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In several hydrogen-bonded ferroelectrics, such as KH2PO4-type ferroelectrics, the protons are strongly
coupled to the dipoles produced in the heavy-ion sublattice. It is not clear whether such a coupled dipole-
proton system can be described by two traditional simple models, the model of interacting tunneling protons
and the model of interacting dipoles, and which one is more appropriate. We show that both models follow
from the coupled dipole-proton model under the opposite adiabatic approximations, and that the model of
interacting dipoles seems to correspond better with the experiments.
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Hydrogen-bonded ferroelectrics show an isotope effect,
i.e., a strong effect of proton-deuteron exchange on the criti-
cal temperature Tc of the phase transition.1,2 The isotope ef-
fect and the phase transition mechanism in hydrogen-bonded
ferroelectrics have not yet been completely explained.3–6

There are two main types of theoretical model for the
KH2PO4 �KDP� crystal as the representative of the
hydrogen-bonded ferroelectrics: the proton-tunneling
models2,7,8 and the order-disorder models of PO4
dipoles.2,9,10 While the proton-tunneling models explain the
isotope effect rather simply by deuteration-induced decrease
in the tunneling frequency, the order-disorder models of PO4
dipoles, which agree with some experimental results,2 do not
offer such a clear explanation of the isotope effect. It is gen-
erally accepted that the protons in KDP move in an anhar-
monic hydrogen-bond potential, which is probably of the
double-well type, and that the protons are coupled with the
dipoles produced in the heavy-ion sublattice �PO4 dipoles�.2
In the ferroelectric �FE� phase below Tc, the PO4 dipoles
produce spontaneous electric polarization, and the protons
localize at one of the two sites along the hydrogen bond,
indicating a strong dipole-proton coupling. First-principles
calculations6 show that the KDP structure in the paraelectric
�PE� phase above Tc is stable against lattice polarization,
weakly unstable against displacements of protons, and
strongly unstable if polarization and displacements of pro-
tons are simultaneously produced. This indicates that the
dipole-proton interaction is the strongest interaction in the
system. Also, these calculations indicate a single-well
hydrogen-bond potential, as opposed to the proton tunneling
models and the results of Compton scattering measurements
in KDP.4

It is important to mention that quantum and thermal fluc-
tuations of the protons and heavy-ion dipoles have to be
taken into account to explain quantum effects such as the
isotope effect. Although the self-consistent nonlinear model6

qualitatively explained the isotope effect in KDP as resulting
from hydrogen-bond lengthening upon deuteration �geomet-
ric isotope effect�, a more complete model based on first-
principles calculations, which would properly treat these
fluctuations, is still missing. Since the precise form of the
hydrogen-bond potential in KDP is still a matter of debate,
and since we want to construct a simple and general model in
which the quantum nature of protons and dipoles can be
easily taken into account, we consider a model in which the

dipoles, described as harmonic oscillators, are coupled with
the protons that tunnel in a double-well potential. Because
KDP-type ferroelectrics possibly belong to the group of
hydrogen-bonded ferroelectrics whose quantum effects can
be qualitatively explained by such a model, we use the
dipole-proton system of KDP as the model system in the
present study. As a result of the quantum treatment of pro-
tons and dipoles, the static properties of the system depend
on their characteristic frequencies. Also, the proton and di-
pole degrees of freedom can be separated by adiabatic ap-
proximations that correspond to the case when the proton
tunneling is faster than the oscillations of dipole, and vice
versa. This separation is a key ingredient in this study, which
leads to the two above-mentioned theoretical models. The
differences in the static properties of the system within the
two models are investigated.

The PO4 dipole in KDP directed along the FE c axis is
described by the coordinate �i and the momentum �i
�i=1, . . . ,N�. It is represented as a harmonic oscillator with
effective mass M and frequency �0, which is coupled to four
neighboring protons with the dipole-proton interaction
−K�ixk, where K is the dipole-proton coupling constant and
xk �k=1, . . . ,2N� is the displacement of the proton along the
hydrogen bond from its center �Fig. 1�a��. According to
indications6 that the dipole-proton interaction is the strongest
interaction in KDP, the dipole-dipole and proton-proton in-
teractions are neglected. It is assumed that the protons move
in the double-well potential VDW�xk� with moderately deep
wells, for which only the two lowest-energy eigenstates
��0,1� with the tunneling energy splitting � can be taken into
account.1 Therefore, the protons are described by the pseu-
dospin operators Sz and Sx that satisfy
Sz ��±�= ± �1/2� ��±�and Sx ��±�= �1/2� ���� for the states
��±�= ���0�± ��1�� /21/2, so that the dimensionless Hamil-
tonian of the coupled-proton system h=H /��0 can be writ-
ten in the form

h = �
i

N

�Pi
2 + Qi

2�/2 − ��
k

2N

Sx
k − ��	/2�

	ik�

4N

QiSz
k. �1�

Here, Qi=�i�M�0 /��1/2 and Pi=�i / ��M�0�1/2 are the di-
mensionless coordinate and momentum of the dipole, respec-
tively. The adiabatic parameter of the proton is �=� /��0
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and the relative interaction constant is 	=8I2K2 /�M�0
2,

where I= 	�0 �x ��1�
0.
In the mean-field approximation �MFA� of the Hamil-

tonian �1�, the replacements Qi= 	Q� and Sz
k= 	Sz� are made

for two neighboring dipoles of one proton �spin� and for four
neighboring spins of one dipole, respectively. The effective
field acting on the spin S= �Sx ,Sz� is then he= �� ,4�		Sz��,
which gives the self-consistency equation �he � /2�	
=tanh��he � /2t� for the dependence of 	Sz� on t=kBT /��0.
This equation gives the relation tc=� /2 tanh−1�1/2	� for the
relative critical temperature tc=kBTc /��0 of the second-
order phase transition �where 	Sz�→0�, which is the same
relation as in the proton-tunneling model.1,2,7,8 Also, this re-
lation is in agreement with the concept of quantum
temperature,11,12 according to which the critical temperature
of the FE system decreases from the classical critical tem-
perature T0 to

Tc = Ts/tanh−1�Ts/T0� , �2�

when quantum fluctuations of atoms are taken into account
through the saturation temperature Ts. As follows from �2�,
the system exhibits a FE phase transition �Tc
0� for

T0
Ts and does not exhibit it for T0�Ts. For T0
Ts,
the system is either in the classical ferroelectric �CFE�
region Tc
3Ts /2, where Tc slightly deviates from T0
�T0
Tc
0.87T0�, or in the quantum ferroelectric �QFE�
region 3Ts /2
Tc
0, where it is strongly affected by
quantum fluctuations �0.87T0
Tc
0�. For T0�Ts, the
system is either in the quantum paraelectric �QPE� region
0�T0�Ts, where the phase transition is suppressed by the
quantum fluctuations, or in the classical paraelectric �CPE�
region T0�0. The relations tc=� /2 tanh−1�1/2	� and �2� co-
incide if ts=kBTs /��0=� /2 �Ts=� /2kB� and t0=kBT0 /��0

=�	�T0=8I2K2 /kBM�0
2�. The boundary between the QFE

and CFE regions 3Ts /2=Tc �QFE-CFE boundary� corre-
sponds to 	=1/ �2tanh�2/3��
0.86 and the boundary be-
tween the QPE and QFE regions T0=Ts �QPE-QFE bound-
ary�, where Tc=0, corresponds to 	=1/2. Thus, different
regions in the parametric �, 	 space for the coupled dipole-
proton system �1� are determined only by the parameter 	 in
the MFA.

In the adiabatic approximation for dipoles �AAD�, which
is expected to work well when the proton tunneling is
slower than the oscillations of the dipole ��=� /��0�1�, the
dipole occupies an adiabatic state that is an eigenstate
of the displaced harmonic-oscillator Hamiltonian hS
= �P2+Q2� /2−S��	 /2�1/2Q, with S=�k=1

4 Sk
z. Since the

eigenstate energies are en=En /��0=n+1/2−S2�	 /4
�n=0,1 , . . . �, the Hamiltonian �1� in the AAD reads

hAAD = − ��
k

2N

Sx
k − �	/2�

	kl�

6N

Sz
kSz

l , �3�

when we neglect constant terms. This is a proton-tunneling
Hamiltonian in which the effective proton-proton interaction
responsible for the FE phase transition is caused by the
adiabatic-state energies of dipoles.

In the adiabatic approximation for protons �AAP�, which
is expected to work well in the opposite case �
1, the spin
occupies an adiabatic state that is an eigenstate of the Hamil-
tonian −hijS, where hij is the instantaneous field produced by
two neighboring dipoles i , j.13 The Hamiltonian �1� in the
AAP has the form

hAAP = �
i

N

�Pi
2 + Qi

2�/2 − �
	ij�

2N

�− 1�mijhij/2, �4�

where hij =��1+	�Qi+Qj�2 /2��1/2 is the absolute value of
instantaneous field. The proton occupies the ground adiabatic
state �GAS� when mij =0 and the excited adiabatic state
�EAS� when mij =1. The contributions of EAS energies in �4�
can be neglected at low temperatures t��, where the GAS
Hamiltonian

hGAS = �
i

N

�Pi
2 + Qi

2�/2 − �
	ij�

2N

hij/2 �5�

describes the whole system well. The GAS energy terms
change the local potential of the dipole and introduce the
effective dipole-dipole interaction responsible for the FE
phase transition.

FIG. 1. �a� KDP structure and the coupled dipole-proton model.
A proton in a double-well hydrogen-bond potential is a two-level
system with the tunneling-splitting energy �. The PO4 dipole �i

induces the term −K�ixk in the hydrogen-bond potential of four
neighboring protons �k=1,2 ,3 ,4�, where K is the dipole-proton
coupling constant and xk is the proton position along the hydrogen
bond, relative to its center. �b� The calculated energy splitting be-
tween the two lowest-energy states of the coupled dipole-proton
pair �E, exact Hamiltonian; AAD, adiabatic approximation for di-
pole; AAP, adiabatic approximation for proton�.
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To check the applicability of the adiabatic approxima-
tions, the energy difference between the first excited state
and the ground state �e= �E1−E0� /��0 of one coupled
dipole-proton pair in the system �1� is numerically calculated
for the exact, AAD, and AAP Hamiltonians of the pair,
which are obtained from Hamiltonians �1�, �3�, and �4�, re-
spectively. The �e calculated as a function of � for 	=1/2
�Fig. 1�b�� shows that the AAD is exact in the limit �→0 and
gives good results for ��0.5, whereas the AAP is exact in
the limit �→ and gives good results for �
2. As expected,
the AAD works better than the AAP for ��1, whereas the
AAP works better than the AAD for �
1. These results lead
to the idea of applying the AAD for ��1 and the AAP for
�
1 on the Hamiltonian �1� before using the MFA.

In the MFA of the AAD Hamiltonian �3�, the effective
field acting on the spin he= �� ,3�		Sz�� gives the self-
consistency equation 2 �he � /3�	=tanh��he � /2t� and
tc=� /2tanh−1�2/ �3	��. Comparison with �2� gives the same
saturation temperature ts=� /2 as in the MFA of the Hamil-
tonian �1�, and the smaller classical critical temperature
t0=3�	 /4. Different regions in the �, 	 space �Fig. 2�a�� are
determined again by 	, but the QPE-QFE boundary t0= ts
and the QFE-CFE boundary tc=3ts /2 are now given by
	=2/3 and 	=2/ �3tanh�2/3��
1.14, respectively.

Since we are primarily interested in the region around

tc→0, where t��, the MFA is applied on the GAS
Hamiltonian �5�. The local potential of the ith dipole �when
Qj =0� is v0=Qi

2 /2−2��1+	Qi
2 /2��1/2, as follows from �5�.

This is a double-well potential for 	
1 �order-disorder re-
gion� and a single-well potential for 	�1 �displacive re-
gion�. The homogeneous FE state of classical dipoles
�Qi=Q� has the potential energy per dipole epot

=Q2 /2−��1+2	Q2 /��1/2, as follows from �5�. The energy
has minima at Qm�0 for 	
1/2, so that the CPE region is
	�1/2 �Fig. 2�b��. The GAS Hamiltonian �4� is approxi-
mated in the MFA by the trial Hamiltonian of independent
harmonic oscillators14,15

h0 = �
i

N

�Pi
2 + s2yi

2�/2, �6�

where yi=Qi−Q0. The dimensionless frequency s=� /�0 and
the mean position Q0 of the oscillator are variational param-
eters in minimization of the dimensionless free energy per
dipole,

f = F/N��0 = f0 + 	hGAS − h0�0/N , �7�

where f0= t ln�2 sinh�s /2t�� is the free energy of one oscilla-
tor and the expectation value is calculated by integrating
hGAS−h0 over the distribution functions of the oscillators
�i= �� /��1/2 exp�−�yi

2�, where �=s tanh�s /2t�. The obtained
critical temperature tc satisfies �2�, with the saturation
temperature ts=2−3/2 �Ts=��0 /23/2kB� and the classical
critical temperature t0=� /4	u1

−1�1/4	�, where u1�z�
=z1/2U�1/2 ,0 ,z� /2 �U is the confluent hypergeometric func-
tion�. Since u1

−1�	→1/2�→, it is confirmed that the
boundary between the CPE and QPE regions, t0=0, is the
line 	=1/2. The QPE-QFE boundary t0= ts and the QFE-
CFE boundary tc=3ts /2 lie in the displacive region 	�1
�Fig. 2�b��, making the results consistent with the assumption
that the system �5� can be well approximated by the
harmonic-oscillator system �6�. The EAS region
tc
3ts

AAD /2=3� /4, where the EAS energies contribute sub-
stantially to the energy of the system at tc, lies in the order-
disorder region 	
1 �Fig. 2�b��.

To account for the isotope and pressure effects on the
coupled dipole-proton system, it is assumed that both deu-
teration and pressure affect tunneling energy � much more
than the other parameters, because � in general sensitively
depends on the mass of the tunneling particle as well as on
the height and width of the energy barrier in the double-well
potential, as strong pressure-dependent quantities. The de-
crease in � with deuteration is assumed to be a combined
effect of the mass increase and hydrogen-bond lengthening
�geometric isotope effect�. In other words, we calculate how
changes in � affect the system, while the other parameters
remain constant. Since ��� and 	�1/�, changing � moves
the system along the curves 	=	1 /� in the �, 	 space, where
	1 is a constant. Six 	=	1 /� curves are chosen: three
�	1=2/15, 4/15, 6/15� in the AAD region ��1 and three
�	1=3, 4, 5� in the AAP region �
1. The temperatures tc, t0,
and 3ts /2 calculated along these curves according to the cor-
responding approximation depend differently on � in the
AAD region �Fig. 2�c�� and the AAP region �Fig. 2�d��. The

FIG. 2. MFA results for the regions in the �, 	 space �a�, �b� and
the dependencies of tc, t0, and 1.5ts on � along the 	=	1 /� curves
�c�, �d� of the coupled dipole-proton system in the AAD region �
�1 �a�, �c� and in the AAP region �
1 �b�, �d�.
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temperature 3ts /2 linearly increases with � in the AAD re-
gion, while it is constant in the AAP region. The temperature
t0 is constant in the AAD region, while it decreases nearly
linearly with � in the AAP region. As expected, tc strongly
deviates from t0 in the QFE region tc�3ts /2, while tc
 t0 in
the CFE region tc
3ts /2. The decrease in tc and t0 with � in
the AAP region �Fig. 2�d�� is expected to deviate from lin-
earity in the EAS region tc
3� /4.

Since for several hydrogen-bonded crystals the ratio of
the critical temperatures in deuterated and nondeuterated
crystals Tc

D/Tc
H is between 1.5 and 2,16 it is obvious that such

a strong isotope effect in the AAD region �Fig. 2�c�� is pos-
sible only if at least nondeuterated crystal, with higher values
of � and � than the deuterated one, is in the QFE region.
However, a strong deviation of the susceptibility in the PE
phase from the Curie-Weiss law is expected for the system in
the QFE region, which is contrary to the experiment.2 In the
AAP region, on the other hand, both crystals can be in the
CFE region with the ratio tc

D/ tc
H as high as two �Fig. 2�d��.

Since it is reasonable to assume that the height and width
of the energy barrier in the hydrogen-bond potential decrease
with pressure p, resulting in an increase in both � and �, the
disappearance of ferroelectricity in the system with increas-
ing � �Figs. 2�c� and 2�d�� corresponds to the experimental
fact that Tc in hydrogen-bonded ferroelectrics decreases with
p and vanishes at the critical pressure pc.

17,18 The experimen-
tal Tc-p dependence in KDP-type ferroelectrics is linear at
low pressures, with a downward deviation at higher pres-
sures near pc, which is attributed to the quantum fluctuations
of atoms.17,18 This experimental dependence corresponds
well with the tc-� dependence in the AAP region �Fig. 2�d��
if we assume that � increases almost linearly with p. More
precisely, tc in the AAP region shows an almost linear de-
crease with � in the CFE region and deviates downward in
the QFE region due to quantum fluctuations of dipoles. In the

AAD region, where tc deviates downward from t0 in the QFE
region due to tunneling of protons, an additional strong lin-
ear decrease of t0 with p is required to reproduce such Tc-p
dependence �Fig. 2�c��. Dielectric measurements19 on KDP
show that T0 strongly decreases and Ts weakly increases with
pressure from the value Ts=T0
50 K at pc, which is in
qualitative agreement with Fig. 2�d�. Also, the high value of
tunneling energy � /kB
1000 K estimated from the neutron
measurements on KDP at ambient pressure4 indicates that Ts
corresponds to the dipole frequency and not to the tunneling
frequency. Assuming � /kB
1000 K, Ts
50 K, and
Tc=122 K for KDP at ambient pressure and using Eq. �2�
with Ts=��0 /23/2kB, it follows that T0
130 K and
��0 /kB
140 K, which implies that the system is near the
line 	1=4 at �
7 �Fig. 2�d��. This indicates that KDP at
ambient pressure is in the CFE subregion of the AAP region
with a weak effect of EAS energies at Tc, which is exactly
what is assumed in the recent models of interacting PO4
dipoles.9,10 Since they are more realistic models for KDP
than this simple model, it is expected that a more quantitative
comparison with experiment will be provided by these
models.

In conclusion, we may say that the experimental results
for hydrogen-bonded ferroelectrics with predominating
dipole-proton interaction have to be reexamined according to
the above theory, which suggests that the isotope effect can
be explained by the change in tunneling energy �, but that
the model of interacting tunneling protons can be applied
only if ����0, while in the opposite case the model of
interacting dipoles is more appropriate. Also, similar results
are expected in the case of a single-well anharmonic
hydrogen-bond potential, for which the isotope-dependent
energy � corresponds to the energy splitting between the first
excited and ground states of proton. The theory for this case
is in progress.
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