simulation,
an abrupt downward jump in the frequency of the excited
mode is observed in both dissipation models [see Figs. 2(a)
and 2(c)], even though the range of existence of the linear
(high-frequency) mode is larger in the case of nonlinear
damping.'® In both cases, the new modes appearing after the
jump have the frequency which is below the FMR frequency
of the free magnetic layer, similar to the results of simulation
performed for large bias currents in Refs. 13 and 14.

A similar mode-switching behavior can be seen from the
numerical results obtained for the averaged precession angles
of the corresponding modes [see Figs. 2(b) and 2(d)]. We
defined the averaged precession angle ¢ in a particular spin-
wave mode as the time-average value of the angle between
the z axis and the magnetization vector M averaged over the
nanocontact area. Just above the threshold of excitation of a
linear spin-wave mode (/> 11 mA), the magnetization pre-
cesses around the direction of the in-plane external bias mag-
netic field (the average of the x and y magnetization compo-
nents over the precession period is zero). The precession
angle increases with increasing current, but remains smaller
than 90°. With the increase of the bias current, simulta-

neously with the downward jump of the excited mode fre-
quency, the precession angle undergoes an analogous upward
jump to the values larger than 90° [see Figs. 2(b) and 2(d)].
These large values of the precession angle correspond to the
precession of the magnetization vector around the direction
that is antiparallel to the external bias magnetic field. This
effectively means a local reversal of the average magnetiza-
tion vector in the area beneath the contact. The precession
angles corresponding to the both excited spin-wave modes
(low-amplitude linear mode and high-amplitude nonlinear
mode) are shown schematically in the inset in the Fig. 2(d).

As it was mentioned above, the high-amplitude low-
frequency mode appearing suddenly at large bias currents
(larger than the threshold for the excitation of the linear
Slonczewski mode) was observed previously in numerical
simulations.!3!* However, it was not clear from Refs. 13 and
14 whether this low-frequency mode is identical to the ana-
lytically predicted bullet mode'? or represents another more
complicated type of high-amplitude nonlinear spin-wave ex-
citation.

To check the nature of this high-amplitude low-frequency
mode, we performed numerical simulations with decreasing
bias current. Starting from the stationary dynamic magneti-
zation configuration that exists at sufficiently large bias cur-
rent /= 2ItL , we progressively decreased the bias current
value until the inverse transition from the precessional dy-
namic state (limit cycle) to the initial static equilibrium mag-
netization state (fixed point) took place. The results of simu-
lations with decreasing bias current are shown in Fig. 2 by
the branches denoted by dashed arrows. It is clear from Fig.
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2 that the decrease of the bias current leads to the hysteretic
behavior of both the generated frequency and the precession
angle, and that the nonlinear mode having frequency below
the FMR frequency of the FL continues to exist at the bias
current values that are substantially lower than the threshold
of excitation of the linear Slonczewski mode. This behavior
is qualitatively the same for both dissipation models.

Thus, in our numerical simulations, we were able to dem-
onstrate that the nonlinear spin-wave mode can exist in an
in-plane magnetized magnetic nanocontact at such low val-
ues of the bias current, at which the linear propagating Slon-
czewski mode cannot be supported. This means that, with a
very high probability, the nonlinear low-frequency mode ob-
served in our simulations is the self-localized bullet mode
which has been predicted analytically in Ref. 12, but was not
found in the previous numerical simulations.'>!'* We also
believe that this localized bullet mode has been observed in
the laboratory experiments.””

It also follows from our numerical results that in the de-
terministic (without thermal noise) numerical simulations the
spin-wave bullet mode can only be excited by a hysteretic
procedure when the bias current is first increased to a sub-
stantial supercritical value and then is gradually decreased.

In agreement with the analytical prediction,'? our simula-
tions demonstrated that the lowest values of the bias current
at which the bullet mode can exist [75(q;=3)=5.2 mA in the
nonlinear model of dissipation and (¢, =0)=2.0 mA in the
standard Gilbert dissipation model] are considerably lower
than the threshold of excitation of the linear propagating
mode that is the same for the both dissipation models and
equal to ItLhz 11 mA. This means that in the real experiment
where thermal noise is always present the threshold of the
bullet mode excitation will be substantially lower than the
threshold of excitation of a linear propagating mode, and the
bullet mode would be excited first when the bias current is
increased. We note that the corresponding threshold currents
for the excitation of the bullet mode calculated using the
analytic formalism of Ref. 12 are I%(g;=3)=6.9 mA and
1%(q;=0)=1.4 mA, so they are in reasonably good agree-
ment with the above presented values found in our numerical
simulations (see Fig. 2).

An additional property of the excited spin-wave modes
that can be successfully used for their identification is the
spatial localization, which significantly differs for linear
propagating mode [see Eq. (7)] and nonlinear self-localized
bullet mode [Eq. (8)]. The dependence of the squared ampli-
tude A2 on the distance r (taken along the 7 axis in Fig. 1) is
shown in Fig. 3 for both linear and bullet modes. The curves
in Fig. 3 were calculated for the bias current /=12 mA at
which both modes exist simultaneously (see Fig. 2). It is
clear from Fig. 3 that the bullet mode is exponentially local-
ized and at a distance r=4R, from the center of the nano-
contact the bullet amplitude is 3 orders of magnitude lower
than its value at the contact center. In comparison, the am-
plitude of the linear propagating spin-wave mode at the same
distance is 2 orders of magnitude larger than the bullet am-
plitude.

The analysis of the numerical data on the spatial localiza-
tion of the excited spin-wave modes allows us to confirm the
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FIG. 3. (Color online) Main panel: Dependence of the numeri-
cally calculated normalized squared amplitude (A%)/{A%),.x (or
mode power) for the bullet mode (solid line) and for the linear
propagating mode (dashed line) on the distance r from the nano-
contact center. The dotted vertical line indicates the position of the
nanocontact radius (r=R,). Insets show the dependence of the mode
power on the coordinates in the y-z plane (see Fig. 1) for both bullet
(a) and linear propagating (b) modes. All the graphs correspond to
the bias current /=12 mA when the bullet mode and linear spin-
wave mode can exist simultaneously (see Fig. 2).

analytical conclusion'? of the evanescent character of the
bullet mode. In Fig. 4, we show numerically calculated pro-
files of the linear (dashed line) and bullet (solid line) modes
in logarithmic scale and, for comparison, the analytical pro-
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FIG. 4. (Color online) Numerically calculated spatial profiles
A2(r) of the “bullet” mode (solid line) and linear propagating mode
(dashed line) shown in logarithmic scale. Dash-dotted lines show
the analytical profiles of the linear (a) and bullet (b) modes calcu-
lated from Eq. (7) and Eq. (8), respectively.
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FIG. 5. (Color online) Dependence of the frequency fp
=wg/2 of the “bullet” mode on the absolute value |kg| of the
imaginary bullet wave number calculated from the numerical bullet
profiles using Eq. (8) [like in Fig. 4(b)]: symbols, frequencies cal-
culated numerically (see Fig. 2) for the nonlinear damping model
with ¢;=3 (solid squares) and for the standard Gilbert damping
q1=0 (open circles); solid line, bullet frequency analytically calcu-
lated from Eq. (9).

files (dash-dotted lines) of the linear mode calculated from
Eq. (7) [Fig. 4(a)] and of the bullet mode calculated from Eq.
(8) [Fig. 4(b)]. It is clear that numerical simulations are in
reasonably good agreement with the predictions of the ana-
lytical model,'> which predicts that the bullet mode is a
strongly localized evanescent mode. The weak oscillations of
the amplitude of the linear propagating mode observed in our
numerical simulations (Fig. 4) are, most probably, related to
the fact that the boundary conditions chosen in our simula-
tions at the edges of spatial region of computation were not
ideally absorbing, and resulted in the weak reflection of the
linear propagating mode.

To further prove the evanescent character of the high-
amplitude bullet mode, we determined [using Eq. (8)] the
modulus of the bullet wave number |ky| from the spatial
profiles of the bullet mode numerically calculated for differ-
ent values of the bias current using the fitting procedure
similar to the one shown in Fig. 4(a). Then, we plotted in
Fig. 5 the bullet mode frequencies numerically calculated for
two different dissipation models (see Fig. 2) against the
above determined values of |kg| corresponding to the same
values of the bias current. The results of this calculation are
shown by solid squares (nonlinear dissipation with g;=3)
and open circles (Gilbert dissipation with ¢;=0) in Fig. 5. In
the same figure, for comparison, we show by a solid line the
analytical dependence Eq. (9) of the bullet frequency fz on
the modulus of the bullet wave number |kg|. It is clear that in
the whole range of calculated bullet frequencies the spatial
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localization of the bullet mode follows the formula (8),
where the modulus of the bullet wave number is very close
to its “evanescent” value |kg|=\wpyr—wg/D.

Thus, it has been numerically proven that the high-
amplitude spin-wave bullet in an in-plane magnetized nano-
contact having its frequency nonlinearly shifted below the
FMR frequency wpgyr of the FL has, indeed, evanescent
character, as it was predicted in the analytical calculation.'?
We also note that the conclusion about the evanescent nature
of the bullet mode does not depend significantly on the dis-
sipation model used (nonlinear or Gilbert).

CONCLUSION

In conclusion, using full-scale micromagnetic simula-
tions, we have numerically proven that a current-driven in-
plane magnetized magnetic nanocontact can support at least
two different types of microwave spin-wave modes: quasilin-
ear propagating “Slonczewski” mode® and the subcritically
unstable!®  self-localized nonlinear spin-wave “bullet”
mode.'> We have shown that the bullet mode, having very
large precession angles exceeding 90°, can exist at the bias
currents that are substantially lower than the threshold of
excitation of the linear Slonczewski mode (see Fig. 2) and,
therefore, in real finite-temperature laboratory
experimentsj’9 where the thermal noise is present, the bullet
mode is the mode that is excited first when the bias current is
increased. In our zero-temperature numerical simulation,
where the influence of the thermal noise is excluded, the
bullet mode can be excited only if we reduce bias current
starting from the large supercritical values of it that signifi-
cantly exceed the linear spin-wave mode threshold.

We have also proven that the high-amplitude bullet mode
is an evanescent mode, whose spatial localization is directly
related to the difference between the bullet frequency wj
shifted down by the nonlinearity [“red” nonlinear frequency
shift, see, e.g., Eq. (6) in Ref. 12] and the FMR frequency of
the “free” layer wpp-

Thus, our numerical simulations confirmed all the quali-
tative conclusions made in Ref. 12 about the nonlinearly lo-
calized and evanescent nature of the spin-wave bullet mode
excited by spin-polarized current in an in-plane magnetic
nanocontact.
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