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We present an experimental demonstration of the subdiffractive propagation �self-collimation� of an ultra-
sound beam in a two-dimensional sonic crystal formed by a square array of steel cylinders inmersed in water.
Measurements show that the diffractive spreading of a narrow beam is strongly reduced along the spatially
modulated direction of the crystal. The effect of the finite crystal length is theoretically analyzed, resulting in
a frequency shift of the subdiffractive point in good correspondence with the experimental results.
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The vanishing of diffraction or, in other terms, the self-
collimation of wave beams, was predicted in the field of
optics for electromagnetic waves propagating through opti-
cally periodic materials, the so-called photonic crystals.1

Since its discovery, the phenomenon has attracted increasing
attention and to date a number of applications for integrated
optic devices have been proposed.2 The phenomenon can be
interpreted considering that the wave beam is composed by
plane wave components �its spatial Fourier spectrum�. The
diffraction is then due to the dephasing of these plane wave
components during propagation, which is ruled by the dis-
persion relation of the medium in which the beam propa-
gates, ��kz ,k��, with k�= �kx ,ky�. The group velocity of
each component is determined by the gradient of the fre-
quency in k–space, vg=�k��k�. As a consequence, for a
given time- and space frequency component, the power
propagates along the perpendicular direction of the spatial
dispersion curves or equifrequency surfaces kz= f�k��. Dur-
ing a finite propagation distance l, the phase accumulated by
any component is �=kz�k��l. In geometrical terms, the spa-
tial dispersion curve is characterized by its curvature at each
point, resulting in a corresponding diffractive broadening of
the beam. As first pointed out in Ref. 1, in the case of pho-
tonic crystals, the isofrequency curves or surfaces two-
dimensional �in �2D� or 3D structures, respectively� can de-
velop flat segments at a particular frequency for a given
geometry of the crystal. In this case, waves with wave vec-
tors lying on the flat segment do not dephase during propa-
gation through the crystal, and the beam propagates without
apparent diffraction keeping its original size. This fascinating
effect, originally named self-collimation, has been experi-
mentally demonstrated to date for different frequency ranges
of electromagnetic waves, in particular in the optical3 and
microwave4 regimes.

The discussed effect is, however, generic and extendable
to different kinds of waves, not restricted to the electromag-
netic ones. The vanishing of diffraction in matter waves has
been predicted, resulting in subdiffractive solitons in Bose-
Einstein condensates.5 Also recently, the subdiffractive
propagation of sonic waves was predicted in phononic �or
sonic� crystals.6 The phenomenon, although based on the
same physical grounds of the wave dynamics, shows, how-

ever, specific features in different systems. In the particular
case of acoustics, two material parameters �the density and
the bulk modulus� vary periodically in space, in contrast to
the one-parameter variation for electromagnetic and matter
waves. Here we present, for the first time, the experimental
demonstration of the vanishing of diffraction for a ultrasonic
beam propagating through a periodic medium.

The sonic crystal used in the experiments consisted in a
squared array of 20�20 steel cylinders, each with a radius
r=0.8 mm. The lattice constant �minimum distance between
the centers of the scatterers� was a=5.25 mm, corresponding
to a filling fraction f =��r /a�2=0.073. The total length of the
crystal was l=10 cm. The crystal was immersed in a plexi-
glass tank, with dimensions 25�25�50 cm3, filled with wa-
ter, which acted as a host medium. An ultrasonic source with
radius R=1.25 cm was placed close to one of the flat bound-
aries of the crystal �entrance plane�, and the pressure distri-
bution was measured with a needle hydrophone. The source
radiates an ultrasonic beam with measurable amplitude in the
frequency interval ranging from 150 to 260 KHz.7 As will be
discussed later, this suggests the experiments to be done in
the second propagation band. All the signal generation and
acquisition process is based on a National Instruments PXI-
technology controller NI8176, which also controls an OWIS
GmbH two-axis motorized system that allows the hydro-
phone to scan the pressure distribution at the plane transver-
sal to the propagation for a given frequency component.

The experiment was designed based on the theoretical
analysis and numerical simulation of the equation describing
the propagation of sound waves in inhomogeneous media,

1

B̄�r�

�2p�r,��
��2 − �� 1

�̄�r�
� p�r,��� = 0, �1�

where p�r ,�� is the scalar pressure field, B̄�r�=B�r� /Bh and
�̄�r�=��r� /�h are the spatially dependent bulk modulus den-
sity, both normalized to the corresponding values in the host
medium. A dimensionless time �=cht is also defined, with
ch=�Bh /�h. This time normalization makes the velocity of
sound in the host medium equal to unity. The lattice is de-
fined through the centers of the cylinders by the set R= �R
=n1a1+n2a2 ;n1 ,n2�N	 of two-dimensional lattice vectors
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R generated by the primitive translations a1 and a2. In our
case, a1=a2=5.25 mm. The corresponding reciprocal lattice
is defined through the set G= �G :G ·R=2�n ;n�N	. The
material parameters are �h=103 Kg m−3, Bh=2.2
�109 N m−2 for water, and �s=7.8�103 Kg m−3, Bs=160
�109 N m−2 for steel, resulting in the sound velocities ch
=1483 m s−1 and cs=4530 m s−1.

To determine theoretically the optimal conditions for the
subdiffractive propagation of a sonic beam, we first calcu-
lated the families of the spatial dispersion curves and identi-
fied the frequencies corresponding to the flat regions
�straight equifrequency lines in our 2D case�. If we consider
that the initial beam is monochromatic, p�r , t�= p�r�ei��, then
one can substitute �2 /�t2→−�2 and eliminate the temporal
dependence from Eq. �1�. The dispersion relation �=��k�
has been computed using the plane wave expansion �PWE�
method, where the pressure field as well as the material pa-
rameters �density and bulk modulus� are Fourier expanded
on the basis of the reciprocal lattice, i.e. p�r�
=eik·r


G

pk,GeiG·r for the pressure, and analogously for the

other magnitudes �see Ref. 6 for details�. This expansion
converts a differential equation �1� into an infinite matrix
eigenvalue problem, to be truncated and solved numerically.
By solving the eigenvalue problem one obtains the frequen-
cies corresponding to each Bloch wave characterized by k
�the two-dimensional Bloch vector restricted to the first Bril-
louin zone�, resulting in the dispersion relation of the peri-
odic medium. In Fig. 1 the isofrequency contours are plotted
for the first �Fig. 1�a�� and second �Fig. 1�b�� propagation
bands, for the parameters corresponding to our experimental
setup.

The analysis of the families of isofrequency curves shows
that there always exists a particular frequency corresponding
to a flat segment, in each propagation band. The correspond-
ing direction of the subdiffractively propagating waves in
k-space depends on the number of the propagation band: e.g.
at 45° with respect to the crystal axes, i.e. in the �1,1� direc-
tion, for the first band, or along the crystal axes, i.e. in the
�1,0� and �0,1� directions, for the second band. The subdif-

fractive frequencies are slightly less than the frequencies of
the upper edge of the corresponding bands �denoted by the
points M and 	 in Figs. 1�a� and 1�b�, respectively�, by an
amount proportional to the filling factor. The asymptotic
analysis in the limit of small filling factor, discussed in detail
in Ref. 6, leads to the relation �nd=�g�1− f2/3�, where �nd

and �g are the angular frequencies corresponding to the zero
diffraction and to the middle of the band gap, respectively. It
is common to express the frequency and wave vector in
terms of their reduced �adimensional� values, defined as 

=�a /2�ch and K=ka /2�; in this case the band-gap fre-
quencies take the values 
g=1/�2 and 1 for the first and
second bands, respectively. The asymptotic analysis also al-
lows us to evaluate the width of the flat segments, as �k�

= Kg  f2/3, where Kg  =
g. The width of the flat segments is
inversely proportional to the minimum width of the subdif-
fractively propagating beams, and is a significant factor in
seeking the experimental demonstration of the phenomenon.

The predictions of the previous analysis have been con-
firmed by the numerical simulation of Eq. �1� using the finite
difference in time domain �FDTD� technique,8 where an in-
put beam with the above calculated subdiffractive frequency
in the second band was propagated through the crystal. A
typical result, obtained for medium parameters correspond-
ing to our experimental setup and a source frequency of
230 KHz, close to the subdiffractive propagation frequency
in the second band, is shown in Fig. 2, where the effect of
self-collimation is convincing. For comparison, the size of a
beam �its central lobe� of the same frequency propagating
without crystal is shown by lines. The numerical analysis
shows that the optimum collimation �that corresponding to a
beam of the minimum width at the exit plane of the crystal�
occurs at a frequency slightly less than that evaluated above.
The interpretation for this “discrepancy” is given below.

The experimental evidence of ultrasound self-collimation
was obtained by measuring the two-dimensional pressure
distribution across the transverse plane of the beam in three
situations, as shown in Fig. 3: in case �a� close to the source
�z=5 mm�, in case �b� at z=105 mm from the source in the
absence of crystal, and in case �c� at the exit plane of the

FIG. 1. �Color online� Isofrequency lines, evaluated for a
=5.25 mm and r=0.8 mm, for the first �a� and second �b� bands,
centered at the point 	, using the plane wave expansion method.
The axes have unit length �the first Brillouin zone is shown�. Nu-
merals denote the reduced frequency 
=�a /2�ch. The arrows in-
dicate the location of the flat regions, and consequently to wave
vectors belonging to a self-collimated beam.

FIG. 2. �Color online� Numerical simulation of the propagation
of an ultrasonic beam in a self-collimated mode in the second band.
The lines represent the lobe of the beam propagating in a homoge-
neous medium. Source frequency is 230 KHz in both cases. The
radius of the plane source is R=1.25 cm, and the crystal parameters
as in Fig. 1.
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crystal, located at the same distance from the source as in
case �b�. The transverse plane was scanned in steps of 1 mm,
and the resulting distribution was later interpolated in order
to get the smooth distributions shown in Fig. 3. Figure 3�b�
illustrates the expected diffractive broadening after propaga-
tion in a homogeneous medium. In this case the width of the
beam is roughly determined by the number of Rayleigh
lengths, zR=�R2 /2ch the beam has propagated in the me-
dium. For the considered case, zR�7 cm, which means that
the propagation over the distance of z=10 cm should result
in a beam size three times larger that of the input beam,
which is in a good agreement with the measurements �see
also Fig. 4�. In the presence of the sonic crystal, the beam
evolved into a elliptic one after the propagation �Fig. 3�c��.
In this case, the beam was strongly diffracted in the horizon-
tal direction, i.e. along the direction of the steel cylinders,
since in this direction any spatial modulation is absent. The
diffraction in the vertical direction, where the modulation
was present, was strongly suppressed, and the final width of
the beam remains nearly the same as at the entrance.

The comparison between the experimental and theoretical
results can also be shown by inspecting the 1D transverse
cross section of the beam distribution, at the exit plane, with

and without crystal. Figure 4�a� shows the measured beam
cross section at x=0 and z=10 cm from the source, both with
�continuous line� and without �dashed line� the sonic crystal.
Figure 4�b� shows the numerical results corresponding to the
FDTD simulation of Eq. �1�. The vertical axis corresponds,
in both cases, to the pressure amplitude normalized to the
maximum pressure in the case of free propagation.

Finally, we explored the dependence of the beam width on
the frequency of the ultrasound in order to locate the opti-
mum frequency for the self-collimation. The results are sum-
marized in Fig. 5. The beam width has been evaluated at the
exit plane as the corresponding to one half of the maximum
pressure value. The resulting width has been normalized to
the width of the beam after propagating the same distance
from the source without crystal. In this way, the undesired
effects of the frequency-dependent initial width, and the in-
homogeneities in the initial distribution due to the excitation
of different modes in the transducer, can be neglected. The
experimental results are represented in Fig. 5 by symbols. It
is clearly appreciated that the beam width presents a mini-
mum at around 225 KHz. At this value, the beam width at
the entrance and exit planes remains nearly the same �see
also Fig. 4�, evidencing the disappearance of diffraction.

The frequency for which the beam presents the minimum
width, however, does not exactly coincide with the calcu-
lated zero-diffraction frequency �230 KHz�, being slightly
less. We interpret this discrepancy as a propagation-over-
finite-distance effect. The spatial dispersion curve is never
flat on an entire segment—the curvature can become zero
just on one or several points on the smooth curve �more than
two times differentiable function�. Therefore the beam, even
at the zero-diffraction point, weakly broadens in the propa-
gation. This subdiffractive broadening at the zero-diffraction
point �corresponding to �2k� /�2k�=0� is determined by the
higher order spatial derivatives, and in particular by the
fourth order derivative is this symmetric case �4k� /�4k�.5 In
this way the spatial dispersion curve can be expanded as
k��k��=k�,0+d2k�

2 +d4k�
4 , with diffraction coefficients d2�1

− f2 /��3, d4�1/��2− f2 /��5+1/4− f2 /��4, where ��
= ��g−�� /�g, as follows extending the asymptotic analysis
in Ref. 6. At the zero-diffraction point ���= f2/3� then d4

�1/4− f−2/3. To calculate the minimum width of the subdif-

FIG. 3. �Color online� Transverse pressure distribution of the
beam for 230 KHz. �a� at z=5 mm �near the source�, �b� at z
=105 mm propagating in water, and �c� at the same distance, after
propagating through the crystal.
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FIG. 4. Cross section of the beam at the exit plane of the crystal
�continuous line�, and at the same distance from the source without
crystal �dashed line�, as measured �a� and evaluated numerically
�b�. Parameters as in Fig. 3.
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FIG. 5. Relative width depending on the frequency. The sym-
bols correspond to experimental results, and the curves to the ana-
lytical expressions Eqs. �2� and �3� evaluated for =0.02 rad and
l=0.1 m.
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fractively propagating beam over a finite distance l, the
dephasing of the corresponding components of the beam
should be insensible over that distance: �k�  l=�1, where
�k� is the variation of the longitudinal component of the
wave vector “over the beam.” Given the dispersion relation
k��k��, the corresponding width of the beam can be deter-
mined for a finite propagation distance. A simple analysis of
the above fourth-order expansion of dispersion relation
yields that negative values of d2 �the region of the slightly
positive diffraction of the leading order since d2�0 corre-
sponds to normal diffraction� is optimal. In particular, the
optimum self-collimation occurs at d2=d2

0=−2�d4 / l, which
corresponds to the maximum width of the spatial spectra
k�

2 �−d2 /d4, or the minimum width of the beam x0�k�
−1.

In Fig. 5 the width of the beam at the exit plane of the
crystal is given depending on the frequency, as measured
experimentally �symbols� and as evaluated analytically fol-
lowing the above discussion �solid lines�. The analytic curve
is discontinuous, i.e consisting of two branches,

k�
2 � − d2/2d4 + �/�ld4� �2�

for d2�d2
0, and

k�
2 � − d2/2d4 − ��d2/2d4�2 − /�ld4� �3�

for d2�d2
0.

The left and right branches in Fig. 5 correspond to a nor-
malized width x /x0= �x0k��−1, with k� given by Eqs. �2� and
�3�, respectively. Both the phase  and the normalization
factors x0 have been chosen to get the best fit to the experi-

mental data. The experimental points fit well to the theoret-
ical curve away from the discontinuity, but cannot follow
precisely the sharp break at the discontinuity. The pressure
distribution in the beam is also in accordance with the above
analysis. The beams present a relatively smooth envelope at
frequencies larger than critical �d2�d2

0�, because the disper-
sion curve shows a single minimum, and present pronounced
oscillatory fronts for smaller frequencies �d2�d2

0�, as the dis-
persion curve shows double minima. This is the case shown
in Fig. 4. Simply speaking, the flat segment is broader in the
case when it is almost flat, but with a weak bump in the
middle, than a perfectly flat one.

In conclusion, the subdiffractive propagation of ultrasonic
beams in a 2D sonic crystal has been demonstrated experi-
mentally. Such materials have recently attracted great
interest,9 because of their potential applications in the control
of sound propagation, used as reflectors, focusers,10 or
waveguides.11 Such subdiffractive sonic beams are supported
by crystals with perfect symmetry, and do not require the
presence of defects, different from other waveguiding phe-
nomena previously reported.11 The phenomenon is indepen-
dent of the spatial scale and consequently it must be observ-
able in other �e.g. audible� regimes, as well as in the 3D case.
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