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In this paper, we have demonstrated the existence of surface acoustic waves in two-dimensional phononic
crystals with fluid matrix, which is composed of a square array of steel cylinders put in air background. By
using the supercell method, we investigate the dispersion relation and the eigenfield distribution of surface
modes. Surface waves can be easily excited at the surface of a finite size phononic crystal by line source or
Gaussian beam placed in or launched from the background medium, and they propagate along the surface with
the form of “beat.” Taking advantage of these surface modes, we can obtain a highly directional emission wave
beam by introducing an appropriate corrugation layer on the surface of a waveguide exit.
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I. INTRODUCTION

The last decade has witnessed an increasing interest for
the propagation of classical waves in periodic structures;
typical is the propagation of electromagnetic waves in pho-
tonic crystals.1–3 For the artificial crystals, both theory1–3 and
experiment1 have demonstrated the existence of frequency
gaps for electromagnetic waves, which forecasts potential
applications of photonic crystal as optical devices.4–7 These
studies were soon extended to the propagation of elastic
waves in similar periodic structures composed of materials
with different elastic properties, which are known as
phononic crystals �PCs�.8–19 Because of the vectorial charac-
ters of the elastic waves and the possible coupling between
longitudinal and transverse modes, richer physics is expected
to exist in elastic waves propagating in PCs. On the theory
side, one can calculate the frequency band structure or the
dispersion relations for PC,8,9 as well as the reflection and
transmission coefficients of elastic waves through a slab of a
PC.10 Generally, the PC has a macroscopic inhomogeneity,
which allows a comparatively easy fabrication of the sample
and a direct measurement with the widely used ultrasonic
technique.11–13 Extensive applications of PCs have also been
anticipated, for example, the band gap used in sound insula-
tions and defect states used in acoustic filters, waveguides,
and so on. Recently, a refractive acoustic device by taking
advantage of the features of the passband has been experi-
mentally realized,14 and flat acoustic lens governed by nega-
tive refraction has also been reported.15,16

Surface waves �SWs� in photonic crystal have been
widely discussed both theoretically17–19 and
experimentally.20 Such surface electromagnetic waves are
not the result of negative dielectric constant in the metal but
due to the multiple-scattering effects by dielectric scatters.
They can exist in truncated photonic crystal with the surface
terminated by incomplete as well as complete cells. The style
of truncation strongly affects the dispersion relation and field
confinement of SW for both TE and TM modes.18 The anal-
ogy between photons and phonons aroused the research of
surface elastic waves in PCs. It has been shown that surface
elastic waves can be supported in semi-infinite two-

dimensional �2D� solid-solid PCs, with truncated plane being
parallel as well as perpendicular to the axis of
periodicity.21–23 Actually, as long as there exists a crystal-
vacuum boundary, under proper conditions, the surface elas-
tic modes will surely exist.24 The shear module of the solid
background medium of PCs plays an important role. In this
paper, we choose a different PC which has a fluid back-
ground, only considering that the surface plane parallels to a
row of cylinders. We use the supercell method18,21 to study
the dispersion curve and distribution of the displacement
eigenfield of SW. According to the dispersion relation, we
employ point source and Gaussian beam to excite SW at a
finite size PC’s surface and present detailed analysis to their
oscillation style. For the application of SW, we introduce a
waveguide structure and add an appropriate corrugation layer
on its exit surface. This surface indentation modulates SW
and makes them radiate into free space, then subsequently
forms a highly directional wave beam.

II. SURFACE MODES’ DISPERSION RELATION AND
EIGENFIELD DISTRIBUTION

Our 2D PC is constituted by a square array of parallel
steel cylinders �mass density �=7.67�103 kg/m3, longitudi-
nal wave velocity cl=6.01�103 m/s, transverse wave veloc-
ity ct=3.23�103 m/s� put in air background �mass density
�=1.29 kg/m3, longitudinal wave velocity cl=0.34
�103 m/s�, with R=0.49a, where R is the radius of steel
cylinder and a is the lattice constant. Because of the very
high acoustic impedance contrast of these two components
and very large filling ratio, the bulk PC can produce very
wide band gaps to support the SW. We use the supercell
method in conjunction with the multiple-scattering theory to
study the dispersion relation and eigenfield distribution of
SW. The key point of the supercell method is to design an
appropriate auxiliary infinite periodic superstructure in order
to apply the Bloch theorem. Figure 1 is the schematic picture
of this 2D supercell, which is shown in the line frame and
has length L=23a and width d=a. This is a rectangular sym-
metric cell containing 11 inner cylinders. The auxiliary su-
perstructure is formed by the infinite periodic translation of
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the unit cell, i.e., the supercell, along both x and y axes. It is
constituted by crystal slabs with width 11a alternating with
air slabs with width 12a. It is a suitable sample that the
crystal slab and air slab are both thick enough to ensure that
the surface modes at any two neighboring crystal-air inter-
faces do not interact with each other. Under this limit, the
dispersion curve obtained is expected to converge to the dis-
persion curve of the surface modes of the semi-infinite crys-
tal.

Firstly, we present the bulk band structure of a periodic
square array of steel cylinders with radius R=0.49a put in air
background in Fig. 2�a�. As can be seen, the PC generates a
complete band gap in the reduced frequency �hereafter, all
the involved frequencies are reduced by 2�c /a, where c is
the longitudinal wave velocity in air� ranging from about
0.25 to 0.95. This gap is wide enough and its lower edge
appears in the very low frequency of 0.25; therefore, the
sample is a good candidate to support surface modes.

As is known, SW is characterized by the decaying field on
both sides in perpendicular directions away from the surface
plane. For our system, on the air side, the exponential decay
of the field is a straightforward consequence of the propaga-
tion vector along the surface being greater than the back-
ground wave vector, whereas on the crystal side, the field
decays because of Bragg scattering effects in band gaps. That
is to say, the dispersion curves of SW must satisfy two es-
sential conditions: be restricted to the right side of the back-
ground dispersion line and lie within the band gaps of the
bulk crystal. Figure 2�b� shows the dispersion curves of SW

�solid line� mixed with the projected bands on the �-X direc-
tion �shaded region� and the background dispersion line
�dashed line�. It clearly shows that the surface modes appear
close to the first Brillouin zone boundary, in a narrow fre-
quency range from about 0.4 to 0.46, and the curve emanates
from the dispersion line of the background. There is a simple
physical picture for the surface mode. The outmost periodi-
cally arrayed cylinders �i.e., the surface� of the PC Bragg
scatter the acoustic wave propagating parallel to the surface,
making the background dispersion line curve downward,
which results in the enlarging of the wave number corre-
sponding to a frequency, such that the acoustic waves be-
come attenuated along the normal on the background side,
while on the PC side, they attenuate because of the gap.
Hence, the scattering of the surface structure to acoustic
waves plays an important role in the creation of the surface
mode. The bigger the cylinder size �i.e., the higher the filling
fraction�, the stronger the scattering, and consequently the
bigger the deviation of the dispersion curve from the air line
and the easier a surface mode to be observed. In other words,
the dispersion curve of the surface mode is continuously de-
pendent on the filling fraction. For very high filling fraction
�as the case discussed here, R /a=0.49, there is a big devia-
tion of the dispersion curve from the background dispersion
line, in case the surface mode has a short attenuation length
so that the surface mode is easier to demonstrate, while for
lower filling fraction �e.g., R /a=0.3 or 0.4�, the dispersion
curve is closer to the background line from below, in case the
surface mode has a comparatively longer attenuation length.

FIG. 1. A supercell shown in the line frame. The sample is composed of steel cylinders with radius R=0.49a put in air background. The
lengths of crystal slab and air slab are 11a and 12a, respectively. The supercell has length L=23a and width d=a. It is homogeneous along
the z direction.

FIG. 2. �a� Bulk band structure for the PC consisting of steel cylinders put in air background with a square lattice. The radius of cylinder
is R=0.49a. Inset is the irreducible Brillouin zone. �b� Surface mode dispersion curves �solid line� in the first band gap. Dashed line is the
dispersion line of air background. Shaded region is the projected bulk bands on the �-X direction. ky is the wave vector along the crystal-air
interface, in unit of � /a. The frequencies of both two pictures are in unit of 2�c /a, where c is the longitudinal wave velocity in air.
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For even lower filling fraction, the surface mode approaches
the bulk mode with an even longer attenuation length, in case
the dispersion curve incorporates into the background line,
which means the disappearance of the surface mode.

For further analysis of surface modes, we investigate the
eigenfield distribution of mode A �marked in Fig. 2�b��,
which has wave vector ky =0.9� /a and frequency �=0.44.
Figure 3�a� displays the spatial distribution of the displace-
ment eigenfield amplitude in a supercell for mode A. In order
to observe the variation of field more clearly, we extract
numerical values of Fig. 3�a� at the y=0 axis in Fig. 3�b�.
The eigenfield distribution is centrosymmetric and the stron-
gest field value is localized at the crystal-air interfaces. In air
slab, away from the surface, the field amplitude rapidly de-
cays as an exponential function, which is like a Rayleigh
surface wave. In crystal slab, the field only exists in the
interspaces between cylinders and also declines when close
to the center of the supercell. The field amplitude of the inner
cylinder remains zero because compared with air back-
ground, steel is like a rigid medium and acoustic waves are
almost totally reflected on the interfaces.

III. SURFACE ACOUSTIC WAVES AT FINITE SIZE
SURFACE

From Fig. 3, we can find that the field amplitude closely
approaches zero at the boundary and at the center of a super-
cell, that is to say, the air slab and the crystal slab which we
choose are both thick enough to prevent the coupling of the
surface modes at every two neighboring crystal-air inter-
faces. So when the supercell becomes bigger, the surface
modes will keep steady. Extremely when the air slab in a
supercell broadens without limit, only leaving a single crys-
tal slab in air background, it is anticipated that the surface
modes can still survive. However, it is impossible to calcu-
late eigenmodes for infinite supercell, so we need an external
source to excite surface acoustic waves. We select a finite
size PC, which has width 7a and length 60a, placed in air
background and discuss how to excite SW at its surface. To
our knowledge, if a source can offer big angle incident
waves on the surface, the SW will be easily excited. We
perform a numerical simulation for using line source �paral-
lel to the z direction� and Gaussian beam �homogeneous in z
direction� to induce SW, and the structure is graphically
shown in Fig. 4�a�. Firstly, let us consider the point source,
which is placed at S�x=0,y=0�, holding a distance a above
the crystal-air surface. The incident frequency is 0.44,

matching mode A. The near-field spatial distributions of
pressure field are plotted in Fig. 4�b�. We can see that the
energy radiated from the source is separated into two parts:
one spreads upward in all directions, maintaining configura-
tion of a point source, whereas the other is localized at the
surface, taking nonradiative surface modes. Next, we take
account of the Gaussian beam, which has an incident angle
of 70° and also holds a frequency of 0.44. The radiated field,
plotted in Fig. 4�c�, has also been divided into two parts: one
is reflected at the surface as the reflected angle equals the
incident angle, and the other is SW propagating along the
surface. Actually, except the amplitude and original phase,
the configurations of SW induced by these two different
sources are absolutely the same �detailed analysis is pre-
sented later�. It can also be clearly observed that these sur-

FIG. 3. �a� Spatial distribution
of displacement eigenfield in a su-
percell for mode A. Lightness and
darkness denote strong and weak
intensities, respectively. �b� Ex-
tractive field at the y=0 axis of
Fig. 3�a�.

FIG. 4. �a� Schematic picture of structure and external sources
for inducing SW. Line source is placed at S�x ,y=0� parallel to the z
direction, holding distance a above the surface. Gaussian beam has
the incident angle of 70°. The incident frequency of both sources is
0.44. �b� Near-field spatial distribution of pressure field generated
by the line source. �c� Near-field spatial distribution of pressure
field generated by the Gaussian beam.
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face modes rapidly attenuate to zero in the x direction away
from the surface.

It needs to point out that the preceding discussions in Sec.
II about SW’s dispersion relation and eigenfield distribution
are for infinite system. Theoretically, SW cannot be excited
by any source placed in background medium when the sur-
face has an infinite length. Because from Fig. 2�b�, in the
same frequency, the background wave vector is always
smaller than the wave vector of SW. However, for finite size
surface, for a given frequency, the permissive SW’s wave
vector is no longer a single certain value k but has an oscil-
latory range �k, which satisfies the relation �y�k�1, where
�y approximates the measure of the length of surface. As
long as �y is not particularly big, wave vector from external
sources can always fall in the �k range, then the SW will be
certainly excited. So, we can infer that the SW is the inherent
property for our system. It has nothing to do with the type
and the location of source but only depends on the incident
frequency.

We extract a part of field amplitude value of Fig. 4�b� �the
characters of SW in Figs. 4�b� and 4�c� are the same, so we
only need to choose one of them� along the surface to inves-
tigate detailed physical properties �see Fig. 5�a�, the oscilla-
tion style of the SW is a representative “beat” mode�. As is
known, beat is formed by the interference of two coherent
waves which keep the same propagation direction and am-
plitude but have little wave vector difference. The SW is a
Bloch-type wave, so the wave function can be written as
	k�y�=u�y�eiky, where u�y� is a periodic modulation function
and its period is the lattice constant a, while k is the Bloch
wave vector of SW. The beat originates from the interference

of two surface modes, which possess wave vectors k1
=0.9� /a and k2=2� /a−k1=1.1� /a, respectively. Actually,
they are a couple of degenerate states and symmetrically take
the first Brillouin zone boundary as the symmetrical center.
Thus, the modulatory period of beat is T1=2� / �k2−k1�
=10a. We solve the modulation period in different SW’s fre-
quencies by both numerical simulation and theoretical calcu-
lation and compare them to check this beat effect. In Fig.
5�b�, it is clearly found that they match very well. In the
wave package, the small vibrational period T2=a originates
from the periodic function u�y�.

IV. COLLIMATION EFFECT

In recent years, some research has been done to achieve
highly directional emission of light beam via utilizing sur-
face electromagnetic waves in a waveguide structure.25,26

They firstly decrease the radius of the surface monolayer
cylinders at both sides of the waveguide exit to induce sur-
face states. Then, they made some appropriate corrugation on
that monolayer, which provided a periodic modulation to the
surface electromagnetic waves. This surface modulation can
produce a collimated light beam. However, using surface
acoustic waves to achieve collimation effect has not been
reported. We did this work and for our system, the problem is
much simpler because the surface acoustic waves have al-
ready been induced easily. So long as analogously design a
waveguide structure and do some appropriate corrugation on
its exit surface, we can also engineer beaming effect.

Figure 6�a� shows the considered waveguide structure,
which has no surface corrugation. A bulk of finite size PC, of
length 40a and width 7a, is placed in air background and a
row of cylinders along the plane y=0 are removed to con-
struct a waveguide. Figure 6�b� is the near-field spatial dis-
tribution of pressure field radiated from a line source placed
at the waveguide entrance S�x=0,y=0� and the emissive fre-
quency is also chosen as 0.44. Above all, the frequency 0.44
falls into the absolute band gap of the bulk PC, that is to say,
it can support a waveguide mode. So, the propagation of
radiative waves from the source is restricted in the wave-
guide and cannot penetrate into the PC, whereas at the en-
trance and exit of the waveguide, since there is no restriction,
waves diffract in all directions like a point source. On the
other hand, a frequency of 0.44 lies within the range of SW’s
frequency, so the source will excite SWs at both upper and
lower surfaces. Figure 6�b� clearly shows that the propaga-
tion of surface mode along the surface still takes the form of
beat, which is similar to Figs. 4�b� and 4�c�. Under this con-
dition, the waveguide mode and the surface mode are inde-
pendent, and there is no interaction. So, in order to produce a
directional beam, it needs to introduce some modulation to
the surface mode and make it couple with the waveguide
mode. A simple scheme is to add a number of steel cylinders
on each side �the left and the right� surface of the waveguide
exit to form a corrugation layer, which has a smaller radius
r=0.4a, as schematically shown in Fig. 6�c�. Here, the num-
ber of cylinders on each side surface of the exit �denoted
with N� is N=10. On the x axis, they are placed at
the x=7a plane, 0.5a above the surface. On the y axis,

FIG. 5. �a� Extractive field amplitude value along the surface in
the range from 10a to 30a on the y axis of Fig. 4�b�. �b� Depen-
dence of modulation period of “beat” versus incident frequency.
Solid line is the result of numerical simulation and dashed line is
the result of theoretical calculation.
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they are periodically �period Tc=2a� placed at y
= ±1.5a , ±3.5a , ±5.5a , . . .; namely, these cylinders are
placed above on the middle of two bulk crystal cylinders.
Since only one layer of sparse corrugation is introduced,
there would be only a slight modification to the dispersion of
the surface mode. However, this modification can make the
surface mode leaky or radiative, while it maintains the over-
all surface mode feature �e.g., the energy flux dominantly
confined around the surface�. Spatial distribution of the near-
field pressure field for this modified structure is plotted in
Fig. 6�d�. Compared with Fig. 6�b�, because of the modula-
tion to surface modes, the nonradiative SW along the upper
surface is transferred into the radiative mode. As a result, the
wave diffracted by the waveguide exit couples with the
modulated SW and they constructively interfere with each
other at the center. Then, directional beam radiating upward
along the x direction with very little angle divergence can be
distinctly observed.

The corrugation layer resembles a diffraction grating illu-
minated by SW. Beaming effect is expected when the grating
period Tc coincides with the surface modes’ modal wave-
length 
s. The SW at the surface holds the beat mode; hence,
the average wave vector is ks= �k1+k2� /2=� /a, so the modal
wavelength is 
s=2� /ks=2a, which exactly equals Tc. A re-

ciprocal lattice vector kh=2� /Tc=� /a is added to the SW’s
wave vector, folding the mode dispersion relation into the
core of Brillouin zone; namely, the nonradiative surface
mode is transferred into the radiative mode. Then, all the
diffracted waves interfere in free space, giving rise to the
zero-level main maximum in the center of diffraction grat-
ing, which is presented as a highly directional beam in far
field.

The collimation quality can be judged by the far-field di-
vergence angle �, which depends on many momenta of cor-
rugation. Fixing the location of corrugation scatterers, we
draw the far-field pressure field amplitude as a function of �
for different radii and for different numbers of corrugation
layer cylinders in Figs. 7�a� and 7�b�, respectively. In Fig.
7�a�, when there is no corrugation, the curve is a fluctuant
line, i.e., acoustic waves spread in all directions and no col-
limation effect, which matches Fig. 6�b�. Only when corru-
gation has been done on the surface the beaming phenom-
enon arises. The corrugation layer cylinders’ radius greatly
affects the collimation quality. When the radius is small, SW
cannot feel the change of surface and the modulation is
weak. As the radius increases, the central peak distinctly ap-
pears. However, that does not mean that the bigger the ra-
dius, the greater the collimation. Actually, the optimized ra-
dius is r=0.4a, and when the radius rises to the biggest value

FIG. 6. ��a� and �c�� Schematic
pictures of waveguide structure
without and with modified sur-
face, respectively. The point
source with frequency of 0.44 is
placed at S�x=0,y=0� �see text
for more detailed description of
the corrugation layer for Fig.
6�c��. � is the azimuthal angle.
��b� and �d�� Near-field spatial dis-
tribution of pressure field for �a�
and �c�, respectively.

FIG. 7. Far-field radial compo-
nent of pressure field amplitude
radiated out of modified wave-
guide exit as a function of azi-
muthal angle � for �a� different ra-
dii �r� and �b� different numbers
�N� of corrugation layer cylinders,
respectively
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r=0.5a, the peak value at the center is lower than the opti-
mization because of the strong reflection by the big cylin-
ders. The number of cylinders in the corrugation layer �de-
scribed with N, the number of cylinders on the left or right
side surface of the exit, located at the places with y
= ±1.5a , ±3.5a , ±5.5a. . ., beginning from y= ±1.5a; for the
system shown in Fig. 6�b�, N�10� is also an important fac-
tor. From Fig. 7�b�, we can find that the more the cylinders,
the more energy is collected to converge in a narrower angle
at the center. This character is the same as a diffraction grat-
ing: the increasing of the number of grating slits causes the
narrowing of the interference maxima. So, the optimized
number is N=10. Under optimum conditions, the far-field
divergence angle is only about 6.0°.

V. CONCLUSION

In this paper, we use the supercell method to investigate
surface acoustic waves in 2D solid-fluid phononic crystal,
which is composed of square array of steel cylinders put in
air background with high filling fraction R /a=0.49. The sur-
face modes appear within a narrow frequency range near the
first Brillouin zone boundary, from about 0.4 to 0.46. The
eigenfield distribution of a certain surface mode distinctly
exhibits the SW’s basic character: decays in perpendicular

directions at both sides away from the surface plane. Next,
we concentrate on SW at a finite size PC’s surface. The SW
can be easily excited by external sources placed in back-
ground medium, and its configuration is the representative
beat mode, which is formed by the interference of two Bloch
waves having wave vectors k1=k and k2=2� /a−k, respec-
tively. It possesses both modulatory period T1=2� / �k2−k1�
and vibrational period T2=a. For further application of SW,
we introduce a waveguide structure and make corrugation on
the surface at both sides of the waveguide exit to offer ap-
propriate periodic modulation to the SW. This modulation
changes the nonradiative SW into radiative waves, which
constructively interfere at the center of waveguide and sub-
sequently generate a collimated beam emitting along one di-
rection with little angle divergence in far field. The collima-
tion quality depends on many factors, and under optimized
conditions, the far-field divergence angle is only about 6.0°.
The surface acoustic wave beaming effect may have impor-
tant application in ultrasonic device designing.
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