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We present a general method based on nonlinear response theory to obtain effective interactions between
ions in an interacting electron gas, which can also be applied to other systems where an adiabatic separation of
time scales is possible. Nonlinear contributions to the interatomic potential are expressed in terms of physically
meaningful quantities, giving insight into the physical properties of the system. The method is applied to
various test cases and is found to improve the standard linear and quadratic response approaches. It also
reduces the discrepancies previously observed between perturbation theory and density functional theory
results for proton-proton pair potentials in metallic environments.
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I. INTRODUCTION AND BACKGROUND

Perturbation and response theories are ubiquitous in phys-
ics. Here we will discuss response theories as applied to
many-component systems, where the degrees of freedom as-
sociated with one component can be traced out to yield, via
an adiabatic separation of time scales, effective interactions
between the remaining components. These effective interac-
tions have had their share of success in describing simple
metals,1,2 metals with magnetic impurities �i.e., the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction3�, or,
in the classical domain, colloidal suspensions �e.g., the
Derjaguin-Landau-Verwey-Overbeek �DLVO� interaction
between charged colloidal particles4,5 or the depletion
interaction6,7�. Linear response in particular has been used
extensively to obtain pair potentials; its simplicity makes it a
very valuable qualitative tool, and in many contexts it also
provides sufficient quantitative accuracy.

Higher-order contributions have been used less often,
partly because calculational complexity increases rapidly
with the order of perturbation considered. The first derivation
of the static quadratic response function for the ground-state
noninteracting electron gas originates with Lloyd and Sholl.8

It was later rederived by Brovman, Kagan, et al., who wrote
a series of articles applying nonlinear perturbation to metal-
lic systems �see, for example, Brovman, Kagan, and Kholas,9

and references therein�. A third derivation of the static re-
sponse function was provided even later by Milchev and
Pickenheim.10 A derivation of the dynamical quadratic
response function can also be found in Pitarke et al.11 With
the advent of density functional theory �DFT� and modern
computers, response theory has lost some of its quantitative
appeal, but as noted it is still being used for a qualitative
understanding of general trends in metals.11–13

Dynamic compression experiments have achieved metal-
lization of hydrogen at high temperature,14 and there is an
expectation that low-temperature metallization might also be
achieved in the relatively near future.15 Hydrogen has always
been difficult to treat by perturbation approaches because the
interaction of a proton with the electron gas is not weakened
by a repulsive core, as is the case for many elements.16 It is
not even obvious that a perturbation approach converges. At
high pressures, though, the enhanced kinetic energy of the

electron gas in hydrogen leads to a better convergence of
response theory. Response-based pair potentials were in fact
used to describe with some success the pressure dependence
of the vibron in the hydrogen solid.17 On the other hand, the
application of standard DFT methods to hydrogen at very
high densities is challenging because of the strongly inhomo-
geneous, cusplike electronic density surrounding the proton
and the possible failure of pseudopotentials designed for a
different density range. The pair potentials obtained from
quadratic perturbation theory for dense hydrogen exhibit dis-
crepancies when compared with ab initio DFT results18 for
Wigner-Seitz radii as low as 1.3. The Wigner-Seitz radius rs
is related to the unperturbed electronic density �0 by rsa0
= �3/ �4��0��1/3, where a0=�2 /mee

2 is the Bohr radius.
In order to use the perturbation method as a reliable, ana-

lytic alternative approach to DFT in this density range,
higher-order terms are needed. Going beyond quadratic re-
sponse using conventional methods is a substantially more
difficult task. Accordingly, we derive a simple identity that
allows us to obtain effective pair potentials beyond quadratic
response, which amounts to carrying out a partial sum of
perturbation terms. The result is not only very intuitive, ex-
pressing the pair potential in terms of physically meaningful
expressions, but also very general, since it applies in any
dimension and for both classical and quantum systems.
Moreover, it does not require explicit knowledge of the non-
linear response functions. It should be noted that if nonlinear
effects are to be fully taken into account, many-body inter-
actions should also be included, either directly or through
effective-medium approaches.33 This article focuses on ob-
taining pair potentials that can be used as a starting point for
either approach.

In Sec. II, we outline the response theory formalism and
derive the simplest version of our result, Eq. �12�. In Sec. III
�and Appendix A� a generalization is derived that applies to
homogeneous, interacting systems. The intuitive nature of
this result permits us to explain part of the discrepancies
observed between the results of Nagao et al.17 and Bonev
and Ashcroft18 and to improve upon quadratic response. In
Sec. IV we apply our results to obtain pair potentials in vari-
ous systems, including metallic hydrogen. Generalizations to
many-center interactions and magnetic perturbations are dis-
cussed in Appendix B.
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II. EFFECTIVE INTERACTIONS AND
RESPONSE THEORY

We start with a canonical system composed of a mixture
of at least two different types of particles, in contact with a
heat bath establishing a temperature T. The ground-state
properties of the system can be studied from the limit
T→0.

The particles will be divided in two subsets, labeled L �for
light, typically electrons� and M �for massive, typically ions�.
It is assumed that all L particles are identical. On the other
hand, the set M can contain various types of particles. The
time scales associated with the L particles will be assumed to
be much shorter than those associated with the M particles,
allowing the use of an adiabatic separation of time scales. In
real systems, this separation is not exact. The assumption of
exact separation of time scales, which will be made through-
out this article, is referred to as the adiabatic or Born-
Oppenheimer approximation. We will not discuss the accu-
racy of this approximation here and refer the reader to the
existing literature �see, e.g., Ziman19�.

The adiabatic approximation allows the treatment of the
degrees of freedom associated with the light particles L in an
average way, leading to a much simpler effective Hamil-
tonian for the remaining M particles.

The Hamiltonian of the initial system has the form

H = �
i

pi
2

2m
+ �

j

P j
2

2Mj
+ VM��R�� + VL��r�� + VLM��r�,�R�� .

�1�

The notation �r� designates the set of all coordinates
�ri�i=1,. . .,NL

, and pi, ri, and m are the momenta, positions, and
mass of L particles, while Pi, Ri, and Mi are the correspond-
ing quantities for M particles. We imagine the system to be
confined to a macroscopic volume �.

In many relevant physical systems the interactions be-
tween the particles are largely pairwise. An important ex-
ample of such a system is a metal, where the L particles
could be the valence electrons and the M particles the ionic
cores. For pairwise systems we can write

VL��r�� = �
i

�L
�1��ri� + �

i�j
vL�ri,r j� ,

VM��R�� = �
i

�M
�1��Ri� + �

i�j
vij

M�Ri,R j� ,

VLM��r�,�R�� = �
ij

v j
LM�ri,R j� , �2�

where �L
�1� and �M

�1� denote external, one-particle potentials,
vL is the pair potential between L particles, vij

M is the pair
potential between M particles i and j, and v j

LM is the pair
potential between the M particle j and the L particles. In the
case of long-range, Coulombic interactions, care should be
taken in the definition of the pair potentials to ensure that
both the unperturbed and the perturbing systems are thermo-
dynamically well defined.20

We will restrict our attention to such pairwise systems,
even though our main results require only the slightly weaker
assumptions that we can write the interaction between L and
M particles as

VLM��r�,�R�� = �
i

V1
LM�ri,�R�� .

This is to say that the joint effect of all M particles, if they
were held fixed, would amount to an additional one-body
potential for the L particles.

A. Effective interactions and the adiabatic separation
of time scales

As mentioned, we want to find an effective Hamiltonian
for the M particles by tracing out the degrees of freedom
associated with the L particles. Since volume ��� and tem-
perature �T� are specified, we begin with the relevant Helm-
holtz free energy F,

F = − kT ln Tr�LM�e
−�H. �3�

We then trace over the degrees of freedom associated with
L at fixed configuration of M, assuming an adiabatic separa-
tion of time scales,

F = − kT ln�TrMe−��TM+VM�TrL�M�e
−��TL+VL+VLM�� ,

where TrL�M� means the trace over states of particles of type
L for a fixed configuration of particles M, and T�L,M� is the
kinetic energy associated with the L and M particles, respec-
tively. The free energy of system L for a fixed configuration
of M is simply

FL��R�,T� = − kT ln�TrL�M�e
−��TL+VL+VLM�� . �4�

The total free energy can then be written as

F = − kT ln TrMe−�HM
ef f

, �5�

where the effective Hamiltonian has the form

Hef f = �
j

P j
2

2Mj
+ VM��R�� + Vef f��R��

and Vef f��R��=FL��R� ,T� is the desired effective interaction
between particles of type M. It is clearly state dependent,
since it depends on temperature. It also depends on the vol-
ume � and on the properties of the L particles, including
their mass, their number, and the form of their interactions.
Note that even if the initial Hamiltonian contains only pair-
wise interactions, the effective Hamiltonian will typically
contain many-center interactions as well as volume-
dependent but structure-independent terms. Here we will fo-
cus on the determination of pair interactions.

In order to obtain the effective interaction we need to
calculate the free energy �4� of system L while the M par-
ticles are held fixed. To do this we treat the potential
V1

LM�r , �R�� as an external one-body perturbation to the sys-
tem composed of particles of type L. In the following
V1

LM�r , �R�� will therefore be simply written as Vext�r�, keep-
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ing in mind the dependence of Vext on the Ri. We then pro-
ceed to a functional expansion of the free energy in orders of
Vext�k�,20

Vext�k� = �
�

dr e−ik·rVext�r� .

B. Response theory, and the coupling-constant
integration method

The change in density induced in a system by a perturbing
external potential Vext�k� takes the form

���k,T� = ��k,T� − ��0��k,T� = �
k�

	�1��− k,k�,T�Vext�k��

+
1

�
�

k�,k�

	�2��− k,k�,k�,T�Vext�k��Vext�k�� + ¯ .

�6�

The functions 	�n� are, by definition, the response func-
tions of the unperturbed system �which at this point is not
necessarily uniform� and carry all the information about this
system, including temperature. We have assumed a large but
finite volume � and a dense but discrete distribution of wave
vectors k, since our main interest is the electron gas.
Continuous systems can be recovered using the usual
prescription20 �in three dimensions, it reads 1/��k
→	dk / �2��3�. Even though the response functions depend
on temperature, the methods we present here do not involve
this temperature dependence explicitly. In order to simplify
the notation, we will not explicitly keep track of the tempera-
ture in the following. Unless otherwise specified, 	�1��k ,k��
will simply stand for 	�1��k ,k� ,T�, etc.

Equation �6� can be used together with the coupling-
constant integration method21,22 to obtain the variation in the
Helmholtz free energy arising from the perturbation Vext:
namely,


F = �
0

1

d�
Vext��, �7�

where 
·�� is the statistical average with respect to the states
of the Hamiltonian H�

ext, which is obtained by replacing Vext

by �Vext in Hext. In the thermodynamic integration scheme,23

the integrand in Eq. �7� is determined by numerical simula-
tion. In the perturbation approach, it is instead expanded in
powers of the external perturbation, yielding


F =
1

�
�
k,n

��n��k�Vext�− k�
n + 1

= �
n=0

�
1

�n + 1��n �
k1,. . .,kn+1

	�n��k1, . . . ,kn+1�

Vext�k1� ¯ Vext�kn+1� , �8�

where ��n� is the part of Eq. �6� that is of order n in Vext. The
“zeroth-order” response function is related to the density of
the unperturbed system, 	�0��k�=��0��−k� /�.

Note that terms of nth order in the external potential in
expression �6� yield terms of order n+1 in Eq. �8�. In the
following, “nth-order response” refers to terms of order n in
Eq. �6�, unless otherwise specified.

In order to study pair potentials, let us now assume that
the perturbation originates with two external sources, located
at positions Ra and Rb, so that

Vext�k� = Va�k�eik·Ra + Vb�k�eik·Rb.

The free energy now depends on Ra and Rb �and would
depend only on Ra−Rb if we had restricted ourselves to
initially homogeneous systems�. This yields an induced ef-
fective pair potential �i�Ra ,Rb� between the two sources,
defined as the sum of all terms in Eq. �8� that depend on both
Va and Vb. Here the standard approach is to keep only terms
up to a given order in Vext. Linear response yields the in-
duced pair potential

�lin
i �Ra,Rb� =

1

�
�
k,k�

	�1��k,k��Va�k�Vb�k��ei�k·Ra+k�·Rb�.

�9�

In order to emphasize the role of the coupling-constant
integration and to hint at an upcoming result �Eq. �12��, this
can be written as

�lin
i �Ra,Rb� =

1

�
�
k

�Va�k���b
lin�− k,Rb�eik·Ra + Vb�k���a

lin�− k,Ra�eik·Rb�

−
1

�
�

k1,k2

	�1��k1,k2�Va�k1�Vb�k2�ei�k1·Ra+k2·Rb�, �10�

where ��i
lin�−k ,Ri� is the density induced, at linear order, by particle i located at position Ri.

The first two terms in this expression correspond to the Coulombic energy of the system at the level of linear response. The
third term, which arises from the coupling-constant integration, incorporates the variation in kinetic energy and entropy caused
by the perturbation.
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Instead of keeping terms linear in Vext, we can choose to
keep all terms that are linear in Va, for all orders in Vb. In
this case we find, using Eq. �6�, that the pair potential can be
written as

�i�Ra,Rb� � �SPb
i �Ra,Rb� =

1

�
�
k

Va�k���b�− k,Rb�eik·Ra.

�11�

Here, ��b�k ,Rb� is the total density that would be induced
if the perturbation potential was caused by source b alone—
i.e., Vext�k�=Vb�k�eik·Rb. Notice that the terms arising from
the interaction between ��a and Vb and the change in kinetic
energy and entropy arising from the perturbation �taken into
account by the coupling-constant integration� cancel each
other out exactly in this case. One can also obtain a different
estimate to the potential by inverting the roles of a and b in
the previous discussion, leading to �SPa

i .
This asymmetric approach will be referred to as the suc-

cessive perturbation method �SPM�. Indeed, one interpreta-
tion of this result is that instead of perturbing the initial
system with a and b simultaneously, we initially add only b,
determine the properties of the intermediate system, and
then, subsequently, add particle a. Since our pair potentials
result from the calculation of a free energy, the Gibbs-

Bogoliubov inequality applies and Eq. �11� is related to a
rigorous bound on the pair potential: namely,

�i�Ra,Rb� � �SPb
i �Ra,Rb� + 
Va�0 − 
Fa,

where 
Va�0 is the statistical average of the operator
Va�k�eik·Ra with respect to states of the initial, unperturbed
system, and 
Fa is the change in free energy induced by
adding a to the unperturbed system, which can be obtained
by setting Vb=0 in Eq. �8�.

Equation �11� is the first term in the expansion of the
energy if b is treated exactly and a is treated as a perturba-
tion. Note that higher-order terms in the expansion would
simply involve higher-order functional derivatives of the free
energy of the intermediate system including b, which are
related to density-density correlation functions of that sys-
tem.

The SPM is especially useful if Va is weak and Vb is
strong,24 but is not as useful when both sources of perturba-
tion are strong and require nonlinear treatment. On the other
hand, we can easily obtain from this relation another expres-
sion for the induced pair potential that incorporates all con-
tributions that are linear in either source. This expression
therefore includes all contributions to the pair potential up to
cubic order in Va and Vb. It reads

�SSP
i �Ra,Rb� =

1

�
�
k

�Va�k���b�− k,Rb�eik·Ra + Vb�k���a�− k,Ra�eik·Rb�

−
1

�
�

k1,k2

	�1��k1,k2�Va�k1�Vb�k2�ei�k1·Ra+k2·Rb�. �12�

This result, which emerges from what we will refer to as
the symmetrized successive perturbation method �SSPM�,
can also be seen to be a natural generalization of linear re-
sponse �10�. Equation �12� is our main result for noninteract-
ing systems. It also applies to interacting systems, but in that
case it can be improved upon. We will do this in Sec. III.

Equation �12�, despite its simplicity, has many interesting
features:

�a� It is very general; it can be used in any dimension, for
classical and quantum, homogeneous and inhomogeneous,
noninteracting and interacting systems �although, as men-
tioned, it can be improved for interacting systems; see Sec.
III�. �b� It is intuitive: the first two terms are the interaction
of the potential energy associated with each perturbation
with the density induced by the other. The last term, which is
equal to the negative of the linear response potential, ac-
counts for the change in kinetic energy and entropy of the
perturbed system and the contributions to the density that are
not additive in Va and Vb. �c� It includes all contributing
terms up to quadratic response �yielding cubic terms in Eq.
�8��, plus 8 out of 14 contributing terms of cubic response: it

includes more terms than quadratic response. �d� It does not
require the explicit knowledge of the second-order response
function, but only that of the linear response function of the
initial, unperturbed system. �e� It expresses the pair poten-
tials in terms of quantities that are simple, symmetric, and
can in principle be measured. Finally �f�, since it takes the
effect of a single, isolated perturbation as an external input,
Eq. �12� allows us to treat the effect of stronger, localized
perturbations which are often difficult to treat with purely
perturbative methods.

We use this result in two test cases in Sec. IV. The first
example is the effective interaction between particles per-
turbing, via �-function potentials, a noninteracting quantum
one-dimensional electron gas. The second is a version of the
classical Asakura-Oosawa model6,7 of the depletion interac-
tion, with finite square wells replacing hard-sphere poten-
tials. We then apply it to the more realistic calculation of the
pair potential between protons in a metallic environment.

Before we do this, we use the intuitive form of Eq. �12� to
suggest the existence of a higher-order correction that applies
to interacting systems, which will be derived in Appendix A.
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III. CORRECTIONS SPECIFIC TO
INTERACTING SYSTEMS

As mentioned, Eq. �12� is valid for the interacting elec-
tron gas as well as for the noninteracting one: the interac-
tions simply modify the forms of the 	�n�. But upon further
inspection of this equation, one might wonder about the ab-
sence of coupling between the induced densities themselves.
The part of this interaction that is linear in Va or Vb is in-
cluded in Eq. �12�, but the part that is nonlinear in both Va
and Vb is not. It turns out that some of these contributions
can also be expressed intuitively in terms of ��a and ��b.

For homogeneous interacting systems we obtain, by sum-
ming up higher-order terms that correspond to reducible dia-
grams �see Appendix A�, an extra term of the form

�red�Rab� =
1

�
�
k

��a
NL�k�ṽ�k���b

NL�− k�eik·Rab, �13�

where Rab is the distance between a and b, ��a
NL=��a

−��a
�1�, and ṽ is the effective interaction between the induced

densities. It reads

ṽ�k� = ��k�c0
�1��k� , �14�

where

��k� = 1 − c0
�1��k�	0�k�

involves the noninteracting response function 	0
�1�. In classi-

cal statistical mechanics c0
�1��k� is the Ornstein-Zernike func-

tion for the unperturbed system, multiplied by kBT. In the
case of quantum mechanical particles of charge e, we have20

c0
�1��k� = vc�k� + �1�k� ,

where vc�k�=4�e2 /k2 is the Coulomb interaction and �1 is
the first functional derivative with respect to density of the
exchange-correlation potential. It is related to the local-field
correction G by �1�k�=−G�k�vc�k�.

With some reorganization, we can now write the total
induced pair potential in a remarkably simple form: namely,

�SSP
i �k� = ��k��Va�k���b�− k� + ��a�k�Vb�− k� + ��a�k�c0

�1��k���b�k� − Va�k�	0
�1��k�Vb�− k�� . �15�

In real space,

�i�Rab� =
1

�
�
k

�i�k�eik·Rab.

This result brings up an important point. The energy as-
sociated with the interaction between potential Vb and the
nth-order contribution to the density induced by a, which we
write as ��a

�n�, arises at order n+1 in the energy expansion.
On the other hand, the “electron-electron” interaction be-
tween ��a

�n� and ��b
�n� appears only at order 2n in the energy.

Except for the special case of linear response, the electron-
electron interaction terms originate with a higher order in
response than the corresponding electron-perturbation terms.
Therefore termination of the series �8� at any order beyond
linear response will typically result in pair potentials that are
overly attractive.

Indeed, if we compare the effective pair potentials for
hydrogen atoms in jellium obtained from quadratic
response17 to those obtained from ab initio methods,18 we
observe exactly such a discrepancy. We calculate in Sec.
IV C the lowest-order contribution arising from Eq. �13� and
find that it indeed improves the agreement between ab initio
methods and response theory.

We finally draw the reader’s attention to the similarity �for
protons in an electron gas� between the ab initio equation
�15� and the variational Heitler-London evaluation of the iso-
lated hydrogen molecule energy. This will be further dis-
cussed in Sec. IV C.

IV. EXAMPLES OF APPLICATIONS

A. Delta functions in a noninteracting electron gas

As a simple instructive example, we first consider a one-
dimensional non-interacting electron gas of unperturbed lin-
ear density �0 confined to a large length L, with periodic
boundary conditions. The external perturbations have the
form

V��r� =
�2u

2m
��r� �� = a,b� .

From Eq. �12� we obtain immediately

�SSP�Rab� �
�2u

2m
�2��a�Rab� − ��lin�Rab�� . �16�

Here,

��lin�r� =
�2u

2m
�

k

	�1��k,− k�eikr �17�

and 	�1� is the linear response function of the one-
dimensional non-interacting electron gas3,25:

	�1��k1,k2� =
2m

�2�k1
ln k1 + 2kF

k1 − 2kF
�k1,−k2

.

The Fermi wave number kF is related to the unperturbed
linear density by kF=��0.

Converting the sum into an integral, we find �see Kittel3

and also Yafet25 and Giuliani et al.26�
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��lin�r� =
u

�
Si�2kFr� −

u

2
, �18�

where Si is the sine integral function.27 The nonlinear in-
duced density ��a�r� can also be calculated exactly as the
sum of the bound and scattering state density: namely,

��a = ��bound + ��s,

with

��bound�r� = − ��− u�ueu�r� = �− ueu�r� if u � 0,

0 otherwise.

�19�

Here � is the Heaviside step function.
The scattering state density is, in the limit of large L,26

��s�r� =
2

�
�

0

kF

dk�2uk sin�2k�r��
4k2 + u2 −

u2 cos�2k�r��
4k2 + u2 � .

�20�

Factors of 2 are included for spin degeneracy. This integral
can be evaluated in terms of the exponential integral E1 us-
ing, for example, relations 5.1.41 and 5.1.42 from Abramow-
itz and Stegun.27 We find

��s�r� =
eu�r�u

�
�Im�E1„�u + 2ikf��r�…� + ���− u�� . �21�

The total density induced by a single �-function potential
in a noninteracting electron gas therefore takes the very
simple form

��a�r� =
ueu�r�

�
Im�E1„�u + 2ikf��r�…� . �22�

Note that for kf →0 we find that ��=��bound, as expected.
The appearance of a bound state at u=0 corresponds to the
branch cut of E1 along the negative real axis.

If we use Eqs. �18� and �22� in Eq. �16�, we find an
expression for the pair potential as a function of Rab which
reads

�SSP�Rab� =
�2u2

�m
euRab�Im�E1„�u + 2ikf�Rab…��

−
�2u2

2�m
�Si�2kFRab� −

�

2
� . �23�

Alternatively, the exact pair potential can be calculated by
solving the Schrödinger’s equation directly for different val-
ues of Rab. The result is expressed as a sum over the eigen-
values of the Hamiltonian, which are obtained by numeri-
cally solving a set of transcendental equations.

We compare in Fig. 1 these numerical pair potentials with
the analytical ones obtained from the SPM and SSPM �Eq.
�23��, and those obtained from linear response, for various
interaction strengths, including attractive and repulsive
cases. We observe that the SSPM improves upon linear re-
sponse and the SPM, especially quantitatively, at low u, but
also qualitatively �at higher u�.

As a side remark, notice that the system has no bound
state for u�0, one even bound state for u�0, and one extra
odd bound state when Rabu�−2. It has been suggested28 that
the appearance of a bound state might cause the failure of
response theory, since such states are qualitatively different
from the initial, unperturbed free-electron system. We see
that this is not the case in this particular example and that the
pair potentials can be accurately described by response
theory despite the presence of a bound state. This is consis-
tent with the observation that no discontinuity in the density
of charge occurs upon the formation of a localized, bound
state �see, e.g., Galindo et al.29�.

B. Classical depletion interaction

The depletion interaction �or entropic attraction� plays a
major role in classical colloidal systems, where it is used to
tune the interaction between colloidal particles immersed in
a solvent. The addition of polymers to the solvent indeed
causes an effective attraction between the colloidal particles
which can be adjusted by modifying the polymer concentra-
tion.

The Asakura-Oosawa model6,7 describes this effect by
representing colloidal particles as hard spheres of radius D
and �folded� polymers as hard spheres of radius �. The inter-
actions between the polymers are neglected. The polymers
are therefore treated as an ideal gas which is excluded from
spheres of radius D+� surrounding each colloid. Here we
will replace the hard-sphere potential with a finite repulsion
of magnitude V0. Within this model the effective attractive
potential between the colloids can be calculated exactly and
compared to the response theory results, providing a useful
benchmark for perturbative approaches in the classical re-
gime.

Suppose we have only two colloidal particles �at positions
Ra,b� in a bath of polymers of unperturbed density �0
=N /�. Since the polymers are taken not to interact, their
density is given by

��r� =
Ne−�Ve�r�

�
�

dr�e−�Ve�r��

, �24�

where Ve�r�=Va�r�+Vb�r� is the total potential and

Va,b = �V0 if �r − Ra,b� � D + � ,

0 otherwise.

Since Ve�r� is zero except within a bounded region, ��r�
simplifies, in the thermodynamic limit, to

��r� = �0e−�Ve�r�. �25�

Now we can use the coupling-constant integration method
to obtain the Helmholtz free energy:
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F − F0 = �
0

1

d�� drVext�r����r�

= − Ao�Ra,Rb�
�0

�
�e−2�V0 − 1�

− Ar�Ra,Rb�
�0

�
�e−�V0 − 1� , �26�

where Ao is the overlap volume between the two spheres of
radius D+� centered at Ra,b, and Ar=8��D+��3 /3−2Ao is
the nonoverlapping volume of the spheres. All the Ra,b de-
pendence is contained in Ao�Ra ,Rb�=Ao�Ra−Rb�. Accord-
ingly we write the pair potential as

�i�Ra − Rb,V0� = −
�0A0�Ra − Rb�

�
�e−�V0 − 1�2. �27�

Notice the obvious limit V0→�, yielding the familiar
Asakura-Oosawa result,6,7

�i�Ra − Rb, � � = −
�0A0�Ra − Rb�

�
. �28�

This problem can also be treated at various orders of re-
sponse theory, using, e.g., 	�1��k ,k��=−��0�k,−k�. The gen-
eral form for the pair potential, which can be obtained by
carrying the perturbation to any order, can be expressed as

�n
i �Ra − Rb,V0� = − f��V0�

�0A0�Ra − Rb�
�

.

Only the position-independent function f is modified in
the various approximations. The exact �nonperturbative�
form for the function f is

f�x� = �e−x − 1�2.

We evaluate the performance of the various orders in re-
sponse and of the SPM and SSPM by comparing the esti-
mates obtained from each method to the exact result for f�x�.
Since we know the exact result analytically, we can obtain
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FIG. 1. �Color online� Pair potentials for �-function potentials in one-dimensional noninteracting electron gas: exact, linear response, and
the SPM and SSPM results. The Fermi wave vector is set to kf =0.785/a0. The residuals �difference between estimated and exact pair
potentials� are shown in the inset. Note the difference in behavior of the SSPM near the origin between attractive �first three figures� and
repulsive �last figure� �-function potentials.
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the nth-order response estimate to f , and hence to the pair
potential, by a simple Taylor expansion of f�x�, keeping
terms up to �n+1�th order in x=�V0—i.e.,

f�x� = x2 − x3 +
7

12
x4 + ¯ .

Expansions up to cubic order are shown in Fig. 2,
together with the SPM result �Eq. �11��

fSPM�x� = �1 − e−x�x = x2 −
x3

2
+

x4

6
+ ¯

and the SSPM result �Eq. �12��

fSSPM�x� = 2�x�1 − e−x� −
x2

2
� = x2 − x3 +

x4

3
+ ¯ .

Negative values of x are included in Fig. 2 for illustrative
purposes. One can again observe that because of the addi-
tional terms it includes, the SSPM is more accurate than
linear and quadratic response for all V0 and more accurate
than the SPM for x�1.59. Cubic response, on the other
hand, is closer to the exact result than the SSPM for −1.93

�x�0.78, which is expected since the SSPM does not in-
clude all cubic terms. For larger �x�, though, the higher-order
terms play a more important role and the SSPM is more
accurate than cubic response.

This example is also instructive in that it allows us to
study directly the convergence of response theory. Note that
for V0�0 the convergence is monotonous, while for V0�0
there is a more complex, alternating approach to the exact
result. This can be traced back to the fact that changing the
overall sign of the perturbing potential results in changing
the sign of odd orders in response, without affecting the even
orders. Thus, if a potential exhibits monotonous conver-
gence, its additive inverse exhibits alternating convergence.
We might therefore expect, for example, that effective inter-
actions with protons and antiprotons in an electron gas will
have completely different convergence behaviors. If this
classical example is to be representative, protons would then
exhibit uniform convergence, while antiprotons should ex-
hibit alternating convergence.

Note, finally, that in the problem at hand, response theory
converges even for arbitrarily large V0 and D+�. Since for
repulsive spheres the functions f��V� approaches a constant
value exponentially, it is even possible, in this case, to obtain
a quantitative value for the limit V0→� by keeping only a
finite number of perturbation terms.

C. The hydrogen molecule and connections
with the Heitler-London approach

We move on to the more realistic system composed of
two initially bound proton-electron systems immersed in a
uniform, neutral, and interacting jellium30–32 at a tempera-
ture much lower than the Fermi temperature. This hydrogen-
in-jellium problem can be linked to real systems in two
ways. First, it can be seen as a first step in a formal expan-
sion including three- and many-center terms which, if carried
to all orders, should yield the exact total energy of the sys-
tem, within the adiabatic approximation. In can also be used
within an effective-medium approach33 in an attempt to take
into account the many-ion effects in an approximate way. In
both cases the pair potentials can be used to derive phonon
spectra. In particular, the pair potentials obtained from qua-
dratic response were used to predict the infrared and Raman
vibron frequencies of the hydrogen solid.17

To establish a basis of comparison, we first obtain an es-
timate of the importance of nonlinear corrections to the one-
atom density, ��a, using the ab initio program VASP.34,35 This
allows us to estimate the effect on the pair potentials of the
higher-order terms in the determination of ��a.

To obtain this, we used a cubic cell of side 13.5a0
containing 74 electrons �for rs=2�, together with a
666k-space grid and a standard projector augmented
wave �PAW� pseudopotential for hydrogen36,37 with cutoffs
up to 450 eV. The generalized gradient approximation
�GGA� to the exchange-correlation potential, as parametrized
by Perdew and Wang,38 was used, together with the
Methfessel-Paxton smearing,39 with a smearing temperature
of �=0.2 eV. Since it was shown18 that the proton-proton
pair potential does not depend strongly on the choice of a
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FIG. 2. �Color online� Upper figure: dependence of the effective
pair potential between two repulsive colloidal particles on the inter-
action strength parameter x=�V0: exact result versus the SPM and
SSPM, and perturbations at various orders. Lower figure: relative
errors �fn�x�− f�x� � / f�x�.
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pseudopotential, cutoff energy, and exchange-correlation
functional, our choice of parameters should yield sufficient
precision for our purposes, even considering possible short-
range distortions due to core overlap.

The SSPM pair potentials thus obtained are shown in Fig.
3 and are compared with the VASP results for the pair poten-
tials from Bonev and Ashcroft,18 the quadratic response re-
sults, and the SSPM pair potentials corrected by the inclu-
sion of Eq. �13� to lowest order in the perturbing potential.

To obtain the latter, we start with Eq. �13� and use

��a
NL�k� �

1

�
�

k�,k�

	�2��− k,k�,k��Vext�k��Vext�k�� .

This corresponds to the energy diagram shown as Fig. 5�a�,
below.

We use the second-order noninteracting response function
of the homogeneous electron gas, 	0

�2��k ,k� ,k��, in the form
given by Milchev and Pickenhain.10 The interacting response
function is then written as

	�2��k,k�,k�� =
	0

�2��k,k�,k��
��k���k����k��

,

which corresponds to the random phase approximation. This
approximation is expected to improve as the density is in-
creased �see, e.g., Pines and Nozières22� and should be suf-
ficient to give us information on the general behavior of the
potential. Finally we choose the Vashishta-Singwi form40 for
the local field correction G�k�.

Under these assumptions we obtain the contribution to the
pair potentials displayed in Figs. 3 and 4.

We see that the inclusion of the potential �red from Eq.
�13�, and therefore of the density-density interaction ṽ�q�
=��q��vc�q�+�1�q��, leads to a contribution to the pair po-
tential that is repulsive at typical proton-proton separation.
This behavior largely arises from the Coulomb repulsion

term vc. This contribution therefore explains part, but not all,
of the discrepancy observed between the pair potentials ob-
tained from quadratic response17 and ab initio methods.18 In
particular, all perturbation-based methods yield a local mini-
mum around R=1.4a0, whereas no such minimum is ob-
served in the VASP pair potential at the considered density;
such a minimum appears for VASP pair potentials only at
lower densities, corresponding to rs�3 �see Bonev and
Ashcroft18�. The consequences of the disappearance of this
local minimum at higher density for the stability of the hy-
drogen molecule �or crystal� has also been discussed in Na-
gao et al.17 and Díez Muiño and Salin.31

Note that for each diagram of the form shown in Fig. 5�a�
there are two similar diagrams of the form shown in Fig. 5�b�
which are not reducible and hence not contained in Eq. �13�.
In the limiting case where the interparticle distance tends to
zero, though, diagrams 5�a� and 5�b� should provide the
same contribution. Therefore diagrams of the form 5�b�
should also have an overall repulsive behavior, contributing
to further reduce the discrepancy between perturbative and
VASP results.

Note also that if we consider separately the contributions
of ṽc�q�=��q�vc�q� and �̃1=��q��1�q�, we find that the con-
tribution of �̃1 is mostly attractive, as can be seen in Fig. 6
for rs=2. We also observe that terms arising from Eq. �13�
exhibit very weak Friedel oscillations. This distinguishes
these terms from the other contributions calculated here or
ab initio pair potentials18 �compare, e.g., Figs. 3 and 4�, and
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FIG. 3. �Color online� Comparison of the SSPM results with and
without contributions from Eq. �13� to quadratic response and ab
initio results �from Bonev and Ashcroft �Ref. 18�� for proton-proton
pair potentials at rs=2.

ssss 3333====rrrr

ssss 2222====rrrr

ssss 7777....1111====rrrr

ssss 3333....1111====rrrr

0000 1111 2222 3333 4444 5 65 65 65 6
0000))))aaaa((((eeeeccccnnnnaaaattttssssiiiiDDDD

0.000.000.000.00

0.020.020.020.02

0.040.040.040.04

0.060.060.060.06

0.080.080.080.08

0.100.100.100.10

0.120.120.120.12

0.140.140.140.14

0.160.160.160.16

E
n
er
g
y(
R
y)

E
n
er
g
y(
R
y)

E
n
er
g
y(
R
y)

E
n
er
g
y(
R
y)

FIG. 4. �Color online� Contribution of the diagram from Fig.
5�a� to the proton-proton pair potential for various values of rs.

FIG. 5. �a� Lowest-order diagram contributing to the interaction
�13�. �b� Nonreducible diagram equal to diagram �a� in the limit
Rab→0, for identical ions, here protons �diagrammatic conventions
are explained in Appendix A and Fig. 7�.
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we conjecture that this arises from the reducibility of the
energy diagram.

We draw the reader’s attention to the close similarity of
the pair potential of Eq. �15� with corresponding terms in the
Heitler-London �HL� picture of the isolated hydrogen mol-
ecule. We can identify in both methods �i� the ion-ion repul-
sions, �ii� the attractive interactions between ion b �a, respec-
tively� with the density induced by a �b, respectively�, �iii�
the Coulombic repulsion between the one-atom electronic
densities, and �iv� an attractive exchange contribution from
the electrons. The fourth term in Eq. �15�, which has no
equivalent in the HL picture, goes to zero in the low-density,
free-molecule case. It is interesting that two such different
approaches, one being variational in essence and the other
one perturbational, yield such similar results.

Some features of the HL pictures cannot be observed in
the SSPM, though, because of the nonzero average electronic
density considered in the SSPM. For example, while the pair
potential between protons immersed in spin-polarized or
spin-unpolarized electrons differed only by the exchange
term in HL, this is no longer the case in the SSPM approach.
The densities ��i induced by single protons are indeed quite
different for spin-polarized and spin-unpolarized electrons.

V. CONCLUSION

To obtain effective interactions between particles im-
mersed in a well-understood system, such as ions immersed
in a uniform jellium, the traditional perturbation approach
treats all immersed particles as a single perturbation. One
finds the free energy of the perturbed system as a function of
the total perturbation potential. The total potential is then
separated in the sum of its constituents, which allows a natu-
ral separation of the effective potential in pair-, triplet-, and
many-body potentials.

Here we have discussed two alternative approaches. In the
first approach, we start by immersing a single particle in the
well-understood system and then calculate the response func-
tions of the new, but perturbed system. Since these response

functions are directly related to the electronic density or
density-density correlation functions, they can be obtained
by a variety of techniques, including perturbation theory,
simulations, and density functional theory and even deduced
from experiment. The remaining particles are then treated as
a further perturbation of this already perturbed system.

Such a two-step process is ideal when only one perturba-
tion is strong,24 but it is intrinsically asymmetrical and not
ideal when both perturbations are large enough to induce
nonlinear effects. We have suggested a way to improve and
symmetrize this procedure which allows one to treat an in-
creased number of perturbation terms with little additional
effort. More specifically, by using results of the asymmetrical
approach that are exact to linear order in the perturbation
potential, it is possible to construct a symmetrized result ex-
act to quadratic order and including additional higher-order
terms as well. We applied this method to two simple nonin-
teracting test systems and found that it improves upon stan-
dard linear and quadratic response, as expected.

More importantly, it was shown that this simple method
could be naturally refined by the inclusion of higher-order
terms describing, in particular, electron-electron interactions.
These higher-order terms also have intuitive physical mean-
ing, and we used this to argue that the standard termination
of the perturbation series at a given order is not the best
strategy. The inclusion of the higher-order terms was indeed
shown to improve considerably the agreement between the
perturbation and density functional theory approaches in the
problem of proton-proton pair potentials.

Even though we considered here effective interactions be-
tween identical particles only, the SSP method is particularly
well suited to the description of systems with multiple �say,
N� types of particles. It indeed reduces the computational
difficulty from the determination of N2 /2 pair potentials to
that of finding N �typically symmetric� induced densities,
from which the pair potentials can be obtained in a straight-
forward manner. It can also be generalized to many-center
interactions and to magnetic perturbations �see Appendix B�.

Finally, a striking similarity is found between terms in the
pair potentials arising from this approach and from the
Heitler-London variational approach for diatomic molecules,
leading to a possible natural generalization of the Heitler-
London approach to metallic systems. This similarity could
be explored further by comparing the pair potential for a pair
of atoms in a jellium, as derived here, to a pair of atoms in a
Wigner-Seitz spherical cell ensuring the same average den-
sity, which could be treated within a Heitler-London-like ap-
proach.

A more detailed comparison of the SSPM and ab initio
pair potentials for hydrogen and other materials, especially at
densities higher than those considered here, would be a logi-
cal next step to this work, as would be a more detailed treat-
ment of the many-body interactions, both from the ab initio
and SSPM perspectives.
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APPENDIX A: DERIVATION OF EQ. (13)

We first use the Hohenberg-Kohn-Sham approach41,42

�and the finite-temperature extension due to Mermin43� to
write the induced density in terms of the response functions
of a noninteracting system in a modified external potential
�see, e.g., Lundqvist and March44�. We write the density as

���k� = �
k�

	0
�1��− k,k����k��

+
1

�
�

k�,k�

	0
�2��− k,k�,k����k����k�� + ¯ ,

�A1�

where 	0
�n� are the response functions of the noninteracting

system and � is the effective perturbation potential. We write
� as

��k,�� = �V�k� + c�k,���� − c�k,��0�� , �A2�

where �c�k , ���� is the first-order direct correlation function.
The parameter � is introduced to keep track of the order

of the expansion. For example, we can write

��k� = ���1��k� + �2��2��k� + ¯ . �A3�

The variation �c�k , ����=c�k , ����−c�k , ��0�� can in turn
be written as a functional expansion:

�c�k� = �
k�

c0
�1��− k,k�����k��

+
1

�
�

k�,k�

c0
�2��− k,k�,k�����k�����k�� + ¯ .

�A4�

Note that here �c0
�i� is the �i+1�th direct correlation function

of the unperturbed system. This slightly unusual notation is
chosen to emphasize the similarity between Eqs. �A1� and
�A4�.

Finally the induced density can also be expressed in pow-
ers of the external potential:

���k� = ����1��k� + �2���2��k� + ¯ . �A5�

The variation in the free energy is obtained as before
through Eq. �8�, which we now write as


F =
1

�
�
k,n

��n��k�Vext�− k�
n + 1

= 
F1 +
1

�
�
k,n

���n��k�Vext�− k�
n + 1

,

�A6�

where 
F1 does not depend on the relative positions of the
perturbation sources and will therefore not contribute to the
pair potentials.

Using Eqs. �A1�, �A2�, and �A4�, we can represent each
term in Eq. �A6� by a diagram using three types of building
blocks: namely, 	0

�n� and c0
�n� for n�1, and Vext. A few ex-

amples are shown in Fig. 7.
Each Vext is connected to a single 	0

�n�. Each c0
�n� is con-

nected to n+1 different 	0
�n�. Each 	0

�n� is connected to n+1
blocks that can be either Vext, or a c0

�n�. Conversely, every
treelike diagram obeying these rules corresponds to a term in

FIG. 7. Some typical diagrams from the free energy expansion contributing to the pair potential. Loops with n+1 legs represent response
function of order n. The correlation function c0

�n� is represented by a solid circle surrounded by n+1 wavy lines and the external potential by
solid lines. Diagram �a� is a quadratic response contribution. Diagrams �b� and �c� represent some third-order contributions taken into
account by Eqs. �12� and �13�, respectively. Diagrams �d�, �e�, and �f� are examples of cubic-response contributions which are not taken into
account in the approach presented here.
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Eq. �A6�. Note that since ���q� obeys the same rules, it can
be represented by the same diagrams, with only one Vext
removed.

We call reducible those diagrams in Eq. �A6� that can be
separated, by the cutting of a single c0

�1� line, into two dia-
grams that depend exclusively on Va or on Vb, respectively,
and that are linear in neither Va nor Vb. On Fig. 7, diagram
�c� is reducible, while the others are not.

We want to show that the set of such diagrams is equiva-
lent to those described by Eq. �13�. First we will show that
there is a one-to-one correspondence between reducible dia-
grams in Eq. �A6� and diagrams in Eq. �13�. Then we will
show that the prefactors also agree.

1. Diagrammatic equivalence

Consider a reducible diagram D contributing to the pair
potential. Then consider the set S of all diagrams that are
different from D only by the number of separating interac-
tion lines. The separating interaction lines can only be con-
nected by 	0

�1� loops. By summing over the different numbers
of 	0

�1� loops and the momenta associated with these loops,
we can therefore obtain a dressed propagator in terms of a
dielectric function,

c̃0
�1��k,k�� =

c0
�1��k,k��
��k,k��

�A7�

which takes a simple form in the diagrammatic language �see
Fig. 8�.

All diagrams in S are therefore included in
��k�D1��k�� /��ki ,k j� where D1��k�� is the value, before the
summation over the momenta �k�, of the diagram in S with a
single separating c0

�1� propagator. ki and k j are the momenta
of the separating propagator.

Since we can construct diagrams contributing to ���k�
with the same building blocks and the same construction
rules as for diagrams contributing to the pair potential, it is
easy to find an expression involving only ��i and c0

�1� that
includes all reducible diagrams contributing to the pair po-
tential. An example of such an expression is

1

�
�
k,k�

��a
NL�k,Ra�c0

�1��k,k����b
NL�k�,Rb� .

Since both ��a�k� and ��b�k� have an arbitrary number of
	0

�1� loops on the leg with momenta k, though, this expres-
sion amounts to screening the c0

�1� interaction twice. To take
care of this, we can write instead

�red�Ra,Rb� =
1

�
�
k,k�

��a
NLU�k,Ra�

c0
�1��k,k��
��k,k��

��b
NLU�k�,Rb� ,

�A8�

where ��a
NLU�k ,Ra� is defined as the sum of all diagrams in

��a
NL�k ,Ra� without 	�1� loops on the leg with the k momen-

tum �U stands for unscreened�. To each reducible diagram
contributing to the pair potential corresponds a diagram in
Eq. �A8� and vice-versa.

For homogeneous systems, we have

	�1��k,k�� = 	�1��k���k,−k�,

c0
�1��k,k�� = c0

�1��k���k,−k�,

1

��k,k��
=

1

��k�
= �

i

�c0
�1��k�	0

�1��k��i =
1

1 − c0
�1��k�	0

�1��k�
,

and

��a,b�k,Ra,b� = �a,b�k�eik·Ra,b,

so that Eq. �A8� simplifies to

�red�Rab� =
1

�
�
k

��a
NL�k�c0

�1��k���k���b
NL�− k�eik·Rab,

which is precisely Eq. �13�; we have shown that Eq. �13�
contains exactly the reducible diagrams from Eq. �A6�. Now
we need to show that the prefactors of these diagrams also
agree.

2. Prefactors and symmetries

A diagram D is said to possess a symmetry of order m if
it is possible to cut m legs from a given 	0 or c0 and obtain
m identical cut-down parts. Each such symmetry contributes
a factor 1 /m! to the total prefactor of the diagram, as com-
pared to an equivalent asymmetrical diagram.

In order to obtain this “equivalent asymmetrical diagram,”

we replace Vext by Ṽext=� j=1
n+1v j in the original problem,

where n+1 is the number of external legs of diagram D. We

then consider the diagram D̃ that is identical to D, apart from
its external legs which are all connected to different v j. By

construction, diagram D̃ can have no symmetry.

Contributions to diagram D̃ can be obtained, in Eq. �A6�,
by replacing Vext by any of the v j and by calculating the
prefactor Pj of the density diagram obtained by removing v j

from D̃. The prefactor PD̃ of D̃ is therefore

PD̃ =
1

n + 1 �
j: external

leg

Pj , �A9�

Since there is no symmetry in the diagram, it is relatively
straightforward to find its prefactor: each 	0

�i� or c0
�i� contrib-

utes i! to the global prefactor. Therefore all Pj are equal, the
�n+1� factors cancel out, and we simply get PD̃= Pj. By a
similar argument, we obtain

FIG. 8. Diagrammatic expansion for the dressed c̃0
�1� in terms of

the bare c0
�1� and linear response functions.
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PD̃ = Pj = PD̃a
PD̃b

,

where D̃a and D̃b are the separated diagrams. Asymmetric
reducible diagrams therefore have the same prefactor in Eqs.
�A6� and �13�.

This result can be extended to symmetrical diagrams in a
straightforward manner: if the two identical diagrams ob-
tained by cutting two legs from a given 	 or � in a sym-
metrical reducible diagram, they cannot contain the separat-
ing interaction line. Therefore all symmetries are contained
within the separated diagrams. Since each symmetry contrib-
utes a factor 1 /m! to the global prefactor, m being the num-
ber of identical branches involved in this symmetry, the sym-
metry contributions to Eqs. �13� and �A6� are the same.

We have therefore derived the result that there is a one-
to-one correspondence between reducible diagrams contrib-
uting to the pair potential �in Eq. �A6�� and diagrams con-
tained in Eq. �13�. Since the prefactors of these diagrams in
each expression also agree, Eq. �13� allows the calculation of
the pair potential associated with all reducible diagrams.

APPENDIX B: GENERALIZATIONS

In this appendix we discuss two possible generalizations
of the methods introduced above: namely, the case of mag-
netic perturbations and that of many-center interactions.

1. Magnetic perturbations and the RKKY interaction

The interaction between magnetic perturbations �e.g.,
nuclear spins or magnetic impurity atoms� and an electron
gas can be modeled by the Hamiltonian45

Hint,� = �J�
i,j

f�ri − R j�S j · �� i,

where ri and �� i are the position and spin operators for elec-
tron i, while R j and S j are the position and spin of the jth
magnetic perturbation source.

The Hellman-Feynman theorem reads

F1 − F0 = �
0

1

d�
Hint,1��

= J�
0

1

d��
j
� drf�r − R j�Si · m�r��, �B1�

where the local magnetization m is given by

m�r�� = ��
i

��ri − r��� i�
�

.

By analogy with the induced density case, we can de-
scribe the perturbation using

Vj�r� = J�
i

f�r − Ri�Sj
i .

Assuming a nonmagnetic unperturbed state,

mi�r�� =� dr 	ij�r,r���Vj�r��

+� dr�dr�	ijk
�2��r,r�,r���2Vj�r��Vk�r�� + ¯ .

If we have two magnetic perturbing sources �a and b�, we
find an effective interaction of the form

��Ra,Rb,Sa,Sb� =� drVa�r� · mb�r,Rb,Sb�

+� drVb�r� · ma�r,Ra,Sa�

−� drdr�	ij�r,r��Vi
a�r�Vj

b�r�� .

�B2�

Here, as before, Vi describes the perturbation associated with
source i and mi�r ,Ri ,S

a� is the magnetization induced at r
by the presence of a single perturbation of spin Si at Ri.

In the particular case of pointlike magnetic perturbations
�f�r�=��r��, the effective interaction between the magnetic
perturbations takes the simple form

��Ra,Rb,Sa,Sb� = JSa · mb�Ra,Rb,Sb�

+ JSb · ma�Rb,Ra,Sa� − J2	ij�Ra,Rb�Si
aSj

b.

�B3�

This expression, which goes beyond quadratic response �but
does not include corrections of the form �13��, could be used
to improve upon the standard RKKY potential, which takes
into account only the linear order in response.3

2. Many-center potentials

Since the sources of the perturbations in Eqs. �12� and
�13� have not been specified, a straightforward way of treat-
ing many-particle interactions in this formalism is to take
either or both sources to be an ensemble of particles. This
might be especially appropriate for problems involving the
diffusion of well-formed molecules. In the hydrogen prob-
lem, this could also be used to study the molecule-molecule
interactions near or beyond the onset of metallization.

Many-center interactions can be treated in a more sym-
metric way through conventional response theory �see, e.g.,
Porter46�, but also through a SSPM approach. The lowest-
order N-body term arises at the level of �N−1�th-order re-
sponse. This term is linear in the potential from all N par-
ticles. The next most dominant contributions will be from
terms that are nonlinear in the potential arising from one
particle and linear in that arising from the remaining N−1.

We can directly generalize Eq. �12� to an N-body potential
treating all terms linear in N−1 particles exactly by writing

��N���R�� �
1

�N − 1���
j=1

N

�
k

Vj�k���̃�j��− k�eik·Rj

−
1

�N − 1��N−1�
�ki�

	�N−1��k1, . . . ,kN�

�
j=1

N

Vj�k j�eikj·Rj . �B4�

Here ���j��k� is the density induced by all involved particles
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except j and ��̃�j��k� is the component of this density that
depends on the position of all N−1 particles involved. The
latter definition is required simply to avoid double counting
the potentials involving less than N particles.

Equation �B4� provides in principle a way to obtain an

expression that is exact up to Nth order, requiring only ex-
plicit knowledge of the �N−1�th-order response function. On
the other hand, it requires knowledge of the density induced
by N groups of N−1 particles, which rapidly becomes more
difficult when N�2.
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