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Acoustic metamaterials can be described by effective material properties such as mass density and modulus.
We have developed a method to extract these effective properties from reflection and transmission coefficients,
which can be measured experimentally. The dependency of effective properties on the positions of the bound-
aries of the acoustic metamaterial is discussed, and a proper procedure to determine the boundaries is pre-
sented. This retrieval method is used to analyze various acoustic metamaterials, and metamaterials with nega-
tive effective properties are reported.
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I. INTRODUCTION

In recent decades, there has been growing interest in clas-
sical wave propagation in periodic composite materials.1–23

Initial efforts were focused on developing the acoustic ana-
log of photonic crystals, which are composite electromag-
netic materials with highly contrasting permittivity and/or
permeability layers with periodicity about the free space
wavelength. Bragg-scattering based band gaps in photonic
crystals1–4 were shown to exist for elastic waves in phononic
crystals, in which density and bulk modulus are modulated
spatially.5–23 Specially designed phononic crystals have been
utilized in new devices such as flat acoustic lenses and
acoustic multiplexers.24–27

Unlike phononic crystals, locally resonant acoustic
metamaterials—with resonators built into individual unit
cells—can exhibit anomalous behavior while utilizing lattice
constants much shorter than the acoustic wavelength, thus
making the effective medium approach appropriate.28 The
development of these acoustic metamaterials has led to
groundbreaking demonstrations of negative acoustic
properties,29 which helped to broaden the range of material
responses found in nature. These negative effective acoustic
properties are dynamic and dispersive in nature. Negative
bulk modulus implies that volume change is out of phase
with applied dynamic pressure. Negative mass density im-
plies that acceleration is out of phase with the dynamic pres-
sure gradient. These negative effective properties manifest
when the appropriate resonances in the metamaterial are
strong enough so that the scattered field prevails over the
background incident field. It was shown that a monopolar
resonance creates a negative elastic modulus and a dipolar
resonance creates a negative effective density at frequencies
around respective resonant frequencies.30

Several numerical methods are available for the study of
periodic composites, including the plane wave expansion
method,5–7 multiple scattering theory method,10–13 variational
method,8 and finite difference time domain method.9 These
methods solve for the local field in the simulation domain.
However, since the acoustic wavelength is much longer than
the lattice constant of locally resonant acoustic metamateri-
als, we can instead consider the scattering in an average
sense and assign macroscopic effective properties to the
metamaterial. Effective properties can provide an accurate

and simple description of wave interaction with the associ-
ated metamaterial.

In this paper, we present a method to extract effective
properties of metamaterials from reflection and transmission
coefficients that can be obtained from measurements, and
discuss details of this method including the boundary posi-
tion location of metamaterials and sign selection of the re-
fractive index n and impedance z. We show the effects of the
selection of boundary position on the extraction of acoustic
metamaterial properties, and that one can avoid the ambigu-
ity often associated with independent selection of signs in
expressions for effective refractive index and impedance.
These signs in the expressions for effective refractive index
and impedance are dependent. Finally, using the retrieval
method to analyze various acoustic metamaterials, we
present designs of acoustic metamaterials with negative ma-
terial properties.

II. RETRIEVAL METHOD FOR THE CALCULATION
OF EFFECTIVE PROPERTIES

We extend a method for retrieving effective material prop-
erties of electromagnetic materials31,32 to acoustic metamate-
rials. In this retrieval method, the effective refractive index n
and impedance z are obtained from reflection and transmis-
sion coefficients for a plane wave normally incident on the
slab. The effective mass density and sound speed are then
calculated from n and z. This technique allows the use of
experimental measurements to obtain metamaterial effective
properties. A schematic illustrating the retrieval method is
shown in Fig. 1. The metamaterial �Fig. 1�a�� is replaced by
a homogeneous fluid slab of material �Fig. 1�b�� which pro-
vides the same amplitude and phase of reflection and trans-
mission coefficients. Effective properties are obtained by us-
ing an inverse technique �Fig. 1�c��, which is discussed in
this section.

Let us consider the reflection R and transmission T coef-
ficients for a plane wave incident on a liquid acoustic layer
with density �2 and sound speed c2 placed between two dif-
ferent media with densities �1, �3 and sound speeds c1, c3
�Ref. 33�:

R =
�Z1 + Z2��Z2 − Z3�e−2i� + �Z1 − Z2��Z2 + Z3�
�Z1 + Z2��Z2 − Z3�e−2i� + �Z1 − Z2��Z2 − Z3�

, �1�
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T =
4Z1Z2

�Z1 − Z2��Z2 − Z3�ei� + �Z1 + Z2��Z2 + Z3�
. �2�

In these equations, Zi=�ici / cos �i is the acoustic impedance,
�i the angle between the wave vector and layer normal, �
=�fd cos �2 /c2 the phase change across the layer, f the fre-
quency of acoustic wave, and d the slab thickness. For the
simplified case of plane waves normally incident on a slab
with identical media on both sides, the reflection and trans-
mission coefficients reduce to

R =
Z2

2 − Z1
2

Z1
2 + Z2

2 + 2iZ1Z2 cot �
, �3�

T =
1 + R

cos � −
Z2i sin �

Z1

. �4�

Introducing m=�2 /�1, n=c1 /c2, k=� /c1, and �=�2c2 /�1c1,
we obtain

R =

tan�nkd��1

�
− ��i

2 − tan�nkd��1

�
+ ��i

, �5�

T =
2

cos�nkd��2 − tan�nkd��1

�
+ ��i� . �6�

These formulas are identical to formulas obtained for the
electromagnetic field.31,32 By inverting Eqs. �5� and �6�, we
obtain acoustic impedance � and refractive index n,

n =

±cos−1� 1

2T
�1 − �R2 − T2���
kd

+
2�m

kd
, �7�

� = ±	�1 + R�2 − T2

�1 − R�2 − T2 , �8�

where m is the branch number of cos−1 function. As can be
seen from Eqs. �7� and �8�, both impedance and refractive
index are complex functions of complex variables. Math-
ematically, any combination of signs in Eqs. �7� and �8� and
any m result in the same values for reflection and transmis-
sion coefficients. These issues can be resolved by imposing
additional constraints on the metamaterial properties. Passive
metamaterials require that the real part of � be positive,
which determines the sign in Eq. �8�. In addition, a positive
imaginary sound speed component is required, restricting the
imaginary part of n to negative values.

Though these conditions seem independent, careful ex-
amination of Eqs. �7� and �8� shows that the signs in these
equations are dependent. When Re��� or Im�n� is close to
zero, errors in measurement or calculation of reflection and
transmission coefficients may cause incorrect combinations
of signs in Eqs. �7� and �8�. This would create discontinuities
in n and z with frequency. To overcome this problem, we
rewrite Eqs. �7� and �8� in the form

� =
r

1 − 2R + R2 − T2 , n =
− i log x + 2�m

kd
, �9�

where

r = � 	�R2 − T2 − 1�2 − 4T2, x =
�1 − R2 + T2 + r�

2T
.

�10�

We begin by solving the right-hand side of the expression
for r, and we select whichever of the two roots yields a
positive solution for Re���. This value of r used in the ex-
pression for x eliminates its ambiguity in the expression for
n. This procedure provides consistent results and allows one
to avoid nonphysical solutions due to incorrect selection of
second sign in Eqs. �7� and �8�. However, the determination
of Re�n� from Eq. �5� is complicated by the fact of choosing
the proper value of m. Moreover, for thick metamaterials, the
solutions of n for different values of m can lie close to each
other. This problem of selecting the branch number m can be
circumvented by determining the effective parameters of a
minimum thickness metamaterial, for which m is zero. Using
this solution, the sign and branch number for increasing fre-
quency can be determined from the requirement of continu-
ous n provided the frequency steps are small enough to ac-
count for metamaterials being highly dispersive.

III. DETERMINATION OF METAMATERIAL THICKNESS

Another important issue in obtaining the effective mate-
rial properties is the determination of positions of metamate-
rial boundaries. The phase of reflected and transmitted waves

FIG. 1. �Color online� Technique used for obtaining the effec-
tive properties of a metamaterial. �a� This illustrates the system
under consideration with incident, reflected, and transmitted plane
waves. �b� This shows a slab of effective material equivalent to the
system shown in �a� at a selected frequency. �c� This illustrates a
technique used for obtaining effective properties of a metamaterial.
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should be measured at the surfaces of the metamaterial,
which are not well defined. The importance of boundary po-
sitions is illustrated using a metamaterial constructed from
hollow silicone rubber cylinders immersed in water. The ex-
tracted effective impedance of this metamaterial is shown in
Fig. 2, with different lines corresponding to different posi-
tions of left and right boundaries for the metamaterial. The
variation of impedance with effective thickness of the
metamaterial—ranging from outer radius of cylinder to
double size of unit cell—confirms that improper boundary
positions can lead to variations of an order in magnitude in
effective properties.

The ambiguity in boundary positions is resolved by using
the constraint that slabs of the metamaterial with different
thicknesses should have the same effective properties. Effec-
tive properties for two metamaterial slab thicknesses are de-
termined over a wide frequency range as a function of
boundary distance from the cylinder surface. The weight
function 	 provides a frequency averaged measure of the
difference in effective properties between the two slabs as a
function of boundary position,

	�dleft,dright�

= 1 −
1

nf



1

nf � abs„P1�f ,dleft,dright� − P2�f ,dleft,dright�…
max�P1,P2� � .

�11�

In Eq. �11�, indices 1,2 correspond to two slabs of the
metamaterial of different thicknesses, P1,2 is the effective
property of the metamaterial, dleft, dright are the displace-
ments of effective boundaries of the metamaterial from the
cylinder surface, and nf is the total number of frequencies.

The weight function is maximized when the difference in
effective properties is minimum; therefore, the coordinates of
maxima on the dleft, dright plane give the left and right bound-
ary positions of the metamaterial.

The procedure is demonstrated using the metamaterial
constructed from hollow soft silicon cylinders with relevant
geometric parameters shown in Fig. 3�a�. One weight func-
tion calculated using effective impedance as the property is
shown in Fig. 3�b�. Though the weight function has an el-
lipselike form around the maximum, meaning different sen-
sitivities to the “front” and “back” boundary positions, it was
found that the metamaterial boundary positions are approxi-
mately the unit cell boundary. Repetition for several different
slab thicknesses confirmed the same finding. To demonstrate
the effectiveness of this procedure, the frequency depen-
dence of impedance for two different thicknesses of metama-
terial before and after the determination of the metamaterial
boundary position is shown in Figs. 4�a� and 4�b�. The initial
boundary positions coincide with the surface of the cylin-
ders, while the final positions are close to the boundary of
the unit cell. Both real and the imaginary parts of the imped-
ance coincide very well after the determination of the bound-
ary positions.

The presented method was adapted as a computer code
and tested rigorously for retrieval properties of a slab with
known properties. The reconstructed values of c and � show
excellent agreement with exact values. Average absolute er-
ror was equal to 10−8 when analytically calculated reflection
and transmitted coefficients were used, and 10−6 when reflec-
tion and transmission coefficients were obtained from finite
element modeling data.34

FIG. 2. �Color online� Frequency dependence of effective im-
pedance of a metamaterial on the boundary position of an acoustic
metamaterial. Effective impedance is sensitive to the boundary po-
sitions of a metamaterial. Magenta and black colors correspond to
real and imaginary parts of impedance, respectively, and different
lines correspond to different positions of left and right boundaries
for the metamaterial from the edge of the outer cylinder to twice the
length of the unit cell. The metamaterial under consideration con-
sists of hollow soft silicon rubber cylinders arranged in a square
lattice with 1 cm lattice constant and 2 mm inner radius. The ratio
of inner and outer radii of the cylinder is equal to 2. The sound
speed in the resin is taken as 33 m/s, with the imaginary part of the
sound speed equal to 1% of the real part.

FIG. 3. �Color online� A proper procedure to determine the
boundary positions of the metamaterial. �a� Geometry of the
metamaterial under consideration, showing the initial metamaterial
thickness d and corrected thickness �dcorr=dleft-dright+d�. The arrow
directions show the positive displacements of the boundaries. �b�
Plot of a weight function 	 given in Eq. �11� shows a maximum
corresponding to the boundaries at the unit cell. Vertical and hori-
zontal axes correspond to the positions of the right and left bound-
aries of the metamaterial. The abscissa in �b� corresponds to dis-
placement of front boundary, and the beginning of the coordinates
was set on the edge of the cylinder. Calculations were made for
metamaterials with one and two columns of unit cells using acoustic
impedance as the material property.
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IV. ANALYSIS OF ACOUSTIC METAMATERIALS USING
THE RETRIEVAL METHOD

We have used the rigorous method developed to analyze
different acoustic metamaterials for possible negative effec-
tive material properties. In this section, we report two acous-
tic metamaterials showing negative effective acoustic prop-
erties over certain frequency ranges. In these calculations, we
set the imaginary part of sound speed in the soft material
equal to 1% of the real part.

The first design is the soft silicon rubber hollow cylinders
immersed in water mentioned earlier. The 2 to 1 outer/inner
radii ratio cylinders are placed in a square lattice with an
inner radius of 2 mm and a lattice constant equal to 1 cm. In
the calculated frequency dependency of the effective refrac-
tive index shown in Fig. 5, a narrow frequency band of nega-
tive index is seen around 7000 Hz. However, concurrent with
this negative real refractive index component of around −1 is
an imaginary component several times larger. This indicates
that the negative index is loss based, in contrast to the situ-
ation where negative index is obtained with simultaneous
negative mass density and negative bulk modulus. In this
design, the real part of the effective mass density is positive

whereas that of bulk modulus is negative. In addition, the
large imaginary components of the material properties are
sufficient to cause a net negative effective index. This situa-
tion is analogous to that of electromagnetic metamaterials.35

The second metamaterial design is composed of rectangu-
lar rods of soft silicon rubber attached to rigid rods arranged
in a square lattice with a 4 mm lattice constant. Intuitively,
this design could have negative mass density, since the asym-
metric boundary condition will cause the soft silicon rubber
center of mass to move out of phase with the external pres-
sure field at resonance. Retrieval of effective properties using
our method confirms the existence of a narrow frequency
region, in which the mass density is negative �Fig. 6�. The
negative mass density peaks near −1000 kg/m3, equaling the
magnitude of density of the surrounding liquid. It should be
noted in Fig. 6 that the imaginary part of density changes
sign with frequency. This should not be interpreted as chang-
ing from attenuation to gain, as that is dependent on the
imaginary part of the sound speed. The sign change in the
imaginary part of the effective density simply coincides with
a change in the phase of reflected and transmitted acoustic

FIG. 4. �Color online� Effective impedance for two slabs of
acoustic metamaterial constructed from hollow soft silicon rubber
cylinders with different thicknesses �a� before optimization of
boundary position and �b� after optimization of boundary position.
Effective impedance is independent of the thickness of the metama-
terial, formed by one and two columns of hollow cylinders, after
optimizing the boundary positions. Magenta line corresponds to the
real part of the impedance, and black line corresponds to the imagi-
nary part of the impedance.

FIG. 5. �Color online� Effective refractive index of acoustic
metamaterial consisting of hollow soft silicon rubber cylinders in
water. The configuration is the same as presented in earlier figures.
A narrow frequency band of negative index is seen around 7000 Hz.
The negative index obtained is loss based, which is different from
the double negative acoustic medium.

FIG. 6. �Color online� Effective mass density of an acoustic
metamaterial consisting of rectangular rods of soft resin �2 mm
height and 1.5 mm width� attached to rigid rods of the same dimen-
sions in water. The unit cells are arranged in a square lattice with a
lattice constant of 4 mm. A narrow frequency band around 13 kHz
shows a negative effective mass density equal in magnitude to the
density of water.
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waves. Finite element simulations32 confirm this fact.
Metamaterials with negative properties lead to interesting

phenomena such as negative refraction30 and new surface
resonances,36 which will be useful in sub-diffraction-limited
imaging in acoustics. For example, a metamaterial with
negative density equal in magnitude to the density of the
surrounding liquid for longitudinal acoustic waves will be-
have in a similar way as the materials with negative permit-
tivity in an electromagnetic field. Such an acoustic metama-
terial can be used as a “superlens” in acoustics.

V. CONCLUSION

A retrieval method of obtaining effective properties of
acoustic metamaterials from reflection and transmittance co-

efficients is presented. It is shown that sign and branch num-
ber selection can be obtained using passive metamaterial as-
sumptions coupled with the condition of a continuous index.
The influence of metamaterial boundary positions is investi-
gated, and a proper procedure is presented to obtain the cor-
rect boundary position. Two metamaterials designs—one
with negative density and the other with negative index—are
analyzed using this retrieval method.
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