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First-principles study of ternary fcc solution phases from special quasirandom structures
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In the present work, ternary special quasirandom structures (SQSs) for a fcc solid solution phase are
generated at different compositions, xA=xB=xC=% and xA=%, szxczi, whose correlation functions are
satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing
enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the
binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc
ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution
phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions.
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I. INTRODUCTION

In calculation of phase diagrams (CALPHAD)
modeling,'? thermodynamic properties of a solution phase in
a ternary—or higher-order—system are usually obtained
through combining those of its constitutive binary systems
and occasionally with ternary interaction parameters. Since
the most dominant interatomic reaction in a multicomponent
system is that of the binaries, accurate thermodynamic de-
scriptions which are capable of reproducing the characteris-
tics of binary solution phases are prerequisites to a successful
multicomponent thermodynamic modeling. In this regard,
considerable efforts have been made to develop models for
combining thermodynamic descriptions for binary solution
phases to be used in higher-order systems.>

In typical thermodynamic modelings, ternary interaction
parameters for solid solution phases are not introduced since
their thermochemical data, such as mixing enthalpy, which
are needed in the parameter evaluation are very difficult to
measure. In fact, obtaining accurate thermochemical data for
solid solution phases is challenging even for binaries due to
sluggish kinetics at low temperatures, so that it is hard to
reach a complete thermodynamic equilibrium. Furthermore,
the existence of intermediate phases narrows the experimen-
tally accessible composition range for thermochemical prop-
erties of solid solution phases. As the number of elements
increases in a multicomponent system, the complexity of ac-
quiring reliable data also increases. Consequently, interaction
parameters for the excess Gibbs energy of binary solid solu-
tion phases are usually evaluated only from phase equilib-
rium data and those of ternary are usually omitted due to the
lack of data.

Fortunately, the dearth of experimental data for solid so-
lution phases can be overcome by atomic level calculations,
such as first-principles calculations. Especially designed su-
percells, the so-called special quasirandom structures (SQSs)
suggested by Zunger et al.,” whose lattice sites are occupied
by constituent atoms so as to reproduce the average correla-
tion functions of a completely random solution, are one of
the representative methods. SQSs can be completely relaxed
within density functional theory (DFT) codes to consider the
effect of local relaxation and can also be applied to any other
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system by changing the atoms because they are structural
templates. A limitation is that SQSs of a unit cell size that is
manageable with present DFT codes can only be obtained at
certain compositions, e.g., x=0.25, 0.5, and 0.75 in the sub-
stitutional A,_,B, binary alloys. Nevertheless, first-principles
study of SQSs at those three compositions permits accurate
predictions of various properties of solid solutions. It has
already been successfully applied to calculate thermody-
namic properties of binary solid solution phases for fcc, bec,
and hcp phases.!%-12

Two ternary fcc SQSs in an A-B-C system, which can be
applied to four dlfferent compositions (x,=xg=xc= 3, X4= é,
Xg=Xc= i, X4= i, X4= 5, Xc= i, and x,=xp=7, xc=5), are
developed to investigate the mixing enthalpies for ternary fcc
solid solution phases in the present work. The organization
of this paper is as follows. The impact of ternary interaction
parameters on a ternary solution phase in the CALPHAD
approach is briefly reviewed. Then, the generated ternary fcc
SQSs are characterized in terms of their atomic arrangements
to reproduce the pair and multisite correlation functions of
completely random fcc solid solutions. Finally, the generated
SQSs are applied to the Ca-Sr-Yb system, which presumably
has fcc solid solution phases throughout the entire composi-
tion range in all three binaries and ternary.

II. TERNARY INTERACTION PARAMETERS

The Gibbs energy of a ternary solution phase ¢ is ex-
pressed as®

c c
G?= 2 5GP+ RT2 x; Inx; + “G™™ + “G™? (1)
i=1 i=1

where x; is the mole fraction of element i, G}" % is the Gibbs
energy of ¢ phase of pure element i, and ** Gbln ¢ and ©G'em™?
are the excess Gibbs energies of the constitutive binary and
ternary systems, respectively. The excess Gibbs energies for
binary and ternary systems can be further described as

c=1 ¢

xbem E 2 X 2 dez(x - X; )v (2)

i=1 j>i
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wEm=> > > x,»xjxk(Lff’x,- + Lj-bxj +Lx,), (3)
i=1 j>i k>j

where “Lf" is the vth order interaction parameter'? in a binary
and normally described as

*LE="a+"bT, (4)

where "a and b are model parameters evaluated from experi-
mental information. The ternary parameter of element i, L;b,
in Eq. (3) also has the form of Eq. (4). If all three L param-
eters in Eq. (3) are identical, as in a ternary regular solution,®

L{=L¢=L}=L%, (5)

then the ternary excess Gibbs energy shown in Eq. (3) can be
further simplified to

c-2c-1 ¢
SGm=2 2 Y xixjka;?ka (6)
i=1 j>ik>j

since x;+x;+x;=1 in a ternary.

III. TERNARY fce SPECIAL QUASIRANDOM
STRUCTURES

Thermodynamic properties of solid solution phases can be
calculated in several ways (e.g., see Refs. 14—19). A popular
approach is to use a database of first-principles calculations
to determine the so-called effective cluster interactions that
describe the energetics of the alloy system of interest. These
interactions are then used as an input for efficient statistical
mechanics methods, such as the cluster variation method or
Monte Carlo simulations. While this general approach is able
to model ordered phases (with potential point defects) and
disordered (with potential short-range order) within a unified
framework, it can be computationally demanding. Fortu-
nately, in cases where the sole objective is to obtain a reliable
thermodynamic model for disordered phases that can be rea-
sonably assumed to lack significant short-range order, the use
of SQS provides a considerably more straightforward and
computationally efficient approach.

As discussed in Sec. I, first-principles study of SQS can
effectively consider the limitations discussed above, and it
has been demonstrated that binary SQSs can be applied to
calculate thermodynamic properties of binary solid solutions,
such as mixing enthalpy, for fcc, bee, and hep structures.'0-12
It is thus anticipated that first-principles calculations of ter-
nary SQSs should be able to reproduce thermodynamic prop-
erties of ternary solid solutions if their atomic configurations,
which are represented as correlation functions, are very close
to those of ternary solid solutions. Correlation functions of
solid solution phases are well derived by Inden and Pitsch.?
In the following section, the correlation functions for binary
and ternary systems are briefly summarized.
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FIG. 1. Atomic arrangements of the ternary fcc SQSs in their
ideal, unrelaxed forms. All the atoms are at their ideal fcc sites,
even though both structures have the space group P1.

A. Correlation functions

The normalized correlation functions l:[k in crystalline
structures are defined as

_ 1
CciCy c1—1 _cr—1 o1
II, = II752, %= — > oy o ok, (7)

k site

where the sum is over all the distinctive k-site clusters, which
are geometrically equivalent, in the N lattice site structure.
When k=1,2,3,..., then k-site clusters are point, pair,
triplets, and so forth. Site occupation variables are denoted
as oy, where the subscript k indicates that the kth consti-
tuent is located at the corresponding site. The superscript
¢y takes values of 2, 3,..., C, with C as the number of con-
stituents, which represents a constituent ¢, at a given lattice
site.

For binary systems when C=2, conventional values of the
site occupation variables o are =1 depending on whether a
lattice site is occupied by A or B atoms. According to Eq. (7),
the normalized point correlation function for the second con-
stituent site (B atom sites) is given as H%ZNL]EO'%_I, with
;=1 or —1. It is worth noting that the atom sites do not need
to be distinguished in a binary system since they are switch-
able. With the mole fractions of A and B being x, and xp,
respectively (x +xp=1), then IIj=x,—xz For a k-site

144204-2



FIRST-PRINCIPLES STUDY OF TERNARY fcc...

PHYSICAL REVIEW B 76, 144204 (2007)

TABLE I. Pair and multisite correlation functions of ternary fcc SQSs when x, =xB=xC=%. The number in square brackets next to ﬁk,m
is the number of equivalent figures at the same distance in the structure, the so-called degeneracy factor.

SQS-N
Random 3 6 9 15 18 24 36 48
I1,,[6] 0 0 0 0 0 0 0 0 0
I,,[12] 0 0 0 0 0 0 0 0 0
11, ,[6] 0 0 0 0 0 0 0 0 0
1, (3] 0 0.25 -0.125 0 0 0 0 0 0
11, ,,[6] 0 0 0 0 0 0 0 0 0
11, ,[3] 0 0.25 -0.125 0 0 0 0 0 0
M, ;[12] 0 -0.25 -0.0625 -0.0625 0 -0.01042 0 0 0
1, ;[24] 0 0 0 0 0 0 0 0 0
I, 5[ 12] 0 -0.25 -0.0625 -0.0625 -0.06667  —0.01042 0 0 0
11, 4[6] 0 0 0 0 -0.075 0 0 -0.04167 0
I, ,[12] 0 0 0 0 -0.01443 0.0842 0 0 -0.02255
IT, 4[6] 0 0 0 0 —0.05833 0.09722 0.04167  —0.04167 0.09896
IT; 8] 0 0.125  -0.01563 0.03125 0.04063 0.03125 0.01953  —0.00391 0.01953
I15,[24] 0 0 0 0 -0.03789 0 0.01353 0.00226 0.00338
1, ,[24] 0 -0.125 0.01563  —0.03125 0.00938  -0.03125  -0.00391  -0.02734 0
115, 8] 0 0 0 0 —0.00541 0 0.01353  —0.00226 0.01691
;. 12] 0 -0.125 0.0625 0 -0.025 0 -0.01562 0 -0.00391
115,[24] 0 0 0 0 0.2165 0.01804 0 0.00902 0
IT5,[12] 0 0 0 0 0 —0.03608 0.02706  —0.01804 0.00677
15 ,[24] 0 0.125  —0.0625 0 -0.0125 0.01042 0.01563 0.01563  —0.00781
;5[ 12] 0 0.125  -0.0625 0 -0.025 -0.02083  -0.01562  -0.01042  -0.02734
IT5,[12] 0 0 0 0 0 0 0.00902 0 0.00226

cluster, the normalized correlation functions for the binary
solid solution are formulated as

ﬁk = (o4 = XB)k-

(8)

Similarly, for ternary systems when C=3, the values of
the site occupation variables o conventionally take +1, 0, or
—1 if a lattice site is occupied by A, B, or C atoms, respec-
tively. The normalized point correlation function for the sec-
ond constituent site (B atom sites) is given as H%:NllEazl'l,
with o;=+1, 0, or, —1. For the third constituent site (C atom
sites), the correlation function can be given as H?
=1%12031_1, with o;=+1, 0, or, —1. With the mole fractions
of A, B, and C being x,, xz, and x., respectively (x,+xp
+xc=1), then H%zxA —xc and H? =x,+xc. The vanishing of
xp is due to its site occupation variable being 0. For a k-site
cluster with ng B atom sites and n, C atom sites (ng+ne
=k), the normalized correlation functions for the ternary
solid solution are denoted as

)

ﬁk=(xA—.xC)”B(xA +xc)"C with n3+nc=k.

B. Generation of ternary fcc special quasirandom structure

In the present work, two different ternary fcc SQSs are
generated. The first SQS is at the equimolar composition
where xA=xB=xC=_% and the second is at xA=%, xB=xC=i.
By switching the occupation of the A atoms in the second
SQS with either B or C atoms, two other SQSs can be ob-
tained where XA=41L x3=%, xczi and xAzxgzi, xczé.
Therefore, mixing enthalpy at four different compositions in
a ternary system can be determined from first-principles total
energy calculations of ternary fcc SQSs by

AH(AaBch) = E(AaBch) - XAE(A) - XBE(B) - xCE(C)’
(10)

where E represents the total energy of each structure, and the
reference states for all pure elements are fcc.

When the number of atoms in the ternary SQS is less than
24, the alloy theoretic automated toolkit>' (ATAT) has been
used to generate ternary fcc SQSs. Since the ATAT enumer-
ates all the atomic configurations within each supercell and
then checks its correlation functions, the time needed to find
SQSs increases exponentially as the size of a supercell in-
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TABLE II. Pair and multisite correlation functions of ternary fcc SQSs when xAzé, szxczi. The number in square brackets next to

ﬁk,m is the number of equivalent figures at the same distance in the structure, the so-called degeneracy factor.

SQS-N
Random 4 8 24 32 48 64

1, [6] 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
I, ,[12] 0 0 0 0 0 0 0 0
1, ,[3] 0.0625 -0.125 0.0625 0.0625 -0.0625 0.0625 0.0625 0.0625
I1,,[6] 0 0 0 0 0.09021 0 0 0
I, 53] 0 0.125 0.0625 -0.0625 0.08333 0 0 0
1, [12] 0.0625 0.0625 -0.00781 0.074219 0.0625 0.0625 0.0625 0.05957
11, 5[24] 0 0 0 0.006766 0.02255 0 -0.002255 0.003383
I, 5[ 12] 0 -0.0625 -0.10156 0.011719 0.02604 0 -0.002604  —0.006836
1, ,[6] 0.0625 -0.125 0.015625 0.085938 0.15625 0.0625 0.0625 0.361328
I, ,[12] 0 0 0 -0.040595 0 -0.05413 0.009021  —0.010149
11, ,[6] 0 0.125 -0.046875  —0.023437 0.07292 0 -0.03125 0.193359
5 [8] -0.015625  -0.015625 0.089844  -0.068359  -0.015625  -0.05518 0.001953  -0.015625
I15,[24] 0 0 0 0.010149  -0.013532 0.00254  —0.003383 0.010149
1, ,[24] 0 0.015625  —0.058594 0.005859  -0.015625 0.01025  -0.005859 0.008789
115, 8] 0 0 0 -0.010149 0.013532 0.00761 0.02368 0.005074
I, ,[12] -0.015625 0.03125 -0.015625 0.019531 0015625  -0.05078  -0.033203  -0.050781
I15,(24) 0 0 0 0.010149  -0.036084  -0.01015 0 -0.025372
M, ,[12] 0 0 0 -0.040595  -0.027063  -0.02030  —0.003383 0.030446
15 ,[24] 0 -0.03125 0.046875 0.005859 0.007813 0 0.003906  —0.008789
;5[ 12] 0 -0.03125 0.078125 0.007813  -0.036458  -0.01172 0.013672  -0.017578
I3 ,[12] 0 0 0 0.006766 0 0 0.001128  —0.020297

creases. For the sake of efficiency, to find SQSs bigger than
24 lattice sites, a Monte Carlo-like scheme?? has been used.
In each supercell with different lattice vectors, atom posi-
tions are randomly exchanged between the atoms, and corre-
lation functions of a supercell are calculated after every al-
ternation. If the correlation functions of a new state are
getting closer to those of random solutions, then the new
configuration is accepted. Otherwise the new state is dis-
carded and another configuration will be generated from
the previous one. This process continues until the atomic
arrangement of a supercell converges to the closest correla-
tion functions of the random solution. In both methods, di-
rect search via ATAT and Monte Carlo-like scheme, a super-
cell whose correlation functions match best with that of a
completely random structure is chosen as the SQS at a given
number of lattice sites.

The selected SQSs at two different compositions, SQS-24
when x,=xz=xc=1 and SQS-32 when x,=3 and xz=xc=1,
are shown in Fig. 1. These two SQSs are selected for later
calculations because they are adequate with respect to their
size and correlation functions at each concentration.’! The
space groups of both structures are P1 with all the atoms at

their ideal fcc sites. The correlation functions of the gener-
ated two SQSs are given in Tables I and II, respectively.

IV. FIRST-PRINCIPLES METHODOLOGY

The Vienna ab initio simulation package? (VASP) was
used to perform the density functional theory (DFT) elec-
tronic structure calculations. The projector augmented wave
method®* was chosen and the generalized gradient
approximation® was used to take into account exchange and
correlation contributions to the Hamiltonian of the ion-
electron system. An energy cutoff of 364 eV was used to
calculate the electronic structures of all the SQSs. 5000 k
points per reciprocal atom based on the Monkhorst-Pack
scheme for the Brillouin-zone sampling were used.

In all first-principles calculations of binary and ternary
SQSs in the present work, structures are relaxed in two ways:
full relaxation and volume relaxation to preserve the fcc
symmetry. It should be emphasized here that the preserved
symmetry is that of SQS when all the atoms are substituted
into a single element, which is the underlying fcc symmetry.
For the full relaxation of SQS, structures are completely re-
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laxed with respect to all degrees of freedom, i.e., cell shape,
volume, and ionic positions, while the symmetry-preserving
relaxation only allows us to change the cell volume for cubic
structures, such as fcc and bec. In calculating hep SQSs,
however, relaxing only the volume will fix the ¢/a ratio of
the underlying hcp symmetry.'> Therefore, the shape of
SQSs has to be relaxed as well as the volume in hcp SQS
calculations. Since the present work focuses on the calcula-
tions of fcc SQSs, symmetry-preserving relaxation is equiva-
lent to volume relaxation. For symmetry-preserved calcula-
tions, all the atoms are still at the lattice sites of fcc’s and
only the effective lattice parameter of fcc changes with this
constrained relaxation scheme. However, the local relaxation
due to the like and dislike bondings cannot be taken into
account. Further discussion with regard to the different re-
laxation schemes of SQSs can be found in Ref. 12.

V. RESULTS AND DISCUSSIONS

The mixing enthalpy derived from first-principles calcu-
lations of ternary fcc SQSs should be compared to relevant
experimental measurements. However, there are always or-
dering effects at low temperatures where the fcc solid solu-
tions show complete solubility in binaries, such as Cu-Au
and Au-Pd systems. Due to such ordering in binaries, it is

T T T T T T T T T
0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
Mole Fraction of Ca

(d) Yb-Ca (fcc)

almost impossible to reliably determine the mixing enthalpy
for ternary fcc solid solutions from experiments.

In this work, the Ca-Sr-Yb system has been selected to
apply the generated ternary fcc SQSs, which presumably has
complete solubility in the fcc phase for all binaries and ter-
nary without any reported order-disorder transition. Both the
Ca-Sr and Ca-Yb systems show complete solubility for both
fcc and bcc phases at low and high temperatures, respec-
tively, without the formation of any intermetallic
compounds.?®?” There is no reported phase diagram for the
Sr-Yb system; however, from the similarity of the two binary
systems, Ca-Sr and Ca-Yb, it can be postulated that Sr-Yb
would also have complete solubility for both fcc and bce
phases. Consequently, it may cautiously be expected that the
combined ternary, the Ca-Sr-Yb system, would have the fcc
solid solution phase throughout the entire composition range
at low temperatures.

A. Binary special quasirandom structures for the Ca-Sr-Yb
system

Prior to applying the ternary SQSs to the Ca-Sr-Yb sys-
tem, the mixing behavior of the fcc phase in its constitutive
three binaries was investigated through eight-atom binary fcc
SQSs at three different compositions, namely, x=0.25, 0.5,
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FIG. 3. (Color online) SQS bond lengths for three binaries, Ca-
Sr, Yb-Sr, and Yb-Ca. Error bars correspond to the standard devia-
tion of the bond length distributions.

and 0.75 in A_,B, alloys. Calculated mixing enthalpies from
binary fcc SQSs are combined with experimental data from
the literature?®? to evaluate interaction parameters in Eq. (4)
for each binary. For the sake of simplicity, parameters for bcc
have been modeled as identical to those of fcc. Binary becc
SQSs have also been calculated and included in the param-
eter evaluation process. Figure 2 shows that the formation
energies of binary bcc and fcc SQSs are very close to each
other in all cases. The congruent melting of bce is observed
in both the Ca-Sr and Yb-Ca systems; thus, the Sr-Yb system
has been modeled to have it as well on the assumption that
Sr-Yb would behave similarly.
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three binaries is compared with the ones with ternary interaction
parameters. Open and closed symbols represent symmetry-
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Calculated mixing enthalpies for fcc and bcce phases of the
three binaries are shown in Fig. 2 with first-principles calcu-
lations of binary fcc and bee SQSs. Mixing enthalpy of the
liquid phase in Ca-Sr is also calculated and compared with
experimental measurement.?’ Structural analysis of binary
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SQS calculations shows that the local relaxation effect in
both fcc and bee SQSs is small after the full relaxation, and
the difference between fully relaxed and symmetry-preserved
structures is at most ~1 kJ/mol.

It is intriguing to see that only the Yb-Ca system has the
mixing enthalpy close to zero among three binaries in Fig. 2,
which implies that Yb-Ca is likely to have ideal mixing in
both fcc and bee phases. The ideal mixing of Yb and Ca
is attributed to their similar lattice parameters. The other
two systems, Ca-Sr and Sr-Yb, have rather positive
(~2 kJ/mol) mixing enthalpies and significant lattice param-
eter differences (ac, ~ ay, <as,), which can be the reason for
the nonideal mixing behavior, unlike Yb-Ca.

The bond length analysis for the fully relaxed SQSs in
Fig. 3 shows that first nearest-neighbor average bond lengths

PHYSICAL REVIEW B 76, 144204 (2007)

follow Vegard’s law closely in all calculations. This observa-
tion indicates that the lattice parameter of the fcc solid solu-
tion varies linearly with the composition change and there is
no significant geometrical distortion.

B. Ternary fcc special quasirandom structures for the Ca-Sr-
Yb system

First-principles calculations of ternary fcc SQSs at four
different compositions in the Ca-Sr-Yb system (namely, xc,
=xSr=leb=%; xCal=%’ xSr=be=zl_1; xsF%’ Xca=Xyb= 3> and
Xyp=73, Xca=Xs,=7) have been considered to investigate the
ternary interactions. Three isoplethal sections, connecting the
equimolar composition and three other compositions when
x;=1/2, x;j/x;=1, are selected to examine the mixing en-
thalpy for the Ca-Sr-YDb ternary system.

Calculated enthalpies of mixing from ternary fcc SQSs
are shown in Fig. 4, including extrapolated results from
the three binaries and improved enthalpies of mixing to
reproduce ternary fcc SQS results by introducing ternary in-
teraction parameters. All the fully relaxed ternary SQSs
show that the effect of local relaxation is also small as in
its constitutive binaries; thus, the energy differences be-
tween the symmetry-preserved and fully relaxed calcula-
tions are quite small. Figure 5 shows the radial distribu-
tion analysis of the fully relaxed SQS at the equimolar
composition. The narrow distribution along each of the
bond lengths indicates that the effect of local relaxation
is small. As shown in Fig. 4, energy differences between
fully relaxed and symmetry-preserved calculations are small
(~0.5 kJ/mol).

As can be seen in Fig. 4, the mixing enthalpy extrapolated
from the three binaries is slightly lower than that derived
from first-principles calculations of ternary fcc SQSs. Thus,
ternary interaction parameters are introduced to improve the
ternary mixing enthalpy. According to Eq. (3), the contribu-

Ca;SroYby CapSr;Yby CagSrgYb,
2 2 2
= CasSr;Yb, = Ca;Sr,Yb, = Ca;Sr;Yb,
=) 2
=] 5 =
z oy z
£ g £
ke £ £
E Ca;Sr;Yb; = Ca;Sr;Yb, ) Ca;Sr;Yb;
: : :
A ) A
Ca()SI"lel CaISrOYbl CaISrleo
-2 0 2 4 6 8 10 -2 0 2 4 6 8 10 -2 0 2 4 6 8
Energy (eV) Energy (eV) Energy (eV)
(a) Ca-SrYb (b) Sr-YbCa (¢) Yb-CaSr

FIG. 7. Calculated density of states for Ca-Sr-Yb as three pseudobinaries.
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tion from the ternary excess Gibbs energy for the fcc phase
in the Ca-Sr-Yb system can be denoted as

xs ~tern,fee _ fee fce fce
G = XcaXs¥yb(LiaXca + Ly Xsr + LypXys)  (11)

or

xs ~tern,fcc _ fce
G = Xca¥seXybLcasryb (12)

as simplified in Eq. (6) when the ternary fcc is considered as
a regular solution. When three independent ternary interac-
tion parameters (Lg,=25 940 J/mol, Lg,=2913 J/mol, and
Ly,=—8645 J/mol) are used, slightly better agreement with
ternary SQSs was made than with a single regular interaction
parameter (Lc,svy,=6736 J/mol). The calculated mixing en-
thalpy at the equimolar composition is evaluated as the same
value regardless of the interaction parameters since all the
data are equally weighted.

Six different bond lengths, three like bondings and three
dislike bondings, of four fully relaxed SQSs have been ana-
lyzed. In Fig. 6, the bond lengths corresponding to the first
nearest neighbors for all SQSs are presented. In all SQS
calculations, the Sr-Sr bonding is always the longest, and this
is attributed to the biggest lattice parameter of Sr among the
three elements.

As a final analysis of the ability of the generated SQSs to
reproduce the properties of ternary fcc solid solutions, Fig. 7
shows the alloying effects on the electronic density of states
(DOS) in the Ca-Sr-Yb system. Three pseudobinaries, con-
necting a pure element and equimolar composition of the
other two elements, have been selected. Since all three ele-
ments have the same number of valence electrons, significant
changes in the electronic DOS were not observed. Instead,
the electronic DOS of the outer states gradually transformed
into that of the pure element as the composition changed
toward the pure element. The peak around ~9 eV of SrYb in
Fig. 7(a) flattens out as Ca increases, and the peaks around
~8 and ~7 eV become more pronounced as the content of
Sr and Yb increases as shown in Figs. 7(b) and 7(c), respec-
tively.

VI. CONCLUSION

In the present work, two ternary fcc SQSs at different
compositions, x4 =xB=xC=§ and xAzé, xB:xC:i, are gen-
erated and their correlation functions are satisfactorily close
to those of random fcc solid solutions. The generated SQSs
are applied to the Ca-Sr-Yb system, which presumably has a
complete solubility range without order-disorder transitions
in ternary fcc solid solutions. Mixing enthalpies for the fcc
phase in three binaries are evaluated from first-principles cal-
culations of fcc and beec SQSs and available experimental
data with the CALPHAD approach. It is found that the local
relaxation effect of fcc and bcc phases is very small, and
mixing enthalpies are slightly positive in all cases. Evaluated
mixing enthalpies for the fcc phase in three binaries are then
extrapolated to the ternary system.

First-principles results of four ternary SQSs at xc,=xg,

L, _1 — _1. _1 — _1.
=be:§’ xCa_z’ xSr_be_4’ xSr_zv xCa_be_4’ and
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be=%, xCa=xSr=i show that the local relaxation effect is
also very small in the ternary system. Extrapolated mixing
enthalpy from its constitutive binaries is slightly lower than
those from first-principles calculations of ternary fcc SQSs.
Thus, ternary interaction parameters for fcc solid solution
phases are introduced to further improve the ternary mixing
enthalpy. It can be concluded that the generated ternary fcc
SQSs are able to reproduce thermodynamic properties of ter-
nary fcc solid solutions and can readily be applied to other
systems.
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APPENDIX A: EVALUATED INTERACTION
PARAMETERS

Interaction parameters for the liquid and solid solution
phases (fcc and bec) in the three binaries of the Ca-Sr-Yb
system—as evaluated from the CALPHAD modeling in the
present work—are listed in Table III. Notations are explained
in Eq. (2).

APPENDIX B: SPECIAL QUASIRANDOM STRUCTURES
FOR THE TERNARY fcec SOLUTION PHASE

Special quasirandom structures are N-atom per cell peri-
odic structures designed to have correlation functions close
to those of completely random alloys. The ternary fcc SQSs
used in this work are presented in Table IV. Lattice vectors
are given as a, b, and ¢, and atom positions of A, B, and C
atoms are given as A;, B;, and C;, respectively.

TABLE III. Evaluated binary interaction parameters for the Ca-
Sr-Yb system (all in SI units). Gibbs energies for pure elements are
from the SGTE pure element database (Ref. 30).

Systems  Phases Evaluated parameters
Ca-Sr  Liquid °L=1680+2.68T, 'L=388—1.153T, *L=-856
+0.631T
fee,bcc °L=6511, 'L=-382
Sr-Yb  Liquid °L=8850
fee,bcc 'L=9624, 'L=-488
Yb-Ca  Liquid °L=2689, 'L=676
feebee °L=3207, 'L=280
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TABLE IV. Structural descriptions of the SQSs for the ternary fcc solid solution. Lattice vectors and atomic positions are given in
fractional coordinates of the fcc lattice. Atomic positions are given for the ideal, unrelaxed fcc sites.

A B, C; (SQS-24) A,B,C; (SQS-32)
Lattice vector 31 =1 11 2
-3 1 -1 11 -2
0 % % -11 0
Atom positions 1 1% _% A 1% 2 % A, 0 2 0 A
1 1 1 1
5 2 -1 A 0 2 -1A 01; -5 A
015 -1 A T -14A 4§02 -1A
11 141 1 5l
5 3 0 A I 1; 13 A ;7 2, -1 A
-1 2 -14 5 1 -34 0 2 1A
- 1 _1 1 1 1 1
I 13 5> A 1 15 -3 A, 2 2 —15 A
-3 1 -3 A 13 04, L 2 14
15 1 -3 A -5 13 0A 1 2 -1A4
1 2 -1B 122 1B
11
1314 -1 8B 125 3B
I3 1 -3 B 12 11B
- 1 51
(1) 2 } B 15 25 0 B
;I -3 B 1 2 0B
-3 2 -13 B 113 -13 B
- 11
} } 0 B 5 13 1 B
-1; 1I; -1 B 1 2% _% B
215 -3 C 1 2 1C
11 0cC 725 0C
11
5 13 -1 C 0 1 0C
01 0cC 113 oc
025 -135 C ;1 31c
11 11
-2 13 -1 C 11 5 C
11 [
-3 3 0 C 01; 5 C
-2 13 -ic 13 2 -3 ¢C
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