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We present an application of differential equation based local absorbing boundary conditions to molecular
dynamics. The absorbing boundary conditions result in the absorbtion of the majority of waves incident
perpendicular to the bounding surface. We demonstrate that boundary conditions developed for the wave
equation can be applied to molecular dynamics. Comparisons with damping material boundary conditions are
discussed. The concept is extended to the formulation of an atomistic-continuum multiscale scheme with
handshaking between the regions based on absorbing boundary conditions. The multiscale model is effective in
minimizing spurious reflections at the interface.
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I. INTRODUCTION

The atomic detail provided by molecular dynamics �MD�
and other atomistic modeling methods is invaluable for un-
derstanding material behavior, especially at nanoscale. How-
ever, modeling of thermomechanical behavior of materials at
realistic length and time scales is still beyond the purview of
atomistic simulations as it would require billions of degree of
freedom and time steps. Multiscale methods that link atom-
istic and continuum methodologies exhibit promise for solv-
ing large scale problems while simultaneously providing ato-
mistic detail where it is needed. In addition, multiscale
models enable better understanding of material behavior that
inherently consists of physical phenomena occurring at dif-
ferent scales.

There are numerous atomistic-continuum multiscale
methods in the literature. Popular among these are the hand-
shaking method by Abraham and co-workers,1 the quasicon-
tinuum method by Tadmor and co-workers,2,3 and coarse
grained molecular dynamics by Rudd and Broughton.4 Hand-
shaking methods by Abraham and co-workers are based on
specifying the overall Hamiltonian of the system as a com-
bination of molecular dynamics, finite element, and hand-
shake Hamiltonians to obtain the equations of motion. In
quasicontinuum methods, the total energy of the system is
calculated using interatomic potentials, while explicit atomic
positions are calculated at fine scale; the coarse scale solu-
tion is calculated using the Cauchy-Born rule.2 Coarse
grained molecular dynamics techniques use a statistical
coarse graining procedure at coarse scales and become
equivalent to molecular dynamics at fine scales. Several
other methods have been recently developed, e.g., Liu and
Wagner’s bridging scale method5 uses a projection tensor to
map atomistic displacements onto the continuum solution, so
that the mean square difference of individual displacements
is minimized. Shilkrot and co-workers6 have coupled mo-
lecular dynamics with continuum dislocation dynamics.

Most of the above methods involve an atomistic method
�usually molecular dynamics or statics� and a continuum for-
mulation �usually finite element method� and a scheme to
combine the two based on displacements or strains, forces or
stresses, energies, or a combination thereof. The numerical

and physical differences between the atomistic and con-
tinuum methods lead to spurious reflections at the interface.
A similar problem of wave reflection exists in the area of
wave mechanics when an elastic, acoustic, or electromag-
netic wave encounters a bounded region. This problem has
been tackled using boundary conditions called absorbing
boundary conditions �ABCs�.7,8 ABCs can be categorized as
material based or differential equation based. Material based
boundary conditions include the perfectly matched layer
�PML� where a lossy or viscous material with complex co-
ordinate stretching is added at the boundary to minimize
reflections.9 Differential equation based boundary conditions
can be nonlocal; these strive for exact absorption by using
Green’s function and convolution operators on the entire
domain10 but they are difficult to implement and computa-
tionally prohibitive. Local absorbing boundary conditions are
applied only on the boundary and are based on approximat-
ing the impedance of the unbounded exterior region. En-
gquist and Majda developed a series of boundaries of in-
creasing accuracy based on this idea.11 Multidirectional
absorbers by Higdon12 are a generalization of these boundary
conditions. Recently higher order implementations of these
boundary conditions have been developed by Guddati et
al.13,14 and Givoli.8,15

Several researchers have developed methods to minimize
boundary reflections in atomistic-continuum multiscale mod-
els. Cai et al.16 developed a nonlocal absorbing boundary
condition based on a generalized Langevin equation and ap-
plied it to a one dimensional case. Karpov and co-workers17

have expanded this to a general lattice in conjunction with
the bridging scales multiscale method. E and co-workers18

use local boundary conditions based on minimizing the re-
flection coefficient to address this problem. Qu and
co-workers19 use stadium boundary conditions developed
earlier by Zhou et al.20 that consist of adding an additional
damping material to absorb the waves. Perfectly matched
layers for the bridging scale approach developed by Li and
To21 are based on a similar idea. Yang et al.22 have compared
variational boundary conditions and damping material
boundary conditions. In spite of these advances differential
equation based boundary conditions like Engquist-Majda
boundary conditions or higher order local ABCs have not
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been directly applied to molecular dynamics or multiscale
modeling.

In this paper our objective is to demonstrate the applica-
bility of Engquist-Majda type ABCs in molecular dynamics
simulations. These are one dimensional boundary conditions
based on impedance matching and have been effectively ap-
plied in finite element and finite difference schemes. In ad-
dition, they form the basis for several higher order
ABCs.12–15,31 We apply these ABCs to minimize wave reflec-
tions in molecular dynamics simulations. We further propose
a multiscale model with molecular dynamics describing the
atomistic regime and dynamic finite elements describing the
continuum regime with information passing using ABCs.

II. ABSORBING BOUNDARY CONDITIONS FOR
MOLECULAR DYNAMICS SIMULATIONS

The problem of the boundary condition for molecular dy-
namics is very similar to the boundary condition for the
wave equation. First, we consider the relationship between
the discrete and continuum descriptions. It may be noted that
the comparison between discrete lattice models and con-
tinuum models goes back to Born and Huang23 who derived
higher order elastic constants for a lattice with a given inter-
atomic potential. Consider a system of atoms interacting
based on an interatomic potential ��r� where r is the dis-
tance between the particles. The equations of motion for a
particle i located at r�i surrounded by atoms j located at r� j is
given by Eqs. �1� and �2� below. Here r�ij is the position
vector given by r�ij =r�i−r� j,

F� i = m
d2r�i

dt2 − �
j

f�ij + f�i
ext �1�

=m
d2r�i

dt2 − �
j

d�

dr�ij

+ f�i
ext, �2�

i.e., the force experienced by particle i is sum of forces be-
tween the i-j atom pairs �which in turn is given by inter-
atomic potential� and any external force on the atom. Con-
sider the one dimensional problem in Fig. 1 with the initial
spacing a between the atoms. This one-dimensional lattice
problem is similar to the Fermi-Pasta-Ulam problem and the
Frenkel-Kontorova problem; both of these have been well
studied as discrete lattice problems and also in relation to
equivalent continuum descriptions.24–27 Now, consider that
the interaction of nearest neighbors along the one dimen-
sional chain, ignoring the external force equation of motion
for the nth particle, is

m
d2rn

dt2 =
d�

drn+1n
−

d�

drnn−1
. �3�

Consider the normalized bond length of the nth bond given
by un=

rn+!−rn

a . Now, if we define a function T such that

T�un� =
1

a

d�

dun
, �4�

the equation of motion �3� becomes

m
d2rn

dt2 = T�un+1� − T�un� �5�

in terms of un,

ma
d2un

dt2 = T�un+1� − 2T�un� + T�un−1� . �6�

Now we can divide by a2 and consider the continuum limit
where a→0. This leads to a nonlinear wave equation of the
form

�
d2u

dt2 =
d2T�u�

dx2 . �7�

Here � is the mass density. When the interatomic potential is
given by a harmonic function, for example, if �= 1

2
k
ar2, then

T�u�=ku and Eq. �7� reduces to the linear wave equation. If
the potential is a generic function, we can express Eq. �7� as

�
d2u

dt2 =
d

dx
�k�u�

du

dx
� �8�

which is the equilibrium equation for material with nonlinear
constitutive properties. Alternately Eqs. �6� and �7� can be
expanded as a Taylor series to obtain higher order terms that
provide corrections for the discrete form.24 There are several
discussions in the literature where extensions to two and
three dimensions and to an increased number of neighbors
are considered.24–27 The above analysis shows that an
equivalence between discrete molecular dynamics and con-
tinuum descriptions exists provided that the displacement
gradient is much less than 1 and the displacement is small
compared to the nearest neighbors over the simulated time.

As discussed in the Introduction there are several schemes
developed to address the problem of unwanted reflections for
the wave equation. Based on the discussion in the preceding
paragraphs, there is a clear correspondence between discrete
molecular dynamics models and wave equation; hence we
are justified in attempting to apply the methods developed
for wave equation to molecular dynamics. Engquist and Ma-
jda used pseudodifferential operators to derive a series of
boundary conditions of increasing order that eliminate �or
reduce� the reflection of waves in a bounded region.11 These
ABCs have formed the basis for numerous higher order non-
reflecting boundary conditions that have been devised subse-
quently. For an elastic wave, the simplest conditions for ab-
sorbing plane waves incident normal to a surface are

� d

dt
− cL

d

dz
�uL,

FIG. 1. Schematic of one dimensional chain of atoms.
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� d

dt
− cT

d

dz
�uT. �9�

cL and cT are the longitudinal and transverse elastic wave
speeds in the material. Here, uL and uT are the displacements
in longitudinal and transverse directions, while z is consid-
ered to be the longitudinal wave direction �see Fig. 2�. We
implement these boundary conditions in molecular dynamics
simulations. Physically, the impedance of a semi-infinite re-
gion beyond the boundary is approximately matched by
these ABCs. The ABC described in Eq. �9� is a simple but
effective condition for absorbing the waves incident perpen-
dicular to the boundary. In order to absorb waves in all di-
rections and at corners one would require higher order
ABCs, however, the focus here is to demonstrate the appli-
cability of such ABCs to molecular dynamics and multiscale
models, hence we use the simple form described in Eq. �9�.

Figure 2 shows the typical molecular dynamics setup
used. Two systems, the Lennard-Jones potential for fcc Al,
and the Johnson potential28 for bcc Fe, are studied. The
Lennard-Jones potential is as shown below with parameters
�=2.551 Å and �=0.408 eV that are fit for fcc Al. We use a
cutoff distance of 5.6 Å

U�r� = 4����

r
�12

− ��

r
�6� . �10�

The Johnson potential is in the form of a third degree poly-
nomial with minima between the first and second neighbor
distances in bcc iron. The Nordsieck predictor corrector al-
gorithm is used for integration. The number of atoms for the
different MD simulations varied between 5000 and 10 000
atoms. The methodology for implementing the ABCs dis-
cussed here is independent of the potential used; we have
obtained results using both potentials. To demonstrate the
independence from potential of the approach, the results pre-
sented in this section are based on the Lennard-Jones poten-
tial and those in the following section on multiscale model-
ing use the Johnson potential.

The molecular dynamics setup is three dimensional with
periodic boundary conditions in the X and Y directions �see
Fig. 2�. A unidirectional wave is created in the system by
rigidly displacing the atoms at one end of the bar. In one case
atoms at the other end are fixed. This results in complete
reflection of the wave and provides a mark for comparison.
In the second case absorbing boundary conditions are ap-
plied. This is achieved by readjusting the evolution of atomic
positions in the last three atomic layers according to Eq. �9�.

The velocity of atoms in these layers is obtained as a func-
tion of the displacement gradient in the preceding layers
multiplied by a factor c. The numerical value of c roughly
corresponds to the wave speed, however, we obtain the value
by optimizing the simulation such that there is minimal re-
flection at the boundary. We find that a value of 0.05 Å/fs is
optimal in reducing the reflections. This is of the same order
as longitudinal wave speed in iron based on continuum cal-
culations. In order to calculate the displacement gradient we
use a backward difference scheme and compute the gradient
as an average over five atomic layers preceding the bound-
ary. One could use an alternate method to obtain the dis-
placement gradient and the ABC would still be effective.

Figure 3 shows the contour plot of displacement experi-
enced by atoms at various times as the planar wave travels
toward the boundary. Figure 3�a� corresponds to the fixed
boundary while Fig. 3�b� corresponds to the case when
ABCs are applied at the boundary. It can be observed that
when fixed boundary conditions are applied there is a com-
plete reflection of the wave back into the domain. When
ABCs are applied at the boundary the wave is completely
absorbed as in Fig. 3�b�.

It may be noted that the ABCs can absorb all the waves
incident normal to the boundary. They can be effectively
used for situations where the predominant direction of waves
is normal to the boundary, even if some waves in other di-
rections are present. Figure 4 shows the contour plots of
displacement when the initial displacements are applied at
varying rates resulting in a nonplanar wave front. Though
some waves in other directions are present the predominant
direction of wave motion is in the Z direction. It can be
observed that the ABCs are effective in absorbing most of
the waves.

Another example of application of the ABC is shown in
Fig. 4. Z displacement contours of elastic waves generated
due to displacement applied on a crack are shown in Fig. 5.
The crack is opened by applying a small fixed displacement
in the Y direction similar to crack tip opening displacement
as shown in Fig. 5�a�. Absorbing boundary conditions are
applied at the three boundaries as shown. Note that the dis-
placement wave in the Z direction would be longitudinal for
the ABC along the Y axis and transverse for the two bound-
aries parallel to the Z axis. Figures 5�a�–5�e� show the dis-
placement contours when ABCs are applied. These are com-
pared to the case when fixed boundary conditions are applied
in the place of ABCs in Figs. 5�f�–5�i�. It can be observed
that ABCs are effective in minimizing the reflections. Higher
order ABCs are required for better absorption at corners and
for waves incident at angles, however, current results dem-
onstrate that simple ABCs can be effectively used in molecu-
lar dynamics simulations.

We now compare the local ABCs discussed above with
material based ABCs. Material based ABCs consist of adding
a lossy or viscous material which absorbs the waves from the
domain with minimal reflections. Effectively the equations of
motion in the damping region are modified by the addition of
a damping or wave filtering term, while the equations of
motion in the molecular dynamics region are unmodified.
Stadium boundary conditions19,20 and To and Li’s21 MD
implementation of Berenger’s perfectly matched layers9 are

FIG. 2. �Color online� Schematic of the molecular dynamics
setup.
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examples of this approach. For the simple case of adding
viscous material, the modified equation of motion in the
damping region is

mr�̈i = �
j

f�ij + f�ij
ext + d�zi�r�̇i. �11�

d�zi� is a damping function dependent on the position of the
atom. It becomes equal to zero in the MD region and slowly
ramps up the viscosity in the damping region. We find that
the choice of d�zi� is important for effective implementation;
the gradual increase in viscosity into the damping region is
necessary to avoid reflections. In the current case we use the
cubic polynomial in Eq. �12� below as the damping function
but any other function that would gradually increase the vis-
cosity could be used:

d�zi� = �o� zi − di

d2 − d1
�3

. �12�

Here, the viscous material starts at d1 and ends at d2, zi gives
the position of the atom, �o is the same parameter used in the
Langevin thermostat and is dependent on the Debye fre-
quency of the material. Due to the high viscosity, all the
waves including low frequency modes that enter the damp-
ing region are absorbed. Figure 6 shows the contour plots of
displacement for this boundary condition. It can be observed
that damping material effectively absorbs the waves without
reflection into the molecular dynamics region.

Among local ABCs and material ABCs there are advan-
tages and disadvantages for both approaches. The obvious
advantage of damping material ABCs is the ease of imple-

FIG. 3. �Color online� Displacement contour plots of wave motion �a� for fixed boundary showing the reflection �b� with ABCs. Plots
correspond to 1, 1.7, 2.8, 3.2, and 4.2 ps, respectively. Position and displacement are in angstroms.

FIG. 4. �Color online� Contour plot for nonplanar wave front
with ABCs. Plots correspond to 1.2, 1.8, 2.4, 3.0, and 3.6 ps,
respectively.
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mentation. Second, it can absorb the waves entering from
different directions. One disadvantage is that additional com-
putation is required. For example, in the case studied here we
had to use almost the same number of atoms in the damping
material and the MD regions to damp out all the waves. One
could optimize the damping function to reduce the size of the
damping region, however, the computation is expected to be
much larger than the MD region alone. Yang and
co-workers22 also demonstrate this point. A more significant
disadvantage in the context of multiscale modeling is that
waves would not pass on to the larger scale region if the MD
and continuum are modeled independently and information
�forces displacements and energies� passing occurs in an in-
terface region. In the following section we develop a multi-
scale model with the interfacial region between MD and con-
tinuum based on the ABCs resulting in seamless wave
propagation between the domains while simultaneously
eliminating the reflections into the molecular dynamics do-
main.

III. MULTISCALE MODEL

Consider an elastic material in domain � subject to some
external traction or displacement boundary conditions. We
divide the region � into two subdomains �1 and �2 with an
interface � separating the two regions. The objective here is
to develop a multiscale model with atomistic and continuum

FIG. 5. �Color online� Contour plots of z displacement for crack opening. Displacement is applied on atoms near the crack as shown.
Plots �a�–�e� show contours with absorbing boundary conditions at t=0.3, 0.6, 1, 1.6, and 2 ps. Plots �f�–�j� show similar displacement
contours with fixed boundaries.

FIG. 6. �Color online� Displacement contours for damping ma-
terial ABCs. Plots correspond to 1, 1.5, 2, 2.5, and 3 ps,
respectively.
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descriptions for the regions �1 and �2, respectively, such
that the elastic waves generated in region �1 are passed onto
region �2 without any reflection at the interface �.

The domain �1 is considered to be composed of atoms
interacting through an interatomic potential. Newton’s equa-
tions of motion for the three dimensional atomistic system
are written as

F� i = m
d2u� i

dt2 = � f�ij + f�i
ext. �13�

These equations are solved in a molecular dynamics formu-
lation. The velocities and positions of the particles are ob-
tained by numerical integration of the interatomic forces ob-
tained by the potential.

The region �2 is considered to be continuum and the
dynamic equilibrium equation for this region is

mu�̈ =
d

dr�
�k

du�

dr�
� + f�ext. �14�

This equation is solved in a variational form using the finite
element method. k here represents the elastic constants of the
material. Different approaches can be used for time integra-
tion involved in the dynamics. In the present case we obtain
the displacements, velocities, and accelerations using the
Newmark direct integration algorithm.29 Consider the matrix
form of dynamic equilibrium equation at time t, the effective

load vector F� t at time t is obtained as

F� t = K · u� t−	t + C · u�̇ t−	t + Mu�̈ t−	t. �15�

Here K is the stiffness matrix, M is the mass matrix, and C is
the so called damping matrix. The Newmark algorithm is a
direct integration scheme to solve Eq. �15�. In this approach,

we obtain the effective stiffness matrix K̄ using static stiff-
ness matrix K, mass matrix M, and damping matrix C as
shown in Eq. �16�. Here, 
 and � are integration parameters,

K̄ = K + b1C + b2M ,

b1 =
1


	t2 , b2 = �	tb1. �16�

The effective load vector F� t can be obtained from Eq. �15�
expressing it in a form similar to Eq. �16�. The equations are
solved for displacement as

u� t = K−1F� t. �17�

The velocities and accelerations at time t �u�̇ t ,u�̈ t� are then
calculated as functions of displacements at the current time
step and the accelerations, velocities, and displacements in

the previous time step �u� t ,u� t−	t ,u�̇ t−	t ,u�̈ t−	t�.
For coupling the two descriptions based on the molecular

dynamics and finite element methods we use handshaking
based on ABCs at the interface region �. The interface re-
gion is an overlap between the finite element and molecular
dynamics region and consists of both nodes and pseudoa-
toms. Pseudoatoms are the atoms in the overlap region be-
tween continuum and discrete domains; they contribute to
the forces on regular atoms but do not follow the molecular
dynamics equations of motion. The velocities of the atoms in
the interfacial region are obtained using Eq. �9� and are
based on the displacement gradient in the preceding atomic
planes. These velocities are passed on to the corresponding
nodes in the interface region of the finite element method,
i.e., the velocities of nodes in the interfacial region are ob-

FIG. 7. �Color online� Schematic of multiscale modeling
setup.

FIG. 8. �Color online� Displacement contours at increasing
times �0.4, 0.7, 1.1, 1.4, 1.9, 2.1, and 2.4 ps�. Plots show passage of
waves from MD to finite element regime with minimal reflections.
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tained using ABCs and not by the Newmark algorithm. The
nodal displacements obtained from the finite element solu-
tion are passed on to the molecular dynamics simulations as
the displacements of the pseudoatoms thus forming the two
way coupling. Using this scheme, we find that elastic waves
generated in the molecular dynamics regime are passed on to
the finite element method with minimal reflections at the
numerical interface between the regimes.

Figure 7 shows the schematic of the setup for the multi-
scale model. It consists of a three dimensional molecular
dynamics region and a finite element region with an over-
lapped interface region. The atomistic part is composed of
bcc iron atoms interacting with the Johnson potential.28 We
use the finite element method code NIKE3D for continuum
simulations.30 The constitutive response of the finite element
region is single-crystal–elastic �orthotropic� with the elastic
constants the same as those of the Johnson potential.28 The
multiscale simulations consist of 5782 atoms, 726 nodes, and
500 elements. There are 363 pseudoatoms and 242 nodes in
the handshake region. An atomic unit cell in the handshake
region corresponds to an element with an overlapping be-
tween nodes and atoms at the corners of the unit cell. The
contribution of atoms at the center of the unit cell is distrib-
uted between the nodes corresponding to corners of the unit
cell. A one dimensional wave is generated by rigidly displac-
ing the atoms at one end of the atomistic region and ABCs
are applied at the interface region.

Figure 8 shows the displacement contours of atoms and
nodes in the multiscale model. It can be clearly noticed that
the elastic wave generated in the molecular dynamics regime
is passed on to the finite element regime with minimal re-

flections at the interface. It should be noted that the wave
reflections are considerably reduced by using ABC based
handshaking when compared to conventional handshaking
based on forces and displacements. In the conventional hand-
shaking algorithm, a region of overlap between atomistic and
continuum domains exists as discussed earlier, in this region
molecular dynamics passes atomic forces as nodal forces to
the finite element regime, which in turn provides displace-
ments of atoms back. This approach is based on an overall
Hamiltonian.1 Figure 9 shows the displacement profiles of
atomic layers in the MD region at various times when this
conventional handshaking is used. This can be compared
with the similar displacement profiles in Fig. 10 when ABCs
are used. It is clear that the reflections at the interface are
minimal with ABCs.

We demonstrate that the differential equation based ABCs
developed for wave equations can be applied to molecular
dynamics and multiscale simulations. One of the major out-
standing problems in continuum-atomistic multiscale models
is the reflection of waves at the numerical interface. This is a
problem in most existing multiscale methodologies including
handshaking methods,1 the quasicontinuum method,2 and the
bridging scale method.5 There have been various attempts
within these schemes but none have applied the generaliza-
tion of continuum ABCs to discrete atomistic systems. Our
approach is a simple but effective numerical scheme based
on Engquist-Majda ABCs to address this issue. It may be
noted that problems considered in this paper are three dimen-
sional, however, the implementation of ABCs is strictly valid
only for one dimensional longitudinal and transverse waves

FIG. 9. �Color online� Schematic of displacement profile for
MD region of multiscale model with regular handshaking.

FIG. 10. �Color online� Schematic of displacement profile for
MD region of multiscale model with ABCs. Reflections are minimal
compared to regular handshaking in Fig. 8.
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incident perpendicular to the boundary. Higher order ABCs
are required to address problems involving corners and
waves incident at an angle to the boundary in an effective
manner. Several implementations of such higher order ABCs
are available in the literature.8,13–15 Current results can pos-
sibly be extended to higher order approaches, for example,
Givoli and co-workers’ method of simplifying Higdon’s mul-
tidirectional absorbers.12 Higdon’s boundary condition of or-
der J is

�
j
� d

dt
− Cj

d

dx
�u = 0. �18�

Cj are parameters which signify directions or phase speeds of
waves. While these boundary conditions are very general,
application beyond J=3 has been difficult because of higher
order derivatives. Givoli and co-workers15,31 recently devel-
oped a numerical scheme based on finite differences to apply
these boundary conditions to arbitrary higher order. This ap-
proach can be adapted to molecular dynamics and multiscale
modeling and is a part of future work.

IV. SUMMARY

We demonstrate the applicability of differential equation
based absorbing boundary conditions to molecular dynamics
simulations. The results are compared with damping material
boundary conditions. A multiscale model is developed with
the absorbing boundary conditions facilitating the passage of
elastic waves from atomistic to finite element regions with
minimal reflections at the interface.
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