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Motivated by a striking observation of a Fulde-Ferell-Larkin-Ovchinnikov �FFLO� vortex state in the heavy
fermion material CeCoIn5 in fields perpendicular to the superconducting planes �H �c�, superconducting phase
diagrams including an FFLO state of uniaxially anisotropic superconductors are systematically studied. In the
ballistic limit with no quasiparticle �QP� relaxation, the high-field superconducting state in H �c and in the low
temperature limit should be not the FFLO state modulating along H, appearing in CeCoIn5, but a different
vortex state with a modulation perpendicular to the field. It is argued that an enhancement near Hc2�0� of the
QP relaxation rate, presumably originating from a nonsuperconducting quantum critical fluctuation, in this
material is the origin of the absence of the latter modulated state and of the strange H �c phase diagram in
which the FFLO state is apparently different from that in H�c.
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I. INTRODUCTION

The recent discovery1 of a high-field superconducting
�SC� state in a uniaxially anisotropic heavy fermion super-
conductor CeCoIn5 in fields parallel to the SC layers �H�c�
has led to renewed interests in the Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� state.2 The identification between an
FFLO state and the detected high-field phase, accompanied
by a discontinuous Hc2 transition,3 is based on an indication
of the strong paramagnetic effect in this material3,4 and on a
derived vortex phase diagram including the discontinuous
Hc2 transition.5 Based on the conventional picture on FFLO
states in the vortex-free Pauli limit,2 however, the presence
of an FFLO state in CeCoIn5 seems to be an unexpected
event in several respects, although this material seems to
have a quasi-two-dimensional �Q2D� electronic structure.
First, one needs to clarify why an FFLO state has appeared
in the material with a weak uniaxial anisotropy,6 although it
has not been clearly observed until recently in strongly an-
isotropic Q2D materials. In particular, the recent observation
of an FFLO state in fields perpendicular to the SC layers
�H �c� �Refs. 7 and 8� is the most striking in this sense,
because an FFLO state is conventionally expected not to
appear in this configuration dominated by the orbital pair
breaking. The feature that a flat FFLO transition curve, usu-
ally expected in the vortex-free Pauli limit, was seen not in
H�c but in H �c remains to be explained.7 Second, an ob-
served pressure-induced extension of the FFLO temperature
region9 is apparently inconsistent with the fact that an FFLO
state has appeared in not a material well described by the
weak-coupling model but CeCoIn5 with strong electron cor-
relation.

In this paper, high-field phase diagrams including FFLO
vortex states of a superconductor with a Q2D electronic
structure are systematically examined to explain the striking
observations in CeCoIn5 mentioned above on the same foot-
ing. Phase diagrams are discussed first in the ballistic limit,
where the quasiparticle’s �QP’s� mean free path lQP is infi-
nitely long, and next by assuming a finite lQP and a slight
change of the shape of Fermi surface �FS�. The phase dia-

grams, in both fields parallel and perpendicular to the layers,
of the types realized in CeCoIn5 are obtained only when a
finite lQP is assumed in a system with a moderately large
Maki parameter �M. Inclusion of a finite lQP is motivated by
two observations: One is the theoretical fact that, in contrast
to the conventional ansatz,10 the ground state just below
Hc2�0� in the ballistic limit is the FFLO state modulating not
along H but in the plane perpendicular to H.5,11 The other is
an experimental result suggesting a strong and nonmonoto-
nous field dependence of lQP: Recent two transport
measurements12,13 have shown that lQP at much lower tem-
peratures than Tc�H=0� is anomalously long in low enough
fields �i.e., deep in the SC state� and in much higher fields
than Hc2�0�, implying that it is the shortest near Hc2�0�. Ac-
tually, the pressure-induced extension of the FFLO region9 is
convincingly explained as a consequence of the pressure de-
pendences of Tc and lQP.

This paper is organized as follows. In Sec. II, a theoretical
derivation of the formulas needed in numerically deriving a
phase diagram is explained. Numerical results of phase dia-
grams and thermodynamic quantities are shown and dis-
cussed in comparison with experimental ones in Sec. III. In
Sec. IV, the obtained results are further discussed.

II. THEORETICAL METHOD

Our analysis starts from the Q2D weak-coupling BCS
Hamiltonian with the Zeeman energy �BH and a d-wave
pairing interaction which consists of the following three
terms:

H0 = d�
�,j
� d2r��� j

��r���†

�� �− i�� + eA�2

2me
− ��BH	� j

��r�� , �1�
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HJ = −
Jd

2 �
�,j
� d2r��� j

�†�r��� j+1
� �r�� + � j+1

�† �r��� j
��r��� ,

�2�

and

Hint = −

g
d

2 �
�,j
� d2k�

�2��2B�,j
† �k��B�,j�k�� . �3�

Here, B�,j�k��=�p�
�̂paj

−��−p−�aj
��p+�, p±=p�±k� /2, j is

the index numbering the SC layers, p� is the component of p
parallel to the layers, d is the interlayer spacing, and me is the

effective mass of a quasiparticle. Further, �̂p is the normal-
ized orbital part of the pairing function, which, in the case of
dx2−y2 pairing, is written as �2�p̂x

2− p̂y
2� in terms of the unit

vector p̂ parallel to the layers. Hereafter, the gauge field A
will be assumed to consist only of a term expressing the
external field H, i.e., we work in the type II limit with no
spatial variation of flux density, because we are interested
mainly in the field region near Hc2. Further, ��BH=�BH or
−�BH is the Zeeman energy. In discussing our calculation
results, the strength of the paramagnetic effect under a field
in the j direction is measured by the Maki parameter
�M,j =�2Hj

�orb��0� /HP�0�. Here, HP�0�=�Tc / ��2e	E
�B
�
�1.2Tc / 
�B
 is the Pauli limiting field at T=0 defined within
the weak-coupling BCS model, where 	E=0.577 is an Euler
constant, while Hj

�orb��0� is the orbital limiting field at T=0
for fields parallel to the j direction.

For the moment, the case with infinite lPQ �the ballistic
limit� will be considered in the weak-coupling approxima-
tion, and effects of a finite lQP and strong correlation will be
incorporated later. Unless specifically noted, the FFLO state
on which we focus has a modulation parallel to H. Hereafter,
the expressions necessary for examining the H−T phase dia-
gram in perpendicular fields H �c will be derived by closely
following the methods used in Ref. 11 for H�c case, and
hence, just the essential part of the formulation and main
results in H �c will be presented below. To describe the
FFLO state modulating along H �c � ẑ, we can focus on the
n=0 Landau level �LL� modes of the SC order parameter
��r� in equilibrium,10 because the n=0 LL modes are isotro-
pic in nature in the x-y plane and, thus, cannot accommodate
an FFLO modulation in the x-y plane. Then, the FFLO state
�more precisely, the LO state� is described as

��r� = �2Tc�e�0�x,y�cos�Qz� , �4�

where �0�x ,y� is the Abrikosov lattice solution formed in the
n=0 LL under H � ẑ, and Q=Qẑ is the wave vector of the
FFLO modulation. Then, the mean field Ginzburg-Landau
�GL� free energy density F in n=0 LL takes the form

F
N�0�Tc

2 = a0�Q��e
2 +

V4�Q�
2

�e
4 +

V6

3
�e

6

= c�0���e� + c�2���e�q̄2 + c�4���e�q̄4 �5�

represented by the amplitude �e and the FFLO order param-
eter q̄=2�Q
0.5 Here, N�0� is the density of states per spin,

0=vF / �2�Tc� the in-plane coherence length, and vF the

Fermi velocity in the two-dimensional �2D� case. Micro-
scopic details are largely reflected in the expressions of these
GL coefficients, a0 and Vm. If necessary, the coefficients a0
and Vm may be expanded in powers of Q2:

a0�Q� = a0�0� + a0
�2�q̄2 − a0

�4�q̄4,

V4�Q� = V4�0� − V4
�2�q̄2 + V4

�4�q̄4, �6�

where the index “0” of a0 indicates the LL index. The q̄
dependence of the GL coefficients will be kept up to the
quartic term so that c�2� is given by c�2�=�e

2�a0
�2�−�e

2V4
�2� /2�.

As stressed elsewhere,11 inclusion of q̄ dependence of V4 is
necessary to keep a stable FFLO state in H�c. The same
treatment will also be used in H �c.

The onset temperature T0 at which the mean field Hc2
transition becomes discontinuous is given as the position at
which V4�Qm� becomes negative upon cooling while V6�0,
where Qm is the equilibrium value of the wave number of the
FFLO modulation, and a second order transition line
HFFLO�T� is determined as the line on which c�2���e� be-
comes negative on cooling while c�4���e��0. The discon-
tinuous Hc2 transition curve is determined by

a0�Qm� =
3

16

�V4�Qm��2

V6
. �7�

Further, by minimizing F with respect both to Q and �e, �e
2

is determined by

�e
2�Qm� =

− V4�Qm� + ��V4�Qm��2 − 4a0�Qm�V6

2V6
, �8�

while

q̄m
2  �2�Qm
0�2 =

− a0
�2� + V4

�2���e�Qm��2/2

2�− a0
�4� + ��e�Qm��2V4

�4�/2�
, �9�

if a0
�2�−V4

�2���e�Qm��2 /2�0, and q̄m=0 otherwise. For in-
stance, in the case with a small but nonvanishing qm

2 , one
obtains

�e
2 � �e

2�0� + �e
2q̄m

2 �10�

up to O�q̄m
2 �, where

q̄m
2 �

− a0
�2� + V4

�2��e
2�0�/2

2�− a0
�4� + �e

2�0�V4
�4�/2 − �e

2V4
�2�/4�

�11�

�e
2 = −

1

2V6
�V4

�2� +
− V4

�2�V4�0� + 2V6a0
�2�

��V4�0��2 − 4a0�0�V6
	 . �12�

In numerical calculations we have performed, we always find
�e

2�0. That is, the space average of 
�
2 is reduced in en-
tering the FFLO state by increasing H.

To derive Eq. �5�, the familiar route5,11,14 for deriving a
GL action microscopically will be taken. Formally, the qua-
dratic term of the GL expression is written as

F2 =
1

V
� d3r�*�r�� 1


g

− K̂2������r� , �13�

where
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K̂2��� =
T

2 �
�,�
�

p

�̂p
2G�,��p�G−�,−��− p + �� , �14�

�=−i� /�r+2eA�r�, and

G�,��p� = �i� + ��BH − �p�−1 �15�

is the quasiparticle Green’s function in the normal state in
H=0, where �p is the single particle dispersion measured
from the Fermi level. Just as in the semiclassical approach,15

the details of FS will be assumed to be reflected just in the
Fermi velocity vector w and the integral on the FSs when
performing the momentum integral. Then, we have

K̂2 = �N�0�T�
�,�
�
�̂p
2

i sgn��n�
2�i�n + ��BH� − w · �

�
FS

= N�0��
0

�

d�f����
�̂p
2 exp�iTc
−1�w · ���FS, �16�

where

f��� =
2�t

sinh�2�t��
cos�2�BH�

Tc
� , �17�

t=T /Tc, and � �FS denotes the average over FS.
Similarly, the fourth order �quartic� term and the sixth

order one of the GL free energy density are written as

F4 =
1

2V
� d3rK̂4�� j��*�r1��*�r3��
�r2���r4�
rj→r,

F6 =
1

3V
� d3rK̂6�� j��*�r1��*�r3�

��*�r5���r2���r4��
�r6�
rj→r, �18�

where � j =−i� /�r j +2eA�r j�. For instance, K̂4 is given by

K̂4 =
T

2 �
�,�
�

p

�̂p
4G�,��p�G−�,−��− p + �1

*�G−�,−��− p + �2�

�G�,��p + �3
* − �2�

= 2�N�0�T�
�,�
�− i sgn���
�̂p
4

d1d2d3
�

FS

=
2

Tc
2N�0� � �

j=1

3

d� j f��
j=1

3

� j�
��
�̂p
4 exp� i

Tc
��1w · �1

* + �2w · �2 + �3w · �3
*�	�

FS
.

�19�

The corresponding expression of K̂6 is obtained in the same
manner.11

Applying the parameter integrals used in describing K̂2 to
obtain the quartic and sixth order terms5,11 and performing
the operation11 exp�i�Tc

−1w ·����r�, we obtain

an�0� =
1

2
ln�h� + �

0

�

d��1

�
exp�−

�2
0
2�2

rH
2 � − f���

��
�̂p
2Ln�
�̄
2�2�exp�−

�̄
2�2

2
��

FS
	 ,

a0
�2� =

1

2!
�

0

�

d�f����2�wz
2

vF
2 
�̂p
2 exp�−


�̄
2�2

2
��

FS

,

a0
�4� =

1

4!
�

0

�

d�f����4�wz
4

vF
4 
�̂p
2 exp�−


�̄
2�2

2
��

FS

,

V4�0� = 3�
0

�

�
j=1

3

d� j f��
j=1

3

� j�
��
�̂p
4 exp�−

1

2
�−

1

2
R24 + R14��cos�I4��

FS
,

V4
�2� =

3

2!
�

0

�

�
j=1

3

d� j f��
j=1

3

� j���
j=1

3

� j
2 −

1

3�
i�j

�− 1�i+j�i� j�
��wz

2

vF
2 
�̂p
4 exp�−

1

2
�−

1

2
R24 + R14��cos�I4��

FS

,

V4
�4� =

3

4!
�

0

�

�
j=1

3

d� j f��
j=1

3

� j���
j=1

3

� j
4 + �

i�j
�3�i

2� j
2 − 2�− 1�i+j

��i� j��6−i−j�2 −
4

3
�− 1�i+j�i� j

3�	
��wz

4

vF
4 
�̂p
4 exp�−

1

2
�−

1

2
R24 + R14��cos�I4��

FS

,

V6 = − 15� �
j=1

5

d� j f��
k=1

5

�k�
��
�̂p
6 exp�−

1

2
�R16 + R26��cos�I6��

FS
, �20�

where h=H /H2D
�orb��t=0�=3.57e
0

2H, H2D
�orb� is the 2D limit of

the orbital limiting field Hc
�orb� in H �c, Ln�x� is the nth order

Laguerre polynomial,

R14 = 
�̄
2��
j=1

3

� j
2 + �2��3 + �1�� ,

R24 = Re��̄2���2
2 + ��3 − �1�2� ,

I4 =
Im��̄2�

4
��2

2 − ��3 − �1�2� ,

R16 = 
�̄
2�e1 + e2 + e3 +
2

3
e4e5� ,
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R26 = Re �̄2�e1 + e2 + e3 −
e4

2 + e5
2

3
−

2

3
�e6 + e7 + e8 + e9�� ,

I6 =
Im��̄2�

4
�e1 + e2 − e3 +

e5
2 − e4

2

3
+

2

3
�e8 + e9 − e6 − e7�� ,

e1 = ��3 + �5�2 + ��3 + �4�2,

e2 = ��1 + �4 + �5�2,

e3 = �3
2 + �4

2 + ��2 − �5�2,

e4 = �1 + 2��3 + �4 + �5� ,

e5 = �2 − �3 − �4 − �5,

e6 = ��4 − �5�2 + ��1 + �5 − �3�2,

e7 = ��1 + �4 − �3�2,

e8 = ��3 − �4�2 + ��2 + �3 − �5�2,

e9 = ��2 + �4 − �5�2, �21�

and

�̄ =
�2�
0

rHvF
�wx + iwy� . �22�

To concretely perform the average ��FS in the above ex-
pressions of the GL coefficients, an appropriate FS needs to
be chosen. To explain the appearance7 of the FFLO state in
H �c, mentioned in the Introduction, in CeCoIn5 with a Q2D
structure, the use of a simple cylindrical FS is not appropri-
ate: In the case of the purely cylindrical FS with a corruga-
tion, the FFLO modulation does not become parallel to H �c
�Ref. 16� in spite of the field configuration dominated by the
orbital depairing, reflecting that such a modulation tends to
occur in a direction with the largest Fermi velocity.17 This is
not in conflict with the presence of the FFLO phase in
CeCoIn5 in H �c because the FS sheet with the heaviest mass
of quasiparticles in this material is not a pure cylinder with a
corrugation but accompanied by a small portion with a large

wc /wab
. See the electron 14th sheet of FS in Ref. 18, which
has the heaviest effective mass and, thus, is more effective
for a d-wave superconductivity. In this work, a toy model of
FS, sketched in Fig. 1, is used in which the noncylindrical
portion is incorporated as a small piece of the spherical FS
with radius kF, the Fermi wave number in 2D limit. The
spanning angle � �see Fig. 1� measures the size of the non-
cylindrical portion inducing an FFLO modulation parallel to
H �c, while the uniaxial anisotropy 	an of the coherence
lengths arises mainly from the corrugation of the cylindrical
FS.

III. POSSIBLE PHASE DIAGRAMS
AND THERMODYNAMIC QUANTITIES

A typical H �c phase diagram obtained numerically in
terms of the tools explained in Sec. II is given in Fig. 2,

where 	an is the ratio Hab
�orb��0� /Hc

�orb��0�, i.e., the anisotropy
of the orbital limited Hc2�0�. The figure shows that a drastic
shrinkage of the FFLO region occurs with decreasing � �see
Fig. 1�, reflecting the absence of the H �c FFLO state in
�=0 case.16 The high-field ground state just below Hc2�0� in
the ballistic limit is formed here not in n=0 LL but in a
higher LL, which is n=1 LL for �M values of our interest,
and has some anisotropic inhomogeneity besides the
vortices.19 The n=1 LL state has a striped structure19 due to
nodal planes �H and can be regarded as another FFLO state.
In a GL free energy similar to Eq. �4� but within the n=1 LL,
its quartic term has a positive coefficient near Hc2 for the �M
values of our interest here, and thus, a second order Hc2
transition occurs in t�0.25 on the thin solid line following
from a1�0�=0 �see the first expression of Eq. �20�� and rising
steeply on cooling. However, the presence of the n=1 LL
state is inconsistent with the observations on CeCoIn5 at low
temperatures, in which no Hc2 curve rising steeply is
seen, and the Hc2 transition remains discontinuous even at
t�0.015.8 Note also that the change of FS flattens HFFLO�T�
line, while it does not affect the range of the n=1 LL state
and the position of the Hc2 line. This suggests that factors
other than the shapes of FS have to be taken into account to
understand the H �c phase diagram of CeCoIn5.

It should be stressed that this conclusion does not follow
as far as trying to explain only the appearance of the FFLO

�

c

�

a

FIG. 1. Cross section in the c-a plane of the model FS �solid
curves� composed of a corrugated cylinder and a small portion with
large 
wc /wab
 modeled as a piece of sphere. Any anisotropy in the
a-b plane is neglected here.

����

� ���
��

	�


� ��
�

���	

����

��� ��	 ���

FIG. 2. A typical h vs t phase diagram in H �c composed of the
mean field transition lines �solid curves� for lQP=�, �M,c=6.9, and
	an=2.8. Thin �thick� solid curves imply second order �discontinu-
ous� transition lines for �=2.7°. The Hc2 curve consists of three
solid curves rising upon cooling, while the thin solid curve decreas-
ing upon cooling is HFFLO�T�. The open �closed� symbols express
the discontinuous Hc2�T�-transition line �HFFLO�T� line� for
�=4.7°. The HFFLO value for �=4.7° does not decrease unlimitedly
but saturates near 0.19 H2D

�orb��0� in T→0 limit. The n=1 LL vortex
state occurs above the dotted curve. The onset T0 of discontinuous
Hc2 transition is indicated by an arrow for each �. Only the
HFFLO�T� curve was sensitive to such a small change of � values.
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state in H�c: As seen in Ref. 20 where the elliptic FS was
assumed, the FFLO state in n=0 LL manages to surmount an
instability at low temperatures to the in-plane modulated
state in n=1 LL for an appropriate FS because the discon-
tinuous Hc2�T� line in H�c shows a more remarkable rise
on cooling than that in H �c. In contrast, it is difficult in H �c
to, in the ballistic limit, protect the n=0 LL state from the
n=1 LL one.

Next, effects of a finite QP’s lifetime or lQP will be con-
sidered by neglecting possible h dependences of lQP for the
moment. A crucial role of an H dependence of lQP will be
pointed out in Sec. IV. Possible origins of such a finite lQP in
CeCoIn5 are an impurity scattering and some magnetic fluc-
tuation accompanying, if any, a quantum critical point. Al-
though we focus here on the case of an impurity, the present
analysis is qualitatively applicable to the case with a mag-
netic fluctuation as far as the finite QP damping is their main
effect on QPs. The primary consequence of an impurity scat-
tering is a finite QP relaxation rate vF / lQP in anisotropic su-

perconductors satisfying ��̂p�FS=0, where impurity-induced
vertex corrections to an and Vm are negligible.5 The QP re-
laxation rate is incorporated in Eq. �15� merely with replace-
ment, the 2
�
→2
�
+vF / lQP, where � is a fermion Matsub-
ara frequency. In the expressions of Eq. �20�, this
replacement is represented5 simply by replacing f���� there
with

f̄�� �� = exp�− 2�

0

lQP
� �� f�� �� . �23�

A typical example of phase diagrams following from the
resulting GL free energy is given in Fig. 3. In H �c, effects of
the finite lQP are stronger, and the FFLO state easily shrinks,
while the corresponding state in H�c, as in Fig. 3�b�, sur-
vives over a broad field range keeping a downward transition
curve �i.e., dHFFLO/dT�0�. It is a reflection of the fact that
the H �c FFLO state, supported by a small piece of FS, is
fragile and may be easily destroyed by a weak perturbation.
Such a stronger effect of the finite lQP on the H �c FFLO state
is not surprising once recalling that the impurity-induced
pinning of vortices in Q2D vortex states is much weaker in
the parallel fields. In general, as the FFLO state shrinks via a
change of FS or a finite lQP, the HFFLO�T� curve tends to
change from a downward curve with positive dHFFLO/dT to

a flat or upward one. More importantly, another modulated
state in n=1 LL accompanied by a steep Hc2 curve was
pushed down to T=0 and was lost by including a finite lQP in
both field configurations of Fig. 3. It suggests that a finite QP
damping is needed to obtain phase diagrams consistent with
those of CeCoIn5. We note that the lQP value used in Fig. 3 is
comparable with the estimated one from thermal conductiv-
ity data in H�0.8 T.12

We note that the above-mentioned disappearance, induced
by a finite lQP, of the n=1 LL modulated state is a conse-
quence of an increase of the LL splitting and, thus, cannot be
found based on the approach21 neglecting the vortices, i.e., in
the limit of vanishing LL splittings. In fact, in contrast to our
results5 and the observation in CeCoIn5,1,7 no phase dia-
grams including a discontinuous Hc2 transition are obtained
for d-wave pairing systems with a finite lQP in such a limiting
case.21

To understand features of the Abrikosov to FFLO transi-
tion at HFFLO, the magnetization M and the specific heat in
H�c have been calculated around HFFLO. The specific heat
jump at HFFLO �or T=TFFLO� is given by

�CFFLO

TFFLO�H�
=

N�0�
2c�4� � �c�2�

�t
�2

�
�C�0�

20c�4�Tc
� �c�2�

�t
�2

, �24�

in terms of the jump value �C�0� at Tc in zero field. Calcu-
lations leading to Fig. 3�b� show that �CFFLO/TFFLO is
0.051�C�0� /Tc for t=0.175 and 0.034�C�0� /Tc for t
=0.075, respectively, which are, up to the factor of 2, in
agreement with the values, �0.065–0.09��C�0� /Tc, esti-
mated from the data.1,4 The decrease of �CFFLO/TFFLO upon
cooling �see also Fig. 3 in Ref. 1� implies that, as Fig. 4�b�
also shows, this transition becomes more continuous as the
paramagnetic depairing is more effective upon cooling.

In Fig. 4, the FFLO transitions in the two field configura-
tions are compared with each other through the results of the
normalized magnetization m�T ,H�8��2M / �0.12H2D

�orb��0��,
where � is the GL parameter �i.e., the ratio between the
penetration depth and the coherence length� defined in low
fields. Noting that �F /��e=�F /�Q=0 in equilibrium, the
magnetization M is simply given by

���

����

����

���

�

��� ���� 	

�
�����

����

���

�

� ��� ��� 	

FIG. 3. �a� Phase diagram in perpendicular fields �H �c� in the
case with a finite mean free path lQP=15.5
0. The values 	an=2.8,
�=4.7°, and �M,c=6.9 are used. The open circles indicate the curve
defined by a1�0�=0. The arrow indicates T0. �b� The corresponding
one under a parallel field in an antinodal direction following from
�M,ab=7.69 and the same values of lQP, �, and 	an as in �a�.
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FIG. 4. Field dependences of a dimensionless magnetization m
�see the text� in �a� H �c and �b� H�c corresponding to Figs. 3�a�
and 3�b�, respectively. Each arrow indicates the corresponding
HFFLO.
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M = − N�0�Tc
2�e

2�„a0�0�…� +
�e

2

2
„V4�0�…� +

�e
4

3
V6�

+ q̄m
2 ��a0

�2��� −
�e

2

2
�V4

�2���� − q̄m
4 ��a0

�4��� −
�e

2

2
�V4

�4����	 ,

�25�

where the prime implies the derivative with respect to H �i.e.,
(a0�0�)�=�a0�0� /�H�. As mentioned in Sec. II, the spatial
average of 
�
2 decreases due to the appearance of the FFLO
modulation. In fact, this decrease of 
�
2 is the origin of the
slope changes at HFFLO in thermal conductivity22 and pen-
etration depth23 data. Consistent with this 
�
2 decrease, 
m

also shows an additional reduction, appearing as a kink, on
entering the FFLO state from below. Note that the kink at
HFFLO in H �c becomes more remarkable rather at lower t in
contrast to the tendency in H�c mentioned above. It implies
that a transition to a more fragile FFLO state is sharper,
reflecting a rapid growth of q̄ near HFFLO, and may become
discontinuous24 for smaller values of lQP and/or �. Thus, for
a more fragile FFLO state, 
m
 decreases more rapidly with
increasing H through HFFLO. This feature is consistent with a
qualitative difference seen between available the m data in
H �c and H�c.8,25 Further, a sharper change at HFFLO of m
tends to reduce the magnetization jump at Hc2. Since a
weaker discontinuous Hc2 transition should occur closer to
the virtual second order Hc2-transition line �i.e., the extrapo-
lations to lower temperatures of the upper thin solid curves
in Fig. 3�, the real Hc2 line in such a case will become flatter
at lower temperatures. This is a qualitative explanation on
the differences between the Hc2�T� curves in H�c and H �c.
Although it is a conventional wisdom that, when the Hc2
transition is of second order, an FFLO modulation increases
the Hc2 value, the coexistence of an FFLO state with a flat
Hc2 curve in CeCoIn5 seems to be a consequence of the
discontinuous Hc2 transition.

IV. DISCUSSIONS

Finally, effects of the electron correlation will be consid-
ered here in relation to the p �pressure� dependences of the
phase diagrams,9 in which T0 and TFFLO increasing with in-
creasing p are suggested. The mass enhancement of normal
QPs, which is a main effect of electron correlation, is incor-
porated by replacing the Matsubara frequency � in Eq. �15�
by Z�, where Z�1. Then, by neglecting an � dependence of
Z, it is easily verified that the theoretical results in the pre-
ceding sections and the figures in Sec. III, expressed via the
normalized field h and temperature t, remain unchanged un-
der replacement,

Tc  Tc�1� → Tc�Z� ,

N�0� → ZN�0� ,


0 → 
�Z� =

0Tc

ZTc�Z�
,

��r�
Tc

→
��r�

ZTc�Z�
, �26�

and

�M → �M�Z�  �M
0
�B�Z�

�Z��B

, �27�

where �B�Z�H is the Zeeman energy in the case with a mass
enhancement included, and the dimensionless Fermi velocity
w /vF is unchanged. The Z dependence in the above � re-
placement is familiar in the conventional formulation of the
strong-coupling superconductivity26 and implies the differ-
ence between the energy gap and the anomalous self-energy
of QPs in the SC phase, while the Z dependences of the
density of states and the coherence length are simply due to
the mass enhancement. In general, an enhanced electron cor-
relation should increase �B�Z�, �
�Z��−1, and, thus, �M�Z�.
On the other hand, we have verified that an increase of
�B�Z�, as expected, reduces Hc2�0�, while a decrease of 
�Z�
results in an increase of Hc2�0�. Then, since Z should de-
crease with p, the p-induced decrease of Hc2�0� in H �c
�Refs. 9 and 27� is mainly a reflection of an increase of 
�Z�,
while the p-induced increase of Hc2�0� in the parallel
fields9,27 is a consequence of p-induced decrease of �B�Z� in
H�c outweighing the increase of 
�Z�. Then, the p-induced
increase of Tc�Z� �Ref. 9� may be one possible origin of the
strange p-induced increases9 of the two temperature scales
induced by the paramagnetic depairing, i.e., TFFLO�H� and
the onset T0 of the discontinuous Hc2 transition.

However, the p dependence of the QP damping seems to
be a more direct origin of those of the two temperature scales
if, as suggested in Ref. 13, the main origin of the QP damp-
ing is a scattering via magnetic fluctuations created by the
strong correlation and surviving in t→0 limit. In fact, as
shown in Fig. 3, we have to assume the presence of a small
but finite scattering rate �lQP

−1 to reach similar phase dia-
grams to those observed in CeCoIn5. According to a recent
estimation of lQP based on transport data,12,13 lQP obtained by
sweeping h in the low t region relevant to the FFLO phe-
nomena seems to be the shortest near Hc2�0�. Then, the re-
sults in Figs. 2 and 3 suggest the picture that, reflecting a
weaker magnetic fluctuation at higher p, the resulting weaker
QP damping at higher p would lead to increases of the
above-mentioned two temperature scales. Further, the strong
H dependence of lQP�H� suggested in Refs. 12 and 13 seems
to resolve a qualitative disagreement on the HFFLO�T� line
between the experimental phase diagrams1,9,22,23 and Fig.
3�b� in which lQP was assumed to be H independent: The
HFFLO�T� curve closer to the Hc2�T� line in Fig. 3�b� shows a
negative curvature �d2HFFLO/dT2�0� in contrast to the ex-
perimental one. However, if lQP remarkably decreases with
increasing H below Hc2�T�, the part of HFFLO�T� closer to
Hc2�T� should be depressed so that HFFLO�T� may get a posi-
tive curvature. Although discussing a microscopic picture of
the magnetic fluctuation is beyond the scope of this work, the
above argument implies that the presence of a magnetic or
nonsuperconducting quantum critical point near Hc2,
suggested13,28 through transport measurements in the high-
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field normal state, is the main origin of remarkable differ-
ences in the phase diagram from that expected in the weak
coupling and clean �or ballistic� limit. Then, we speculate
that, at higher pressures, the higher LL vortex state with a
modulation, perpendicular to H, of FFLO type might occur
at low enough temperatures in CeCoIn5 particularly in H �c.

In summary, SC phase diagrams including an FFLO vor-
tex state have been systematically examined to explain the
H−T phase diagrams of CeCoIn5. By examining notable dif-
ferences in the phase diagrams and thermodynamic proper-
ties seen between the two configurations, H�c and H �c,
crucial roles of quasiparticle damping in the FFLO state have
been pointed out. The origin of differences between conven-

tional theoretical phase diagrams including an FFLO state
and the observed one of CeCoIn5 seems to consist in an
enhanced quasiparticle damping presumably related to a
magnetic quantum critical behavior near Hc2.
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