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The problem of transformation of the quasiclassical Eilenberger theory to the one-parameter London model
is considered for the mixed state of clean type-II superconductors. Numerical computations demonstrate that
introduction of a field dependent coherence length �h�B� is enough for description of the magnetic field
distribution in the vortex core of a superconductor. It is found that the shape of �h�B� has strong temperature
dependence. The comparison between s- and d-wave pairing symmetry is done. Different behavior of �h�B� in
triangular and square vortex lattices is found.
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For type-II superconductors it has long been realized that
the low-lying quasiparticle excitations are confined to vortex
cores with size matching with the coherence length �h of the
superconductor. This means that the vortex core behaves like
a cylinder of normal metal with radius �h. According to the
picture of a rigid normal core, one can easily distinguish the
s-wave superconductors from the others which have nodal
gaps. For example, in this picture, the magnetic field depen-
dence of the specific heat coefficient � should behave like
��B because the vortex number is proportional to the field
in the mixed state. This is different from the relation �
��B expected from nodal pairing symmetry.1 However, sev-
eral investigations of the density of states �DOS� in the
mixed state show the existence of a considerable sublinear
part in field dependence of DOS in contradiction with the
model of a rigid vortex core in s-wave superconductors.2–4

This is caused by delocalization of quasiparticles bound to
the vortex core in the flux line lattice �FLL� and the field
dependent Kramer-Pesch effect.5,6 From the microscopical
point of view this effect is connected with the changing of
the DOS from U shape to V shape in the mixed state of
s-wave superconductors.4 The presence of magnetic field de-
pendence �h�B� is also important for interpretation of results
of muon spin rotation ��SR� and small-angle neutron scat-
tering �SANS� measurements7–9 which often show decreas-
ing �h�B� close to 1/�B.

When analyzing experimental data with the help of the
London model7 it is usually assumed that the penetration
depth should be field dependent. This approach is well
founded on the base of Eilenberger equations introducing an
anisotropic tensor Lij,

10–14 used for calculation of the second
moment of the magnetic field distribution and the ��B�
dependence.14 This method is useful for the discussion of
�SR and SANS measurements.7 Anyhow, this method re-
quires embedding an additional fitting parameter in the cutoff
function15–18 resulting in a two-parameter fitting of the mag-
netic field distribution.

Recently it has been suggested that the magnetic proper-
ties of FLL can be explained with a field dependent effective
coherence length �h�B�,19,20 and a method to extract �h�B�
from the magnetization data and transport measurements us-
ing only one fitting parameter was proposed.19 The Helfand-
Werthamer’s linearization technique21 for the calculation of
the vortex core size is applied there. This one parameter

fitting method allows us to connect the results of magnetic
and STM4 experiments. Within this approach, the quasiclas-
sical Eilenberger equations for the order parameter near the
vortex center are reduced to a linear form predicting monoto-
nously decreasing �h�B�. This form of �h�B� agrees with ex-
perimental observation for superconductors with complicated
band structure such as YNi2B2C, LuNi2B2C, and NbSe2 and
also corresponds to �SR and SANS measurements.7 How-
ever, it fails for V3Si �monotonously increasing �h�B�� where
this theory is supposed to work.

As noted,19,20 a number of questions should be addressed
theoretically: �i� It is not clear whether or not the linearized
model is compatible with the Pesch and Kramer prediction22

that the core size of an isolated vortex goes to zero at
T→0. �ii� The solution in the Ginzburg-Landau �GL� regime
at high temperatures should be fulfilled. �iii� The cutoff size
extracted from magnetization data is not necessarily the
same as the core size �� defined as being proportional to the
slope of the order parameter at the vortex axis. Approaching
the core from the outside to determine the cutoff is not the
same as examining the core structure starting from the core
center.23 To emphasize the difference between the character-
istic lengths of the order parameters and the magnetic field
distributions we define the notations of �� and �h, respec-
tively, in this paper.

We consider a clean superconductor, because there is no
complete understanding even in this case yet, and show us-
ing numerical calculations that the Eilenberger theory can be
simplified to get the London equation with only the field
dependent parameter �h�B�. It is found that at low tempera-
tures �h grows monotonously with the field, but at higher
temperatures a minimum in �h�B� appears. This result agrees
with the Hao-Clem solution of the GL model.15 The cases of
s- and d-pairing symmetry are also compared. The numeri-
cally obtained results can be used for the explanation of the
experimental results for V3Si.19

We solve the quasiclassical Eilenberger equations for the

s- and d-wave pairing potential ��r�= �̄�r�exp�i�� with
exp�i��= �x+ iy� /r. To simplify the comparison between the
s- and d-wave superconductors we assume the same cylin-
drical Fermi surface in both cases that is suitable for high-Tc
and organic superconductors. Throughout this paper, the en-
ergy, the temperature, and the length are measured in units of
Tc and the coherence length �0=�BCS��0 /Tc=vF /Tc. The
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magnetic field h is given in units of �0 /2��0
2. In computa-

tions the ratio 	=�0 /�0=10 between the penetration depth
and the coherence length at zero temperature in clean super-
conductors is used in all the plots but Fig. 5. The method of
Riccati transformation of the Eilenberger equations is
used.16,17,24,25 In this method the quasiclassical Green func-
tions are parametrized via

f̄ =
2ā

1 + āb̄
, f† =

2b̄

1 + āb̄
, g =

1 − āb̄

1 + āb̄
, �1�

where the anomalous Green functions f̄ and f̄† are related to

the usual notations as f = f̄ exp�i�� and f†= f† exp�−i��. The

functions ā and b̄ satisfy the independent nonlinear Riccati
equations

��ā�
n,�,r� = �̄�r� − �2
n + i���� − A��

+ �̄*�r�ā�
n,�,r��ā�
n,�,r� , �2�

��b̄�
n,�,r� = − �̄*�r� + �2
n + i���� − A��

+ �̄�r�b̄�
n,�,r��b̄�
n,�,r� , �3�

where 
n= �2n+1��T is the fermionic Matsubara frequency,
�� =d /dr� and ���=−r� /r2. Here we use the coordinate sys-
tem û=cos �x̂+sin �ŷ, v̂=−sin �x̂+cos �ŷ. Thus a point
r=xx̂+yŷ denoted as r=r�û+r�v̂, ��r� is obtained self-
consistently from BCS relations, and the supercurrent J�r� is
given in terms of g�
n ,� ,r�.25

The local magnetic field h�r� can be split into a constant
part, the magnetic induction B and a periodic part B��r� with
zero average over the vortex lattice cell. Similarly, the vector
potential can be split into two parts,

h�r� = B + B��r� = � � Ā + � � A�, �4�

where A��r� is periodic with a condition � ·A�=0.
Assuming the periodical FLL, the self-consistent Eilen-

berger equations �2� and �3� are solved numerically by itera-
tion using the fast Fourier transform method25 for a given
vector potential A� and the gap function �. The iteration
procedure starts with A�=0 and �=const. The functions a
and b are then used to calculate new values of A� and �, and
the whole process is repeated until self-consistency is
achieved.

The nonlocal microscopical Eilenberger theory can be re-
duced to a one-parameter model with effective coherence
length �h�B�.19,20,26 In this approach the London penetration
depth ��T� is field independent and has the same value as in
the Meissner state, but the field dependence of �h�B ,T� is
enough for an explanation of the magnetization experiments.

We define the coherent length �h using the standard Lon-
don model. The magnetic field distribution is given by the
equation

h�r� =
�0

S
�
G

F�G�eiGr

1 + �2G2 , �5�

where F�G�=uK1�u�, K1�u� is the modified Bessel function,
u=�2�hG, G is a reciprocal lattice vector, and S is the sur-
face of the vortex lattice unit cell. At temperatures near Tc
the cutoff function F�G� coincides with solution of the GL
equations.15,18 To find �h we fit the field distribution from Eq.
�5� to the solution of the Eilenberger equations. The quality
of the fitting can be seen from Fig. 1, where the normalized
difference between the fields hL calculated with the one-
parameter London model and with the Eilenberger equation
hE for s-wave superconductors at B=5, T=0.5 is shown. The
accuracy of the fitting is better than 2%.

Figure 2 demonstrates the calculated field and tempera-
ture dependence of �h for s-wave superconductors. A strong
decrease of the core size with decreasing temperature is
clearly observed. It is connected with the Kramer-Pesch
effect.22 The most interesting feature of the obtained results
is the nonmonotonous field dependence of �h. The clear
minimum of �h /�0 at high temperatures becomes weaker at
low temperatures. A minimum was found also in the order
parameter coherence length: 1 /��= �����r�� /�r�r=0 / ��NN�,
where ��NN� is the maximum value of the order parameter
along the nearest-neighbor direction, which is also the direc-
tion of taking the derivative.23 This reflects an interconnec-
tion between the magnetic coherence length �h�B� and the
order parameter distribution. Numerical calculations of ���B�
show that embedding impurities results in suppression of the
minimum of �h and eventually leads to a monotonically de-
creasing function.23 Similar behavior is often observed in
experiments,7 too. The presence of impurities can explain the

FIG. 1. �Color online� Normalized differences between the
fields calculated with the London model and with the Eilenberger
equation for B=5, T /Tc=0.5 and the triangular FLL. The scales of
the lengths are those of the flux line lattice unit vectors. The bold
lines are the level curves.
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absence of the minimum in �h�B� in V3Si and other materi-
als. A second band with small gap can also change the field
dependence �h�B� in NbSe2, MgB2, and probably in boron
carbides YNi2B2C, LuNi2B2C as well.

We also inverstigated the effect of magnetic field on pair-
ing symmetry. The results for s- and d-wave superconductors
at different temperatures are presented in Fig. 3. The shapes
of the �h /�0 dependences on B are similar in these two cases
and differ only by a numerical value. Figure 4 demonstrates
that the difference between the coherence lengths for s- and
d-wave superconductors has field and temperature depen-

dence less than 10%. This can be explained by the V shape
of the low energy density of the states N�E�=N0�H�+ �E�
for all clean superconductors in the vortex state, irrespective
of the underlying gap structure. The V shape has been ob-
tained by microscopic calculations for the isotropic gap as
well as for the line and the point-node gaps.4,6 The singular
DOS with V shape is universally independent of the under-
lying original gap structure. Scanning tunneling spectroscopy
experiments on NbSe2, YNi2B2C support the existence of the
V shape.4

As observed by the SANS technique, in field directions
close to perpendicular to the CuO2 planes of YBCO single
crystal, the FLL structure changes smoothly from a distorted
triangular symmetry to a nearly perfect square around
B=11 T.27 This behavior is expected from d-wave theories.28

For this reason we compare �h�B� for triangular and square

FIG. 2. �Color online� Field and temperature dependences of the
coherence length �h�B ,T� for s-wave superconductors and the tri-
angular FLL.

FIG. 3. �Color online� Magnetic field dependences of the coher-
ent length �h in the triangular FLL normalized against the zero field
value for s- and d-wave superconductors at different temperatures.

FIG. 4. �Color online� Magnetic field and temperature depen-
dences of the difference between the coherent lengths for s- and
d-wave superconductors in triangular FLL.

FIG. 5. �Color online� Dependence of the effective coherence
length on magnetic induction for triangular and square flux line
lattices. The inset shows the dependence of the magnetic field in the
vortex center on 	=�0 /�0 at T /Tc=0.5 and B=1 in units of
�0 /2��0

2.

MAGNETIC FIELD DEPENDENCE OF VORTEX CORE SIZE… PHYSICAL REVIEW B 76, 140501�R� �2007�

RAPID COMMUNICATIONS

140501-3



lattices. As can be seen from Fig. 5, �h�B� is slightly longer
in the square lattice. Considering these two lattices29 a simi-
lar behavior has been found in the Abrikosov coefficient �A
increasing from 1.16 to 1.18. The parameter 	=�0 /�0 affects
only the magnetic field amplitude as shown in the inset to
Fig. 5, but does not affect the magnetic field distribution
shape, so the coherence length remains independent of 	.
The similar 	 independent magnetic field distribution was
observed for single vortexes.17 The dependences of magnetic
field in the vortex center are well fitted by a power law
h�r=0�=1/ �1.266	�2. This type of dependence can be ex-
plained by GL theory where h�r=0��1/�2 and taking into
account the normalization of the equations.11

To conclude, we have solved numerically the quasiclassi-
cal Eilenberger equations for clean type-II superconductors
in the mixed state. It is found that these equations can be
reduced to the London model with only one parameter,

�h�B�. The shape of the �h�B� function depends on tempera-
ture, being nonmonotonic with a minimum at high tempera-
tures and a monotonously increasing function at low tem-
peratures. We believe that this behavior is connected with the
characteristic length of the order parameter ��.23 For quanti-
tative comparison of our theory with experiments, including
the appearance of the minimum in the �h�B� dependence,
samples with high purity are required. The resemblance of
the shape of �h�B ,T� between s- and d-wave superconductors
is connected with the V-shaped DOS in the mixed state in
both cases. Comparison between triangular and square FLL
is done, and dependence of the magnetic field in the vortex
center on screening properties of the superconductors is in-
vestigated.
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