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We report on muon spin rotation measurements of the internal magnetic field distribution n�B� in the vortex
solid phase of YBa2Cu3Oy �YBCO� single crystals, from which we have simultaneously determined the
hole-doping dependences of the in-plane Ginzburg-Landau �GL� length scales in the underdoped regime. We
find that Tc has a sublinear dependence on 1/�ab

2 , where �ab is the in-plane magnetic penetration depth in the
extrapolated limits T→0 and H→0. The power coefficient of the sublinear dependence is close to that
determined in severely underdoped YBCO thin films, indicating that the same relationship between Tc and the
superfluid density is maintained throughout the underdoped regime. The GL coherence length �ab �vortex core
size� is found to increase with decreasing hole-doping concentration and to exhibit a field dependence that is
explained by proximity-induced superconductivity on the CuO chains. Both �ab and �ab are enhanced near 1

8
hole doping, supporting the belief by some that stripe correlations are a universal property of high-Tc cuprates.
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I. INTRODUCTION

Abrikosov vortices in a superconductor are governed by
two characteristic length scales. The core of a vortex has a
size dependent on the Ginzburg-Landau �GL� coherence
length �, while the supercurrents circulating around the core
decay on the scale of the GL penetration depth �. In the early
days of high-Tc superconductivity, it was common practice to
infer the behavior of the in-plane magnetic penetration depth
�ab from measurements of the muon depolarization rate � in
the vortex state of polycrystalline samples. The temperature
dependence of � was found to be consistent with s-wave
pairing symmetry1–4 and a universal linear scaling of Tc with
� was observed in the underdoped regime �the so-called
“Uemura plot”�, indicating that Tc�1/�ab

2 ��s, where �s is
the superfluid density.5,6 Later, microwave7 and muon spin
rotation ��SR�8 measurements on YBa2Cu3Oy �YBCO�
single crystals in the Meissner and vortex phases established
a limiting low-temperature linear T dependence of �ab that is
consistent with d-wave pairing. More recently, non-�SR
studies of YBCO in the Meissner phase have revealed that Tc
has a sublinear dependence on 1/�ab

2 .9–11 On the other hand,
the relation Tc��s inferred from the Uemura plot is sup-
ported by a recent study of electric-field-induced superfluid
density modulations in a single underdoped ultrathin film of
La2−xSrxCuO4.12

The problem with assuming ��1/�ab
2 is that there are

additional inseparable contributions to � from electronic
magnetic moments and flux-line lattice �FLL� disorder,
which may vary with doping. To circumvent this difficulty,
we have studied YBCO single crystals. In a single crystal,
the FLL contribution to the �SR line shape n�B� is asymmet-
ric and distinct from the other sources of field
inhomogeneity.13 Not only can the behavior of �ab be iso-
lated, but because the finite size of the vortex cores is appar-

ent in a single-crystal measurement of n�B�, �ab can be si-
multaneously determined. While �ab may be accurately
determined in conventional superconductors from measure-
ments of the upper critical field Hc2, in high-Tc cuprates Hc2
is generally a very high magnetic field marking the transition
from a vortex liquid to the normal phase. Here, we present
�SR measurements that probe �ab and �ab in the bulk of
YBCO single crystals deep in the superconducting state. The
accuracy of our method was demonstrated in previous stud-
ies of conventional superconductors,14–16 but is reinforced
here through comparisons with the results from other tech-
niques.

II. EXPERIMENTAL DETAILS

YBCO single crystals with purity of 99.995% were grown
by a self-flux method in fabricated BaZrO3 crucibles at the
University of British Columbia.17 An exception are y=6.60
single crystals that were grown in yttria-stabilized-zirconia
crucibles and characterized by a purity greater than 99.5%.18

Single crystals of Ca-doped YBCO were also prepared in
BaZrO3 crucibles. Typical sample sizes consisted of three to
five single crystals from the same growth batch arranged in

a mosaic to form a total â-b̂ surface area of 20–30 mm2.
The thicknesses of the crystals are on the order of �0.1 mm.
The superconducting transition temperatures of the single
crystals were measured using a superconducting quantum in-
terference device magnetometer. Twin boundaries were re-
moved from some of the higher-doped single crystals by ap-

plying pressure along the â or b̂ directions at elevated
temperature. These basic sample characteristics are summa-
rized in Table I.

The �SR experiments were performed over a 3 year pe-
riod on the M15 and M20B surface muon beam lines at
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TRIUMF, Vancouver, Canada. The �SR spectra were re-
corded in a transverse-field �TF� geometry with the applied
magnetic field H perpendicular to the initial muon spin po-
larization direction and parallel to the c axis of the single
crystals. A TF-�SR spectrum comprised of �20–30��106

muon decay events was taken at each temperature and mag-
netic field.

In a transverse field, the muon spin precesses in a plane
perpendicular to the field direction �which we define here as
the z direction�. The time evolution of the muon spin polar-
ization P�t� is determined from the �SR “asymmetry” spec-
trum formed from the muon decay events detected in oppos-
ing positron counters,

A�t� =
N1�t� − N2�t�
N1�t� + N2�t�

= a0P�t� , �1�

where N1�t�=N0e−t/	��1+a0P�t�� and N2�t�=N0e−t/	��1
−a0P�t�� are the time histograms of the temporal dependence
of decay positron count rate in detectors 1 and 2 after sub-
tracting a time-independent background, N0 is the initial
counting rate, 	� is the muon lifetime, and a0 is the asym-
metry maximum. In our experiments, four positron counters
were used to completely cover the 360° solid angle in the x-y
plane �see Fig. 1�. The muon spin polarization function for
the “Left”-“Right” pair of detectors is defined as

Px�t� = �
0




n�B�cos���Bt + ��dB , �2�

and for the “Up”-“Down” pair as

Py�t� = �
0




n�B�cos���Bt + � − /2�dB , �3�

where �� is the muon gyromagnetic ratio, � is a phase con-
stant, and

n�B�� = ���B� − B�r��� �4�

is the probability of finding a local magnetic field B in the z
direction at an arbitrary position r in the x-y plane.

III. DATA ANALYSIS METHOD

The TF-�SR time spectra for each sample were fitted as-
suming the following analytical solution of the GL
equations20 for the spatial field profile of the ideal FLL:

B�r� = B0	
G

e−iG·rF�G�
�ab

2 G2 , �5�

where G are the reciprocal lattice vectors, B0 is the average
internal magnetic field, F�G�=uK1�u� is a cutoff function for
the G sum, K1�u� is a modified Bessel function, and u
=
2�abG. The cutoff function F�G� depends on the spatial
profile of the superconducting order parameter at the center
of the vortex core. Consequently, �ab is a measure of the
vortex core size. The FLL in all samples was assumed to be
hexagonal. Neutron scattering experiments on fully doped
YBCO21 indicate that the FLL below H�40 kOe is only
slightly distorted from hexagonal symmetry due to a /b an-
isotropy. We find that accounting for this small distortion
changes the values of �ab and �ab by less than 5%. Conse-
quently, the FLL was assumed to be hexagonal for all
samples studied.

To avoid the difficulty of modeling the contribution of
electronic magnetic moments to the �SR line shape, we re-
stricted our study to YBCO crystals free of static or quasi-
static spins. For the applied fields considered in this study,
this has been determined to be the case for oxygen content
y�6.50.22

To properly account for disorder of the FLL, the dimen-
sionality of the vortices must be considered. Josephson
plasma resonance measurements on YBa2Cu3O6.50 ortho-II
single crystals grown by Dulić et al. indicate that the vortices
are three-dimensional �3D�-like at low temperatures,23 while
mutual inductance measurements on thin films by Zuev et al.

TABLE I. Characteristics of the YBa2Cu3Oy and
�Y,Ca�Ba2Cu3O6.98 single crystals. The hole concentration p per
CuO2 layer is determined from the dependence of Tc on p presented
in Ref. 19 for similar YBCO single crystals. A 
 indicates which
samples were mechanically detwinned.

y p
Tc

�K� Detwinned

6.60 0.103 62.5

6.57 0.110 59.0

6.67 0.120 66.0

6.75 0.132 74.6 

6.80 0.140 84.5 

6.95 0.172 93.2 

�Y,Ca�6.98 0.192 86.0

�
++++

P( )t

Up

Down

Left Right

y

x

P(0)

Sample

FIG. 1. �Color online� Schematic of the positron counter ar-
rangement used in the present study. The muon beam axis and the
applied magnetic field are perpendicular to the page �i.e., parallel to
the z axis�. The muon spin precesses in the x-y plane about the local
z component of the magnetic field before undergoing the decay
�+→e++�e+ �̄�. In our study, the muon spin polarization P�t� is
formed from approximately �20–30��106 muon decay events. The
decay events detected in the “Left” and “Right” positron counters
form the x component of P�t�, while decay events detected in the
“Up” and “Down” positron counters form the y component.
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show that even severely underdoped YBCO is quasi-two-
dimensional only near Tc.

10 Since the focus in the present
study is on the variation of �ab and �ab in higher-doped
samples at low temperatures, the vortices are assumed to be
rigid 3D lines of flux. This assumption is also consistent with
the observation of highly asymmetric �SR line shapes for all
of our samples at low T �see Fig. 2�. In particular, the long
high-field tail due to the field around the vortex core is a
signature of a lattice of rigid 3D flux lines. If on the other
hand the vortex lines were highly flexible along their length,
the high-field tail would be significantly truncated by random
pinning and the line shapes would look more symmetric.13

As we will see, the reason the high-field tail of the �SR line
shape for YBa2Cu3O6.75 appears shorter than that for
YBa2Cu3O6.95 has to do with both a growth in �ab and the
vortex core size.

For rigid flux lines, random displacements of the vortices
from their positions in the ideal hexagonal FLL are ac-
counted for by convoluting the theoretical line shape n�B� by
a Gaussian distribution of fields.24 A Gaussian function also
describes the local distribution of dipolar fields originating

from static nuclear moments.25 Taking into account both
sources of line broadening, the corresponding theoretical po-
larization functions are

Px�t� = e−�eff
2 t2/2�

0




n�B�cos���Bt + ��dB , �6�

Py�t� = e−�eff
2 t2/2�

0




n�B�cos���Bt + � − /2�dB , �7�

where

�eff
2 = �dip

2 + �FLL
2 �8�

is an effective depolarization rate due to nuclear dipole mo-
ments ��dip� and FLL disorder ��FLL�. Values for �dip were
obtained by fitting the TF-�SR signal above Tc to the theo-
retical polarization function

P�t� = e−�dip
2 t2/2 cos���Bt + �� . �9�

To account for the background signal from muons that did
not stop in the sample, an additional term of the form �1
− f�e−�B

2 t2/2 cos���Bt+�B� was added to Eq. �7� and to Eq.
�9�, where f is the fraction of muons that stopped inside the
sample. Values of f for the different samples ranged from 0.8
to 0.9.

In the present work, there are two marked improvements
over the analysis done in our previous studies of YBCO
single crystals26–28 that assumed the spatial field profile of
Eq. �5�: �i� The earlier works used the asymptotic limit
K1�u�=
 /2u exp�−u� �u�1� for the Bessel function that
appears in the cutoff F�G�, whereas here K1�u� was evalu-
ated numerically. �ii� The second improvement is that due to
increased computer speed, B�r� was calculated at 15 132
equally spaced locations in the rhombic unit cell of the hex-
agonal FLL, compared to 5628 locations in previous works.
Further increasing the number of real-space points sampled
in the FLL unit cell did not result in appreciable changes in

FIG. 2. �Color online� �SR line shapes in single-crystal YBCO.
Fourier transforms of the TF-�SR signal from y=6.75 and y
=6.95 samples at T=2.5 K and H=4.92 kOe �green circles�. The
right hand peak for y=6.95 is a background signal coming from
muons stopping outside the sample �note that the background and
sample peaks nearly coincide in the �SR line shape for y=6.75�.
The red curves through the data are the Fourier transforms of the
fits in the time domain and the blue curves are the sample contri-
bution to the fits �i.e., the difference between the red and blue
curves is the contribution from the background signal�. The fitted
values are �ab=1796.5 Å and �ab=44.2 Å for y=6.75, and �ab

=1255.6 Å and �ab=29.0 Å for y=6.95. The contour plots show the
corresponding spatial dependence of the supercurrent density
j�x ,y�= ���B�x ,y��, providing a visual illustration of the change in
the core size with hole doping. Note that the core radius corre-
sponds to the center of the light red halo around each vortex.

FIG. 3. �Color online� Temperature dependence of �ab at �a�
H=5 kOe and �b� H=15 kOe. The solid curves are fits to
�ab�T ,H�=�ab�0,H�+�Tn, where � and n are field-dependent
coefficients.
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the fitted parameters. We note that both improvements in our
data analysis method influence the absolute values of �ab and
�ab, but the temperature and magnetic field dependences of
these parameters remain qualitatively similar to that deter-
mined in our previous studies.

IV. RESULTS FOR �ab

A. Temperature dependence

Figure 3 shows the temperature dependence of �ab at low
T determined at two different values of the applied magnetic
field. The solid curves are fits to �ab�T ,H�=�ab�0,H�+�Tn,
where � and n are field-dependent coefficients. The depen-
dence of 1 /�ab

2 on T is shown in Fig. 4 for selected values of
the applied field. An inflection point at T�20 K is visible in
some of the lower field data. This feature was also apparent
in our previous measurements of YBa2Cu3O6.95.

28 Harshman
et al. have argued that the inflection point is caused by ther-
mal depinning of vortices,29 although an invalid treatment of
the data was used to support this assertion.30 Recently,
Khasanov et al. have ruled out depinning as the source of a
similar inflection point in the temperature dependence of
1 /�ab

2 measured in La1.83Sr0.17CuO4 by TF-�SR.31 Instead,

they attribute this feature to the occurrence of both a large
d-wave and a small s-wave superconducting gap. As we will
show later, the anomalous magnetic field dependence of the
vortex core size in YBCO can be explained by an induced
superconducting energy gap in the CuO chains that run along
the b direction. Theoretical calculations by Atkinson and
Carbotte36 for a d-wave superconductor with proximity-
induced superconductivity in the CuO chains show that
1 /�ab

2 �T� exhibits an inflection point caused by an upturn of
1 /�b

2�T� at low T �where �b is the penetration depth in the b
direction�.

In Fig. 5, it is shown that �ab
2 �T→0� /�ab

2 �T� exhibits a
near universal linear temperature dependence at low T. We
attribute deviations from universal behavior near Tc to soft-
ening of the FLL, which narrows the �SR line shape and
enhances the fitted value of �ab. The universal scaling im-
plies that �ab

2 �T→0�TcvFZe2 /v� is a constant,32 where vF is
the Fermi velocity, v� is a velocity corresponding to the
slope of the gap at the nodes, and Ze is a charge renormal-
ization parametrizing the coupling of the quasiparticles to
phase fluctuations. Using values of v� from thermal conduc-
tivity measurements,33 we find that Ze is basically doping
independent.

FIG. 4. �Color online� Temperature depen-
dence of 1/�ab

2 at H=5 kOe. The insets show ad-
ditional low-temperature measurements at H
=2 kOe or H=15 kOe. The solid curves through
the data points are merely guides for the eye.

SONIER et al. PHYSICAL REVIEW B 76, 134518 �2007�

134518-4



B. Magnetic field dependence

Figure 6 shows the magnetic field dependences of �ab.
Here, we stress that the observed behaviors do not imply that
the magnetic penetration depth or superfluid density depends
on field in this way. The sublinear dependence of �ab on H is
primarily due to the failure of Eq. �5� to account for all
field-dependent contributions to the internal magnetic field
distribution. In Refs. 28 and 34, the strong field dependence
of �ab in YBa2Cu3O6.95 determined by �SR was explained
by the high anisotropy of the d-wave superconducting energy
gap not accounted for in Eq. �5�. A nonlocal supercurrent
response to the applied field in the vicinity of the vortex

cores stemming from the divergence of the coherence length
at the gap nodes modifies the spatial distribution of field.
With increasing H, the increased overlap of the regions
around the vortex cores reduces the width of the �SR line
shape. The gap anisotropy also results in a nonlinear super-
current response to the applied field, resulting from a quasi-
classical “Doppler shift” of the quasiparticle energy spec-
trum by the flow of superfluid around a vortex.35 When the
Doppler shift exceeds the energy gap, Cooper pairs are bro-
ken and �ab increases.

These effects are not restricted to d-wave superconduct-
ors. Sizable nonlinear and/or nonlocal effects can also occur
in s-wave superconductors with a smaller energy gap on one
of the Fermi sheets and/or a highly anisotropic Fermi sur-
face. Moreover, these anisotropies result in a rapid delocal-
ization of quasiparticle core states with increasing H that
modify n�B�. Indeed, strong field dependences of �ab from
Eq. �5� have been observed in the multiband superconductor
NbSe2 �Ref. 15� and the marginal type-II superconductor V.16

It has been experimentally established for a variety of
materials,15 including YBCO,9 that the H→0 extrapolated
value of �ab agrees with the magnetic penetration depth mea-
sured by other techniques in the Meissner phase. Conse-
quently, we stress that only �ab�H→0� can be considered a
“true” measure of the magnetic penetration depth.

C. Hole-doping dependence

In Fig. 7, we show Tc as a function of 1/�ab
2 �T→0� at two

different fields. The more inclusive data set at H=5 kOe is
described by Tc� �1/�ab

2 �0.38, which deviates substantially
from the linear scaling in the Uemura plot. The power 0.38 is
surprisingly close to 0.43 determined by Zuev et al. in a
Meissner phase study of severely underdoped YBCO thin
films.10 It is surprising because these thin films have a super-
fluid density that is significantly lower than that of single
crystals.11 It is known from microwave studies of YBCO that

FIG. 5. �Color online� Temperature dependence of 1/�ab
2 at H

=5 kOe, normalized to 1/�ab
2 �T→0� and plotted as a function of

reduced temperature T /Tc. The solid line through the data is a fit
given by �ab

2 �T→0� /�ab
2 �T�=1−0.54T /Tc.

FIG. 6. �Color online� Magnetic field dependence of the ex-
trapolated zero-temperature value of �ab. The solid curves are fits to
�ab�0,H�=�ab�0,0�+�
H, where the coefficient � decreases with
increasing hole doping.

FIG. 7. �Color online� Dependence of Tc on 1/�ab
2 �T→0�. The

two data points on the far right are for the overdoped sample
�Y,Ca�Ba2Cu3O6.98. The solid curves are fits to the data for
YBa2Cu3Oy, yielding Tc= �19.3±1.7 K �m2��1/�ab

2 �0.38±0.02 and
Tc= �25.5±1.9 K �m2��1/�ab

2 �0.32±0.02 at H=5 kOe and H=15 kOe,
respectively.
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the doping dependences of �a and �b are not the same9 due
to the conductivity of the CuO chains.36 Thus, there is no
reason to expect the power �0.4 to be universal for the cu-
prates. While a sublinear dependence of Tc on 1/�ab

2 has also
been inferred from more recent �SR measurements of the
muon depolarization rate � in other high-Tc
superconductors,37 the contributions of magnetism and FLL
disorder to the �SR line shape were not factored out.

Figure 8 shows 1/�ab
2 as a function of hole doping, where

the values of p are determined from the dependence of Tc on
p presented in Ref. 19 for similar YBCO single crystals. The
behavior is consistent with other studies on cuprates indicat-
ing that the maximum value of 1 /�ab

2 is not reached before
p�0.19.38,39 Our data are in the range 0.103� p�0.192 and
are described by 1/�ab

2 � �p−0.05�1.42, except near p=0.125
= 1

8 .
The hole-doping dependences of �dip and �FLL at H

=5 kOe are shown in Fig. 9�a�. While �dip is independent of
p, �FLL basically tracks 1/�ab

2 . Using the fitted values of �FLL
and �ab, we have calculated the hole-doping dependence of
the root-mean-square displacement �s2�1/2 of the vortices
from their positions in the perfect hexagonal FLL. As shown
in Fig. 9�b�, the degree of FLL disorder is small and as
expected highest in the Ca-doped sample.

V. RESULTS FOR �ab

A. Magnetic field dependence

The field dependences of �ab are shown in Fig. 10. The
increase in �ab at low field, which corresponds to an expan-
sion of the vortex cores, was previously reported for
YBa2Cu3O6.60 �Ref. 26� and YBa2Cu3O6.95 �Refs. 27 and
28�. In all samples, we find that �ab scales as 1 /
H over the
field range explored here, which is proportional to the inter-
vortex spacing.

There have been two explanations put forth to explain a
similar field dependence of the vortex core size in s-wave
superconductors. Kogan and Zhelezina40 have developed a
model based on BCS theory that attributes the field depen-
dence of the core size in clean high-� s-wave superconduct-
ors to a field-dependent coherence length. However, theoret-
ical calculations based on the microscopic equations without
invoking a field-dependent coherence length show that the
core size changes with field due to the intervortex transfer of
quasiparticles.41,42 A comparison of the field dependences of

FIG. 8. �Color online� Dependence of 1/�ab
2 �T→0� on hole-

doping concentration p at H=5 kOe. The dashed curve is the func-
tion 1/�ab

2 � �p−0.05�1.42, where p=0.5 is the critical hole-doping
concentration for the onset of superconductivity.

FIG. 9. �Color online� �a� Hole-doping dependences of the
Gaussian depolarization rates �FLL and �dip at T→0 K and H
=5 kOe. �b� Hole-doping dependence of the root-mean-square dis-
placement �s2�1/2 of the vortices from their positions in the perfect
hexagonal FLL at T→0 K and H=5 kOe plotted as a percentage of
the intervortex spacing L.

FIG. 10. �Color online� Magnetic field dependence of the ex-
trapolated zero-temperature value of �ab. The solid curves are fits to
�ab�0,H�=a+b /
H, where the coefficients a and b depend on the
hole-doping concentration.
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the core size measured by �SR and the electronic thermal
conductivity in NbSe2 �Ref. 15� and V3Si �Ref. 14� strongly
supports the latter picture. In YBCO, the low-energy quasi-
particle core states should be extended along the nodal direc-
tions of the d-wave gap function.43 This allows for a large
transfer of low-energy quasiparticles between vortices at low
field, which is further enhanced by an increase in vortex
density. Hence, the vortex core size is predicted to shrink
with increasing field.41,42 However, the field dependence of
�ab in YBCO is considerably stronger than predicted for a
pure d-wave superconductor. Consequently, we consider an
alternative explanation.

In Fig. 11, we show that the field dependence of �ab, in
particular, the upturn at low field, can be explained by the
presence of the CuO chains. The calculations of the core size
R are based on a semiclassical Doppler-shift approximation
�see the Appendix� for either a single-layer model represent-
ing a superconducting CuO2 plane or a proximity-coupled
model representing a CuO2-CuO bilayer. In the bilayer
model, there are two distinct energy scales for pair breaking:
the energy gap associated with Cooper pairs in the CuO2
planes and a smaller proximity-induced gap associated with
the chains. It is the latter scale which is responsible for the
expansion of the vortex cores at low field.

B. Hole-doping dependence

Figure 12 shows the hole-doping dependences of �ab�T
→0� at H=5 kOe and H=15 kOe. Qualitatively, the doping
dependence of �ab is similar to that reported by Ando and
Segawa from magnetoconductance measurements on de-
twinned YBCO single crystals.44 The result of Ando and Se-
gawa is also shown in Fig. 12, but plotted as �ab versus y.
Note that our data must be plotted as �ab versus p because
the hole concentration of our y=6.60 single crystals �grown
in a crucible different from that used to grow the other

samples� is smaller than that of y=6.57 �see Table I�. The
general trend of all data sets is an increase of �ab with de-
creasing p. Such behavior has also been observed in the un-
derdoped regime of La2−xSrxCuO4 �Refs. 45–47� and
Bi2Sr2CuO6+�.48 With increasing magnetic field, our values
for �ab approach those determined by Ando and Segawa.
Note that based on our proximity-induced model for the field
dependence of �ab �see the Appendix�, it is the high-field
values of �ab that reflect the intrinsic superconductivity of the
CuO2 planes.

Since the doping dependences of �ab at H=5 kOe and H
=15 kOe in Fig. 12 are similar, we expect the hole-doping
dependence of Hc2

* �0 /2�ab
2 to qualitatively resemble that

of the upper critical field Hc2. Figure 13 shows the hole-
doping dependence of Hc2

* calculated from the values of �ab
at H=5 kOe. Consistent with the data of Ando and Segawa,

FIG. 11. �Color online� Calculated field-dependent core size R
relative to the BCS coherence length �0 for single-layer and bilayer
models �see the Appendix�. Also shown is the field dependence of
�ab�T→0� in the y=6.95 sample normalized to the extrapolated
value �ab�H→Hc2�=18.5 Å and plotted as a function of H /Hc2,
where Hc2=�0 /2�ab

2 �H→Hc2�. Note that here Hc2 refers to the
zero-temperature value Hc2�0�.

FIG. 12. �Color online� Hole-doping dependence of �ab�T→0�
at H=5 kOe and H=15 kOe. Also shown are the data for �ab from
Ref. 44 plotted as a function of y, rather than p.

FIG. 13. �Color online� Plot of Hc2
* =�0 /2�ab

2 �T→0� as a
function of hole doping �red circles� using the values of �ab�T
→0� at H=5 kOe. Also shown are the values of Tc �black circles�.
The black curve is the relation between Tc and p from Ref. 19.
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Hc2 decreases with decreasing p in the underdoped regime of
YBCO and displays a dip near 1

8 hole doping.

VI. SUMMARY AND CONCLUSIONS

We have simultaneously determined the hole-doping de-
pendences of the magnetic penetration depth and the GL
coherence length in the underdoped regime of YBCO. This
was achieved by fitting �SR measurements in the vortex
state to an analytical solution of the GL equations for the
internal magnetic field distribution. In this type of analysis,
the magnetic penetration depth is strictly defined as the H
→0 extrapolated value of the fitted parameter �ab. The ac-
curacy of this definition was established in previous studies
of conventional superconductors.15,16 Here, we have pre-
sented measurements showing a refinement of the Uemura
plot for YBCO, where Tc is plotted as a function of the
isolated quantity 1 /�ab

2 rather than the muon depolarization
rate �. We find that Tc exhibits a strong sublinear depen-
dence on 1/�ab

2 , suggesting that Tc is not directly propor-
tional to the superfluid density �s. This result supports the
same conclusion reached in several recent Meissner phase
studies of YBCO.9–11

We have reported here a reduction of 1/�ab
2 near 1

8 hole-
doping concentration. Suppression of 1/�ab

2 or the muon de-
polarization rate � near 1

8 hole doping has only previously
been observed in cuprates where p is controlled by cation
substitution,38,39 and was believed to indicate a tendency to-
ward static stripe formation. Static stripes over the doping
range investigated here were recently ruled out by inelastic
neutron scattering experiments on YBCO.49 We ourselves
find no evidence for static spins in zero-field �SR or TF-
�SR measurements on our samples.22 However, the suppres-
sion of superconductivity near p= 1

8 could be caused by fluc-
tuating stripes, recently argued to be relevant in YBCO and
other cuprates.50 Experimental evidence for dynamic stripes
in YBCO includes the detection of low-energy one-
dimensional incommensurate modulations in YBa2Cu3O6.50
by inelastic neutron scattering.51

Further evidence for suppression of superconductivity
near p= 1

8 is found in the hole-doping dependence of �ab. In
our measurements, �ab is a parameter that characterizes the
size of the vortex cores. While it mimics the behavior of the
GL coherence length, �ab is large at low field due to the
contribution of the CuO chains to the spatial dependence of
the superconducting order parameter. Enhancement of the
GL coherence length or vortex core size near 1

8 hole doping
has also been observed in La2−xSrxCuO4.45 Calculations by
Mierzejewski and Maśka show that static or quasistatic
stripes actually intensify Hc2 by reducing diamagnetic pair
breaking,52 and hence cannot explain the growth of �ab near
p= 1

8 . On the other hand, Kadono et al. have shown that an
expansion of the vortex cores with decreasing hole doping
can result from a strengthening of antiferromagnetic correla-
tions competing with superconductivity.46 Thus, dynamic
stripes are a viable explanation for the increased size of the
vortex cores near 1

8 hole doping.
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APPENDIX: SEMICLASSICAL CALCULATION
OF THE VORTEX CORE SIZE

Calculations of the vortex core size are based on a gener-
alization of the so-called “Doppler-shift” approximation for
the vortex structure53,54 to the case of YBCO, which is a
multiband superconductor. In the case of YBCO, there is
strong evidence that both the two-dimensional CuO2 planes
and one-dimensional CuO chains superconduct. Further-
more, it is likely that the chains are intrinsically normal, but
are driven superconducting by the proximity effect. Proxim-
ity models for YBCO have been extensively described
elsewhere.36,55 The essential idea is that the superconductiv-
ity originates from a pairing interaction which is confined to
the two-dimensional CuO2 planes, and that the mixing of
chain and plane wave functions induces superconductivity in
the one-dimensional chain layers.

We adopt a simplified bilayer model consisting of a single
plane and a single chain, with one Wannier orbital retained
per unit cell for each layer. For comparison purposes, calcu-
lations are also performed for a single-layer model of an
isolated superconducting plane. The Bogoliubov–de Gennes
Hamiltonian for the bilayer is

Ĥ = 	
ij

�̂i
†�

t̃1,ij �ij t��i,j 0

�ij
† − t̃1,ij

* 0 − t��i,j

t��i,j 0 t̃2,ij 0

0 − t��i,j 0 − t̃2,ij
*
��̂ j , �A1�

where �̂i
†= ��1i↑

† �1i↓�2i↑
† �2i↓� and �ni↑

† ��ni↓� are creation op-
erators for quasiparticles �quasiholes� at lattice site i in layer
n. Here, we take n=1 for the plane layer and n=2 for the
chain layer. The parameters t̃n,ij and t��i,j are the single-
electron hopping matrix elements between sites i and j
within and between layers, respectively, while �ij is the su-
perconducting order parameter along bonds connecting near-
est neighbor sites i and j. From the form of Eq. �A1�, it is
apparent that �ij only couples quasiparticles belonging to the
plane layer. The single-layer Hamiltonian is obtained by set-
ting t�=0.

A magnetic field H applied perpendicular to the layers
induces circulating currents in the superfluid. The superfluid
velocity is given by vs=M−1 ·ps, where M is the effective
mass tensor, ps�r�= �2e� /c�A�r�+����r� is the superfluid
momentum, A�r� is the magnetic vector potential, and ��r�
is the local phase of the order parameter. In the limit that
��r� and A�r� are slowly varying functions, one can treat the
superflow as uniform in the neighborhood of r. Then, one
can make a local gauge transformation53,54 such that the

SONIER et al. PHYSICAL REVIEW B 76, 134518 �2007�

134518-8



phase is removed from the order parameter and appears in-
stead in the hopping matrix elements t̃n,ij:

t̃n,ij = tn,ije
−ips�r�·�ri−rj�/2� �A2a�

�tn,ij +
1

2
vij · ps�r� , �A2b�

where tn,ij are the hopping matrix elements in zero field and
vij =−itn,ij�ri−r j� /� are the matrix elements of the zero-field
quasiparticle velocity. Equation �A2b� follows from Eq.
�A2a� in the limit that ps is small. Then, the order parameter
takes on the simple d-wave form �ij =

1
2��−1�yi−yj which, in

reciprocal space, corresponds to �k=��cos�kxa�−cos�kya��,
where a is the lattice constant. The local gauge transforma-
tion leads to a Doppler-shifted spectrum and is exact in the
limit of slowly varying superfluid velocity. This procedure
has been shown, in many circumstances, to provide a reason-
able description of the vortex lattice.53,54

We take band structures which are appropriate for YBCO
and adopt

t1,ij = �t0, i = j

t1, i, j are nearest neighbors

t2, i, j are next-nearest neighbors
� �A3�

and

t2,ij = �t3, i = j

t4, i, j are nearest neighbors along ŷ .
� �A4�

For this work, we measure energies in units of �t1� and take
�t0 , . . . , t4�= �1,−1,0.45,2 ,−4�. In reciprocal space, the dis-
persions of the isolated plane and chain layers are then �1k
= t0+2t1�cos�kxa�+cos�kya��+4t2 cos�kxa�cos�kya� and �2k
= t3+2t4 cos�kya�, respectively. The chain-plane hopping ma-
trix element t� is not well known in YBCO and is taken to be
t�=0.75.

For a slowly varying ps�r�, we can locally Fourier trans-
form the Hamiltonian in the neighborhood of r to give

Ĥ�r� = 	
k

�̂k
†�

�1k + 1
2v1k · ps�r� �k�r� t� 0

�k�r� − �1k + 1
2v1k · ps�r� 0 − t�

t� 0 �2k + 1
2v2k · ps�r� 0

0 − t� 0 − �2k + 1
2v2k · ps�r�

��̂k, �A5�

where vnk=�−1��nk /�k and �̂k=N−1/2	i�̂i, where N is the
number of k points in the sum in Eq. �A5�.

We need to make an ansatz for ps�r�. For a single vortex

in an isotropic medium, one has ps�r�= �2� /r��̂, where �̂ is
the azimuthal unit vector and the radius r is measured rela-
tive to the center of the vortex.53 For the bilayer model,
however, ps�r� is not isotropic: the chains provide a conduc-
tion channel along the ŷ direction which is parallel to the
isotropic plane conduction channel. We mimic this aniso-
tropy by assuming that the superfluid momentum will be
similar to that of a single-layer superconductor with an an-
isotropic �diagonal� effective mass tensor M with Myy
�Mxx. �For the single-layer model, we take Mxx=Myy.� We
then have two requirements which must be satisfied: ��ps
=2�	R�2�r−R� and � ·vs� ·M−1 ·ps=0. The first re-
quirement introduces vortex cores at the vortex lattice sites
R, while the latter incompressibility requirement is strictly
true in regions where ��r� is uniform. This pair of equations
is solved by

ps�r� =
2�

L2 	
G

�eiG·r iM · �G � ẑ�
MxxGy

2 + MyyGx
2 , �A6�

where 	� indicates that G=0 is excluded from the sum, G
are reciprocal lattice vectors of the magnetic unit cell �we

assume a square lattice here� with area L2 and magnetic
length L. The results do not depend strongly on the ratio
Myy /Mxx, which we take to be 0.6 for the parameters chosen
above. This choice minimizes � · j�r�, where j�r� is the total
�plane and chain� current in the bilayer,

j�r� =
1

N
	
k

	
n=1

2

�v1k + v2k�r, �A7�

and �¯�r indicates the expectation value with respect to Ĥ�r�
�Eq. �A5��. In principle, one could improve on the approxi-
mation of Eq. �A6� by determining ps�r� self-consistently
from j�r�; however, this will not change the qualitative phys-
ics of the vortex core expansion.

We then solve self-consistently for the order parameter

��r� = −
V

N
	
k

�cos�kxa� − cos�kya����1−k↓�1k↑�r, �A8�

with V=1.7. Self-consistent solutions find that ��r� vanishes
near the vortex core center and obtains an asymptotic value
�max=0.35 far from the vortex core. In order to measure the
vortex core size, we define a quantity ���r�=�max−��r�.
The vortex core size is then defined by the first moment of
the radial coordinate r with respect to ���r�:
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R =

	
r

r���r�

	
r

���r�
, �A9�

where r=0 corresponds to the vortex core center. For presen-
tation purposes, R is shown relative to the BCS coherence

length �0�vF /�max, where vF is the average of the Fermi
velocity on the Fermi surface. The magnetic field is related
to the magnetic length by H=�0 /L2, where �0 is the super-
conducting flux quantum. For presentation purposes, H is
scaled by the upper critical field, Hc2�0 /2�0

2, so that
H /Hc2=2�0

2 /L2.
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