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This paper presents formulas for the transmission and the reflection of neutrons on a perfect crystal blade in
symmetric Laue geometry. While the standard formulas are valid either for the situation very close to the Bragg
condition or far off the Bragg condition �index of refraction model� the formulas presented here smoothly
cover the whole range of transition. The paper concludes with experimental considerations.
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I. INTRODUCTION

If neutrons are sent through a beam splitter made of a
perfect crystal in Laue geometry �Fig. 1�a��, a very distinct
pattern in phase and intensity can be observed, known as the
Pendellösung oscillations. The pattern depends on the angle
alignment between the beam and the beam splitter on an
arcsecond scale. This was demonstrated experimentally by
Shull1,2 and is well understood with the theory of dynamical
diffraction.3–8 On the other hand, if the crystal blade is ro-
tated far off the Bragg condition, it behaves similar to a
noncrystalline material �Fig. 1�b�� and can be used as a phase
shifter. By rotating the blade up to a few degrees the optical
path length is changed due to the index of refraction. This
way the phases of interferometry experiments are controlled.

In the recent years more interest has arisen concerning the
transition range between the beam splitter case and the phase
shifter case. In particular, experiments have been proposed to
measure the neutron electron scattering length by precision
measurements of the phase and intensity oscillations around
the Bragg condition.9–11 However, the standard solution of
the theory of dynamical diffraction does not cover the tran-
sition range, as it contains approximations which restrict its
validity to the arcsecond scale around the Bragg angle. De-
pending on the experimental setup and the desired precision,
the standard formulas may not be sufficient.

In this paper I derive formulas covering the whole angular
range for the symmetrical Laue geometry �Sec. III�. Before, I
briefly summarize the standard formulas and their limitations
�Sec. II�. Finally, I discuss experimental considerations con-
cerning the rotation of a Laue crystal through the Bragg con-
dition �Sec. IV�.

II. THE STANDARD FORMULAS

A. The beam splitter case

The theory of dynamical diffraction of neutrons is con-
tained in several text books and articles.4–7 Here I give only
a sketch of the derivation of the beam splitter formulas and
summarize the results for the transmission factor t and the
reflection factor r. The geometry for t and r is illustrated in
Fig. 1�a�.

The neutron wave function ��r�� inside the crystal is cal-
culated by solving the stationary Schrödinger equation on the
periodic crystal potential. After transforming the Schrödinger
equation into the reciprocal space and using the Bloch ansatz

��r�� = exp�iK� r���
H�

uH� exp�iH� r�� �1�

with the sum running over all reciprocal lattice sites, we get
an infinite system of coupled equations for the amplitudes uH�

� �2

2m
�K� + H� �2 − E�uH� = − �

H� �

VH� �−H� uH� � �2�

with the neutron energy E, the neutron mass m, and the Fou-

rier components VH� of the potential V�r��=�H� VH� exp�iH� r��. In
the case of normal Bragg reflection only two reciprocal lat-
tice points lie near the Ewald sphere and the two-beam ap-
proximation applies. All but two amplitudes can be set to
zero and the infinite system of equations is reduced to two
coupled equations for the unknown amplitudes u and uH
which refer to the forward and reflected direction, respec-
tively,

� �2

2m
K2 − E�u = − V0u − V−HuH, �3a�

� �2

2m
KH

2 − E�uH = − VHu − V0uH. �3b�

K and KH denote the absolute values of the forward and the
reflected wave vector inside the crystal. The reflected vector

is given by K� H=K� +H� with H� denoting the reciprocal lattice
vector of the reflecting planes.

The potentials V0 and V±H are given by the crystal prop-
erties. The general formula is
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FIG. 1. Sketch of a beam splitter in symmetrical Laue geometry
�a� and an ordinary phase shifter �b�. The transmission and reflec-
tion factors are denoted by t and r �not to be confused with the
vector r��.
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V�H� � =
2��2

mVc
bc�H� �F�H� � , �4�

where Vc denotes the volume of the elementary cell, bc the
coherent scattering length, and F the structure factor. For the
diamond-type lattice of silicon we can write Vc=8/N with
the atom density N. The structure factor F depends on the

Miller indices h ,k , l corresponding to H� . For h+k+ l divis-
ible by 4 we get F=8. For h ,k , l all odd we get F=4±4i and
for all other cases F=0. The scattering length bc is domi-
nated by the nuclear coherent scattering length bN. If we take
into account the neutron electron scattering length bne we

have to add the term bneZ�1− f�H� �� with the atomic number
Z and the atomic form factor f , see Refs. 9–12. For forward
scattering f equals 1 and the bne term cancels. Collecting all
terms we can calculate the forward-scattering potential V0
and the reflecting potential V±H for the commonly used 220
and 111 reflections on silicon:

V0 =
2��2N

m
bN, �5�

V±220 =
2��2N

m
�bN + bne14�1 − f220�� , �6�

V±111 =
2��2N

m
�bN + bne14�1 − f111��

1 ± i

2
. �7�

When solving Eq. �3� one usually makes approximations
for small deviations from the Bragg angle and uses the fact
that v0=V0 /E and vH= �VH � /E are in the order of 10−6 for
thermal neutrons. With the continuity conditions on the crys-
tal surfaces one obtains the standard formulas for the trans-
mission and reflection factors for the symmetric Laue case

t = exp�i�− A0 − AHy��	cos�AH

1 + y2�

+
iy


1 + y2
sin�AH


1 + y2�� , �8�

r = exp�i�− A0 + AHy + kz0yvH/cos �B��
 VH

V−H

�
− i


1 + y2
sin�AH


1 + y2� . �9�

Here we have used the abbreviations

A0,H =
�D

�0,H
=

Dkv0,H

2 cos �B
, �10�

y = − �� sin 2�B/vH, �11�

v0 = V0/E, vH = �VH�/E , �12�

where D denotes the blade thickness, �0=	 cos �B /v0 the
Pendellösung length, 	 the neutron wave length, k
=
2mE /�2=2� /	 the absolute value of the wave vector, z0

the position of the crystal blade �Fig. 1�, �B the Bragg angle
for the given wave length and Bragg reflection, � the incident
angle, and ��=�−�B the misset angle, i.e., the deviation
from the Bragg angle. The parameter y is a scaled represen-
tation of the misset angle.

B. The phase shifter case

The situation of a beam passing a �nonabsorbing� phase
shifter, as shown in Fig. 1�b�, can be described by the index
of refraction n=
1−V0 /E. If we denote the length of the
wave vector inside the crystal by 
=nk and take into account
the continuity of the tangential �x� component we get the
transmission factor

tph = exp�iD�
z − kz�� = exp�iD�

2 − kx
2 − kz��

= exp�iD�
k2�1 − V0/E� − k2 sin2 � − k cos ��

= exp�iDk�
cos2 � − v0 − cos ��� . �13�

As v0 is in the order of 10−6 we can make a first order
expansion of the root expression and get

tph � exp�− i
Dkv0

2 cos �
� = exp�− iA0

cos �B

cos �
� . �14�

A further first order expansion for small ���1° yields

tph � exp�− iA0 − iA0�� tan �B� . �15�

The model of the index of refraction is equivalent to the
one-beam approximation of the theory of dynamical diffrac-
tion. If the crystal blade is far off the Bragg condition, only
the forward amplitude u0� in Eq. �2� remains, and we would
obtain exactly the same result as Eq. �13�. Of course, the
more amplitudes are included, the more accurate �but also
difficult� the calculation will be. This means that the two-
beam approximation includes in principle the one-beam ap-
proximation. However, this is not achieved by the standard
formula �8� due to small angle approximations. If we calcu-
late the asymptotic behavior of Eq. �8� for large misset
angles �� or y we get

lim
y→±�

t = exp�− iA0� �16�

which is a constant value and clearly cannot serve as a phase
shifter formula such as Eq. �15�. The standard formula is
limited to the arcsecond range around the Bragg angle. In the
next section we will rederive formula �8� under the require-
ment to avoid small angle approximations.

III. THE TWO-BEAM APPROXIMATION FOR LARGE
MISSET ANGLES

A. Dispersion surfaces

First we calculate the dispersion surfaces which represent
the general solutions of the wave vectors inside the crystal.
Looking for a nontrivial solution of equations �3� we get

�K2 − 
2��KH
2 − 
2� = k4V−HVH

E2 = k4vH
2 �17�
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with k=
2mE /�2 and 
=k
1−v0. K and KH are coupled by

K� H = K� + H� , �18�

KH
2 = K2 + H2 − 2KH cos  = K2 + H2 − 2KxH �19�

with H=2k sin �B, see Fig. 2. Now we take Kx as a given
parameter which has to be determined later by the boundary
conditions. Then we can insert Eq. �19� into Eq. �17� and get
a quadratic equation for K2

�K2 − 
2��K2 − 
2 + H2 − 2HKx� − k4vH
2 = 0 �20�

with the two solutions

K1,2
2 = 
2 + k2vH�− � ± 
1 + �2� �21�

with

� ª

2 sin �B

vH
�sin �B −

Kx

k
� . �22�

With Eq. �17� we can also calculate KH:

KH1,2
2 = 
2 + k2vH

1

− � ± 
1 + �2
. �23�

Figure 2 shows the resulting dispersion surfaces. The curves
are given by K1,2 �or KH1,2� as a function of Kx.

B. Boundary conditions

From now on we restrict ourselves to the symmetric Laue
case. This is the most common experimental geometry and
makes the mathematics a lot easier. It means that the lattice
planes are perpendicular to the crystal surface or—in other

words—the vector H� is parallel to the crystal surface, see
Fig. 2�b�.

1. Front surface

As the tangential component of the wave vector is con-
served when entering the crystal, we set Kx=kx=k sin � and
we can write Eq. �22� as

� = 2 sin �B�sin �B − sin ��/vH. �24�

If we made a small angle approximation now and set sin �
�sin �B+�� cos �B, we would find that ��y and we would
get the standard results. But we proceed using the exact ex-
pression of �.

In order to calculate the amplitudes u1,2 and uH1,2 we
make the ansatz

�in = eik�r�, �25�

� = u1eiK� 1r� + u2eiK� 2r� + uH1eiK� H1r� + uH2eiK� H2r� �26�

with

K� 1,2 = �K1,2x

K1,2z
� = � kx

K1,2z
� , �27�

K� H1,2 = �KH1,2x

KH1,2z
� = �kx − H

K1,2z
� . �28�

At the entry surface z=z0 we set �in=�. Reflections on the
surface can be neglected because E�V0:

eikzz0 = u1eiK1zz0 + u2eiK2zz0 + uH1e−iHxeiK1zz0 + uH2e−iHxeiK2zz0.

�29�

As this equation must hold for all x it splits into two parts

u1eiK1zz0 + u2eiK2zz0 = eikzz0, �30�

uH1eiK1zz0 + uH2eiK2zz0 = 0. �31�

From Eqs. �3a� and �21� we get the relation
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FIG. 2. Sketch of the dispersion surfaces and the construction of
the wave vectors inside the crystal for the general �a� and the sym-
metric �b� Laue case. The dispersion surfaces are given by Eqs. �21�
and �22� and approach the circles around 0� and H� with the radius 

�dashed lines�. In the standard approximation for small �� and
v0,H�10−6 the dispersion surfaces would be hyperbolas. In this
sketch v0 and vH have been set to 0.09 in order to give a clear view
of the curves. The incident wave vector is given by its absolute
value k and the angle � versus the Bragg planes. In the general case
�a� there is an angle � enclosed between the Bragg planes and the
normal of the crystal surface. The incident component k� parallel to
the surface is conserved. Therefore the wave vectors K�H�1,2 inside
the crystal are given by the intersection points of the dispersion
surfaces and the line denoted by k�. The situations becomes much
simpler in the symmetric case �b� because of �=0 and k� =kx=K1x

=K2x.
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uH1,2 = u1,2

2 − K1,2

2

k2V−H/E
= u1,2�� � 
1 + �2�
 VH

V−H
. �32�

Here we have used the fact that �VH� /V−H=
VH /V−H because
of V−H=VH

* . From the last three equations we finally get the
amplitudes inside the crystal:

u1 = exp�i�kz − K1z�z0�

1 + �2 + �

2
1 + �2
, �33�

u2 = exp�i�kz − K2z�z0�

1 + �2 − �

2
1 + �2
, �34�

uH1 = exp�i�kz − K1z�z0�
− 1

2
1 + �2

 VH

V−H
, �35�

uH2 = exp�i�kz − K2z�z0�
1

2
1 + �2

 VH

V−H
. �36�

2. Back surface

The back surface is assumed to be parallel to the front
surface, enclosing a crystal of the thickness D. The transmit-
ted wave vector is equal to the incident wave vector because
of the conserved x component kx and the conserved energy.
The reflected wave vector k�H is determined by the Bragg
reflection kHx=kx−H and by the energy conservation kHz

=
k2−kHx
2 . With these wave vectors we can make the follow-

ing ansatz for the transmission factor t and the reflection
factor r �as illustrated in Fig. 1�:

�O = teik�r�, �37�

�H = reik�Hr�. �38�

On the back surface z=D+z0 the inner wave function � Eq.
�26� and the outer wave function �O+�H must be equal. The
resulting equation splits again into two parts in order to be
fulfilled for all x and we get

t = e−ikzD� eiK1zD + eiK2zD

2
+

�


1 + �2

eiK1zD − eiK2zD

2 � ,

�39�

r = e−ikzDei�kz−kHz��D+z0�
 VH

V−H

− 1

1 + �2

eiK1zD − eiK2zD

2
.

�40�

Now we need the terms K1,2z, kHz, and kz which depend on
the incident angle �. So does � �24�. Because we want to
stick to the exact expression of �, we use � as input param-
eter and express instead K1,2z, kHz and kz in terms of �. In-
verting Eq. �24� we get

sin � = sin �B − vH
�

2 sin �B
, �41�

K1,2z = 
K1,2
2 − K1,2x

2 = 
K1,2
2 − k2 sin2 �

= k
cos2 �B − v0 ± vH

1 + �2 − vH

2 �2 1

4 sin2 �B
,

�42�

kHz = 
k2 − �kx − H�2 = k
1 − �sin � − 2 sin �B�2

= k
cos2 �B − vH� − vH
2 �2 1

4 sin2 �B
, �43�

kz = k cos � = k
1 − sin2 �

= k
cos2 �B + vH� − vH
2 �2 1

4 sin2 �B
. �44�

Up to this point no approximation has been used. Now we
expand the root expressions �42�–�44� in terms of v0 and vH
which are, as stated before, in the order of 10−6. The results
below are already given as the difference terms DK1,2z
−Dkz and �kz−kHz��D+z0� because these terms have to be
inserted into t �39� and r �40�.

First order expansion:

DK1,2z − Dkz = − A0 − AH� ± AH

1 + �2, �45�

�kz − kHz��D + z0� = 2AH� + z0�kvH/cos �B. �46�

With these expressions, t and r yield exactly the standard
results �8� and �9� if we finally make a small angle approxi-
mation and replace � by y.

Second order expansion:

DK1,2zz − Dkz = − A0�1 + �̄� − AH� ± AH

1 + �2�1 + ��

�47�

with

�̄ = �
1 + vH

2 /v0
2

2
, � =

v0

2 cos2 �B
. �48�

Expression �46� remains the same also in second order. In-
serting these expressions in Eqs. �39� and �40� we get

t = exp�− iA0�1 + �̄� − iAH��	cos�AH

1 + �2�1 + ���

+
i�


1 + �2
sin�AH


1 + �2�1 + ���� , �49�

r = exp�− iA0�1 + �̄� + iAH� + iz0�kvH/cos �B�
 VH

V−H

�
− i


1 + �2
sin�AH


1 + �2�1 + ��� . �50�

These results look very similar to the standard results except
for the little parameters � and �̄. Both are in the order of 10−6

and are added to unity. So why does it make so much differ-
ence? The answer is, that the term �1+�� is part of a phase
term which always counts modulo 2�. Although the relative
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phase change is in the ppm range, it can be blown up to a
considerable change of the absolute phase if it is multiplied
by a large factor. 
1+�2 does become large if we get far
away from the Bragg condition. Only �̄ can be dropped be-
cause A0 is in the order of 102 and A0�̄�10−4�2�.

For comparison with the phase shifter formula we calcu-
late the limit of t for large �:

lim
�→±�


1 + �2 = ��� , �51�

lim
�→±�

t = exp�− iA0 − iAH��	cos�AH����1 + ���

+
i�

���
sin�AH����1 + ����

= exp�− iA0 − iAH��exp�iAH��1 + ���

= exp�− iA0 + iAH���

= exp�− iA0 + iA0 tan�B�sin�B − sin��/cos�B�

� exp�− iA0 − iA0 �� tan�B�, ��� � � 1°. �52�

Now we have obtained the phase shifter result �15�, proving
that formula �49� smoothly covers the whole range from the
beam splitter to the phase shifter case. Figure 3 shows the

differences between the formulas.
The neutron electron scattering length is contained in AH

and in �. However, it cancels in the product AH� because vH
cancels:

AH� =
DkvH

2cos�B

2 sin�B�sin�B−sin��
vH

.

This means that the neutron electron scattering length only
enters in the braced term of �49� and only for � small enough
so that 
1+�2�”�. �As stated before, the term �̄ can be ne-
glected.�

3. Approximations for small ��

Finally we can make a first order approximation of
sin��B+��� for small �� if we are only interested in the near
range around the Bragg condition, ��� � �1°. This range in-
cludes not only the Bragg reflection itself but also the tran-
sition range to the phase shifter regime, see Fig. 3.

� =
2 sin �B�sin �B − sin��B + ����

vH
� −

�� sin 2�B

vH
= y .

�53�

The resulting formulas of the transmission and reflection fac-
tors are

t = exp�− iA0 − iAHy�	cos�AH

1 + y2�1 + ���

+
iy


1 + y2
sin�AH


1 + y2�1 + ���� , �54�

r = exp�− iA0 + iAHy + iz0ykvH/cos �B�
 VH

V−H

�
− i


1 + y2
sin�AH


1 + y2�1 + ��� . �55�

In Fig. 3, Eq. �54� could not be distinguished from Eq. �49�.

IV. DISCUSSION

A. Interpretation of the transmitted phase

If we plot the transmission factor more closely around the
Bragg condition �Fig. 4� we notice that the argument value of

δθ

η
ar

g(
t)

–0.4˚ –0.2˚ 0˚ 0.2˚ 0.4˚

30˚

50˚

70˚
2000 1000 0 –1000 –2000

FIG. 3. The argument value of the new transmission formula
�49� is plotted by the solid line. The dotted line shows the standard
transmission formula �8� and the dashed line shows the phase
shifter formula �15�. The curves have been calculated for D
=1 mm and �B=30°, using a silicon �220� reflection. For these pa-
rameters and ��=0, the phase shift given by Eq. �15� amounts to
−A0=−43.13. This value modulo 2� is roughly 49° which can be
recognized in the plot. The thick vertical line at ��=0 actually
represents a phase change over many orders of 2� as shown in Fig.
4.
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0

π
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0.5

1

FIG. 4. Plot of the transmission factor t closely around the Bragg condition. In this regime there is virtually no difference between the
standard Eq. �8� and the new formula �49�. The absolute value of t �dotted line� scales on the right side. The argument value �solid line�
scales on the left side. The parameters are D=1 mm and 	=2 Å on a silicon 220 crystal �A0=AH=43.13�.
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t grows faster and faster as we come close to the Bragg
condition. It seems to be a monotonic increasing function
�solid line in Fig. 4� although it approaches the same asymp-
tote �dashed straight line in Fig. 3� for large positive and
negative values of ��. A paradox? It depends on the way of
plotting. The argument function gives the phase modulo 2�
which results in the “phase jumps” shown in Fig. 4. We
could also plot the phase as a continuous function but in this
case we would obtain two different asymptotes. However,
these asymptotes would be separated exactly by a multiple of
2� and would therefore be physically identical.

For a better understanding, a parametric plot of t�y� in the
complex plane is given in Fig. 5. t rotates around the origin
as a function of y. The curve contains curly features which
develop into loops if the crystal thickness is increased �pa-
rameters A0,H�. If one of the loops comes close to the origin
�see Fig. 6�a�� then the argument function of t approaches a
� step. If the crystal thickness is further increased and the
curve crosses the origin, then the � step is inverted �see Fig.

6�b��. This way the distance of the asymptotes is changed by
exactly 2� each time another loop crosses the origin.

B. Experimental requirements

The phase of the transmission factor can be measured by
putting the Laue crystal into an interferometer and rotating it
carefully through the Bragg condition. Such an experiment
has been performed by Graeff in 1978.13 Related experi-
ments have been performed with the sample crystal in Bragg
geometry14 and again in Laue geometry but with x rays.15

New experiments have been proposed during the last years,
motivated by the prospect of measuring the neutron electron
scattering length.10,11

The experiment by Graeff covered the transition range
0.0015° � �����0.015° and showed that the slope of arg�t�
became steeper and steeper as the Bragg condition was ap-
proached. Unfortunately no quantitative analysis of the mea-
sured phase values was published. The effect of the new
transmission formula should have been observable. Further-
more, the range closer to the Bragg condition ����
�0.0015° could not be accessed at all. The reason is, that the
visibility of the interference fringes is limited by two factors,
which become quite severe close to the Bragg condition.

First, the measured phase is always averaged over the
beam divergence. If the argument value of t changes by more
than 2� within the beam divergence then the visibility of the
interference fringes will vanish. This means that the beam
divergence should be less than y�0.1 or ���2�10−5°

�0.07 arcseconds if we want to resolve the steep slope of
arg�t� in the center of Fig. 4. This could be achieved by
placing a narrow slit mask of a neutron absorber onto the
front and the back surface of the first interferometer crystal.16

Of course, the drawback would be a strongly reduced beam
intensity, making precision measurements very difficult.

Second, we have to consider defocusing effects which are
caused by the sweep of the probability current density within
the Borrmann triangle,6,17 especially if we use a highly col-
limated beam and thick sample blades. In order to describe
this effect we have to deal with localized beams instead of
plain waves. Localized beams are described by spherical
theories which can be found in Refs. 4–8. Here we use a
numerical superposition of the plain wave formulas. The de-
tails of this approach are given in the appendix. Figure 7
shows the Laue transmission of a localized beam for differ-
ent misset angles. We can see that the transmitted beam is
split and transversally displaced as we approach the Bragg
condition. At y=0 the beam is shifted sidewards by D sin �B.
If such a sample is inserted into an interferometer, the inter-
ferometer will be defocused, and the visibility of the inter-
ference pattern will be reduced if not destroyed. In addition,
the results of the phase measurement would be questionable
because the level of defocusing changes during the measure-
ment, when the crystal is rotated. The problem could be re-
duced with small values of D and �B but not completely
solved. Here I want to propose a compensating setup which
keeps the interferometer focused �Fig. 8�.

In each beam path there is a sample crystal before and
after the mirror blade. The sample crystals can be rotated

1

-1

0.5

0.5-0.5
Re(t)

t(y)

y = -3

y = -2

y = -1

y = -0.5

y = -0.3y = 0.3

y = -5
y = 0

Im(t)

FIG. 5. A parametric plot of t�y� in the complex plane. Far away
from the Bragg condition the curve approaches a circle with radius
one because the transmitted amplitude �t� is one. Coming close to
the Bragg condition the curve rotates around the origin and devel-
ops curly features. In order to give a clear view the parameters A0

and AH have been set to the arbitrary value of 3.55�. This would
correspond to a crystal thickness in the order of 0.25 mm.

a) A = 3.4995 π

b) A = 3.5005 π

0.3 -0.3

0.3 -0.3

-π

0

π

y
0.2 0.1 0 -0.1 -0.2 -0.3

arg(t)

-π

0

π

y
0.2 0.1 -0.1 -0.2 -0.3

arg(t)

t

t

0

0

FIG. 6. If the crystal thickness �parameter A0� is increased, more
and more of the curls shown in Fig. 5 cross the origin. Each cross-
ing changes a negative � step of the argument function �a� into a
positive � step �b�, inserting exactly 2� between the asymptotes for
large positive and negatie values of y.
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�Fig. 8�a�� or, alternatively, the beams around the samples
can be deflected by the use of prisms �Fig. 8�b��. For the sake
of simplicity we stick to the sample rotation picture for the
further argumentation.

If both samples within one beam path are rotated by the
same misset angle then the transverse displacement of the
beam by one crystal is reversed by the other and the inter-
ferometer is kept focused. This can be achieved by a mono-
lithic design of both sample crystals such as crystal CII in
Fig. 8�a�. Alternatively we could rotate the crystals by the
same amount but in opposite directions. The interferometer
would still be focused, as we can see from Fig. 7 where the
beam trajectories through the samples are quite similar for y
and −y.

Now we calculate the resulting phases for both cases. We
look at a single plane wave component with the misset pa-
rameter y0 with respect to the interferometer crystals. We
denote the rotation of the two sample crystals in beam I by
�yIa and �yIb. Then the first crystal CIa contributes t�y0

+�yIa� to the wave function, with t�y� given by Eq. �54�. The
second crystal CIb contributes t�−y0−�yIb� because the ori-
entation of the y scale is reversed by the reflection on the
mirror blade.

If �yIa=�yIb then the total sample contribution in beam I
is given by

t�y�t�− y� = exp�− i2A0�	cos2�AH

1 + y2�1 + ���

+
y2

1 + y2 sin2�AH

1 + y2�1 + ���� �56�

with y=y0+�yIa. We can see that the argument value of this
expression amounts to the constant value −2A0. It does not
depend on y which means that all plane wave components
yield the same phase shift. Nor does it depend on AH which
means that it is completely insensitive to the neutron electron
scattering length. We can use this sample configuration for
the compensating crystal CII in the reference beam. We do
not even have to care much about the alignment of this crys-

tal. If we rotate it far off the Bragg condition the braced
expression in Eq. �56� becomes 1.

If �yIa=−�yIb then we get the rather complicated expres-
sion t�y0+�yIa�t�−y0+�yIa�. For y0=0 it simplifies to
t��yIa�2. This is finally the sample configuration we can use
to measure the phase of the Laue transmission factor without
defocusing the interferometer. However, we have to align
two sample crystals precisely to the interferometer crystal
and rotate them in opposite directions. It still has to be
shown whether this—or the alternative setup with prisms—is
experimentally feasible.

C. Conclusion and outlook

We have derived a mathematical description of the sym-
metric Laue case, which is not restricted to small deviations
from the Bragg condition but covers the whole angular range
from the beam splitter case to the phase shifter case. The
theory establishes a more profound basis for experiments
which make use of the phase shift around the Bragg condi-

y = 100 y = 5 y = 1.5 y = 1

y = -5y = -0.5 y = -1 y = -1.5

y = 0.5 y = 0.3 y = 0 y = -0.3

FIG. 7. The wave function of a localized beam passing a crystal
under different misset parameters y. The crystal �gray rectangle� is
3 mm thick. The intensity of the wave function is shown in gray
shades and has been calculated for a beam divergence of �y =0.1
and a beam width of �w=0.1 mm.
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H

O
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M

P

P
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b)
S A

M

I

II

I

CIa CIb

CII

Ca Cb

II

II∆y � 2000

∆yIb∆yIa

FIG. 8. Setups for measuring the phase shift from Laue trans-
mission without defocusing the interferometer. �a� A standard per-
fect crystal interferometer is given by the three blades S �splitter�,
M �mirror�, and A �analyzer�. The crystals CIa and CIb are to be
measured and intersect beam I before and after the mirror. This
compensates the transverse beam displacement within the Bor-
rmann triangle and keeps the interferometer focused as long as the
rotation parameters �yIa and �yIb have the same absolute value.
However, the precision alignment of the crystals CIa and CIb is very
challenging �Ref. 10�. �b� The equivalent setup using a five blade
interferometer and prisms. The blades Ca and Cb serve as samples
and are fixed monolithically to the interferometer in order to avoid
the crystal alignment. Instead of rotating the crystals, the beam
direction is changed by the use of prisms �Refs. 11, 18, and 19�. The
degree of beam deflection within the interferometer plane is con-
trolled by rotating the prisms around the beam axis. However, this
setup is very challenging either because of the large number of
prisms to align and because the interferometer has to be very large
to give enough space for the prisms.
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tion, such as measuring the neutron electron scattering length
in a neutron interferometer.10,11,18

Basic ideas about experimental setups for measuring the
phase of the Laue transmission factor have been presented.
However there is still need to estimate the magnitude of the
measured quantities under real experimental conditions, and
to determine the accuracy to which the neutron electron scat-
tering length could be obtained. An interferometer simulation
program is under developement for calculating the neutron
wave function at any point of interferometer setups as shown
in Fig. 8.
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APPENDIX: CREATING LOCALIZED BEAMS
FROM PLANE WAVES

We have derived plane wave formulas such as Eq. �54�
and want to calculate the wave function of a localized beam
which is characterized by its width and divergence. As before
we calculate in two dimensions x and z.

With a given angular distribution g���� and the fact that
we are dealing with time independent monoenergetic solu-
tions of the Schrödinger equation, we can write the wave
function in k space in polar coordinates as ��k ,��=��k
−k0�g����. The Fourier transform gives the wave function in
real space.

��r�� =
1

2�
� d2keik�·r���k�� =

1

2�
�

−�

�

d��
0

�

kdkeik�·r���k,��

=
k0

2�
�

−�

�

d�eik�0·r�g���� . �A1�

This wave function corresponds to a point source at the ori-
gin, shining in the directions given by g�. For the further
calculation we drop the index in k0.

Now we calculate the beam width for a given distance
from the source. We assume g���� to be a narrow Gaussian
distribution exp�−��−�B�2 / �2��

2�� /
2���
2. Then it can be

shown that the transverse intensity profile is again a Gauss-

ian distribution if we go far away from the source. Using l as
longitudinal beam coordinate and w as transverse coordinate
we can write

���l,w��2 =
1


1 + k2l2��
4

exp�−
w2

2�w
2 � , �A2�

�w =
1

2
� 1

k2��
2 + ��

2l2� . �A3�

Formula �A3� tells us the beam width �w at the distance l
from the source for a given beam divergence ��. This way
we can calculate the position r�0 of the source if we want the
beam to have a certain width at the crystal position.

With Eq. �53� we switch from �� and �� to y and �y.
Then the incident, transmitted and reflected wave functions
are given by

�in�r�� =� dyg�y�exp�ik��y� · �r� − r�0�� , �A4�

�t�r�� =� dyg�y�t�y�exp�ik��y� · �r� − r�0�� , �A5�

�r�r�� =� dyg�y�r�y�exp�ik�H�y� · �r� − r�0�� , �A6�

g�y� =
1


2��y

exp�−
y2

2�y
2� . �A7�

The integrals have to be solved numerically for each point r�.
If the integral is replaced by a sum with step size �y we get
artificial duplicates of the beam with a transverse offset of
w=	 /�� where �� denotes the step size �y in radiant units
according to Eq. �53�. We have to choose the step size ��
small enough so that the artifacts lie outside the region of
interest ���	 /w. For a neutron wavelength of 	=2 Å and a
beam width w of a few mm we get ���10−8 or �y�0.01.
In addition we have to ensure that �y is small enough to
resolve the Pendellösung fringes, see dotted line in Fig. 4.

This approach can be easily extended to a whole interfer-
ometer or any other arrangement of crystal blades. A com-
puter program for general neutron interferometer simulations
is under development by the author.
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