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A simple systematic rule, inspired by high-temperature series expansion �HTSE� results, is proposed for
optimizing the expression for thermodynamic observables of ferromagnets exhibiting critical behavior at Tc.
This “extended scaling” scheme leads to a protocol for the choice of scaling variables, �= �T−Tc� /T or �T2

−Tc
2� /T2 depending on the observable instead of �T−Tc� /Tc, and more importantly to temperature dependent

noncritical prefactors for each observable. The rule corresponds to scaling of the leading term of the reduced
susceptibility above Tc as �c

*�T���−� in agreement with standard practice with scaling variable � and for the
leading term of the second-moment correlation length as �c

*�T��T−1/2�−�. For the specific heat in bipartite
lattices, the rule gives Cc

*�T��T−2��T2−Tc
2� /T2�−�. The latter two expressions are not standard. The scheme can

allow for confluent and noncritical correction terms. A stringent test of the extended scaling is made through
analyses of high-precision numerical and HTSE data, or real data, on the three-dimensional canonical Ising,
XY, and Heisenberg ferromagnets. For the susceptibility ��T� and the correlation length ��T� of the three
ferromagnets, their optimized expression, which consists of the leading terms �respectively, �c

*�T� and �c
*�T��

and a quite limited number of confluent and noncritical correction terms, represents real data to surprisingly
good approximations over the entire temperature range from Tc to infinity. The temperature dependent prefac-
tors introduced are of crucial importance not only in fixing the optimized expression at relatively high tem-
peratures but also in determining appropriately the small amplitude correction terms. For the specific heat of
the Ising ferromagnet, Cc

*�T� combined with two noncritical correction terms which are calculated with no free
parameters once the correlation length critical parameters are known reproduces real data nicely also over the
whole temperature range.
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I. INTRODUCTION

At a continuous transition, the expression Fc
*�T� for the

leading critical behavior of a thermodynamic observable
F�T� has the well known form

Fc
*�T� � �T − Tc�−�F, �1�

where Tc and �F are the transition temperature and the criti-
cal exponent, respectively. For the concrete analysis of nu-
merical data, a normalization factor with noncritical behavior
at Tc must be introduced. The simplest and most traditional
convention, which will be referred to below as T scaling, is
to normalize each Fc

*�T� by a temperature independent con-
stant. For obvious reasons, this constant is chosen to be Tc

�F

for each observable; one then writes the normalized leading
term as the familiar textbook expression

Fc
*�T� = CF��T − Tc�/Tc�−�F = CFt−�F, �2�

where t= �T−Tc� /Tc and CF is the critical amplitude �see Ref.
1 for a detailed review�. An alternative and a priori equally
valid choice is to write

Fc
*�	� = CF��	c − 	�/	c�−�F = CF��T − Tc�/T�−�F

= CF�1 −
	

	c
�−�F

= CF�−�F, �3�

where 	 is the inverse temperature 1/T and �=1−	 /	c.
Note that the temperature dependence of the normalization is
now different for each observable. This “	 scaling” form has

become the standard normalization for theoretical work on
the critical properties of ferromagnets and analogous sys-
tems, see, for instance, Refs. 1–3, although more complex
normalizations have been used in special cases. At higher
order, confluent and analytic correction terms �such as tem-
perature independent constants� are introduced. Thus, includ-
ing the confluent correction terms, the critical behavior,
Fc�	�, is written in terms of the 	 scaling as

Fc�	� = Fc
*�	��1 + aF�
 + ¯ � = CF�−�F�1 + aF�
 + ¯ � ,

�4�

where 
=�� with � being the �universal� confluent correc-
tion exponent and aF is the confluent correction amplitude.
In the T-scaling form, � in the above equation is replaced by
t. This critical scaling form is firmly established by field
theory in the limit of temperatures very close to Tc.

4 Ratios
of the aF for different observables are universal.5 The expo-
nent 
 is common in both scaling forms so long as 
�1.
However, no general argument seems to have been given
which would show that either the T or the 	 scaling is opti-
mal for all �or any� observables when a much wider tempera-
ture range is considered. Recently, we have proposed an ex-
tended scaling scheme for normalizing observables such that
the leading critical expressions remain good approximations
right up to the trivial fixed point at infinite temperature.6 Our
extended scaling scheme is based on a consideration of high-
temperature series expansions �HTSEs� and so is naturally
formulated in terms of the 	 scaling. The most important
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ingredient of the scheme is the introduction of noncritical
prefactors 	F in the normalizations, where each exponent
F is uniquely chosen such that the normalized Fc

*�	� tends
to the correct asymptotic form in the limit T→�.

In the present work, our aim is to further develop our
extended scaling scheme to include explicitly the confluent
and analytical correction terms. We then validate our scheme
by analyzing data for three canonical ferromagnets: the S
=1/2 Ising, XY, and Heisenberg models on simple cubic
lattices in three dimensions. These models have been inten-
sively studied over many years and their main critical param-
eters �Tc, the critical exponents �F and 
, and certain critical
amplitudes� are known to high precision. Careful accounts of
studies using different complementary approaches are given,
for instance, in Refs. 1, 3, 7, and 8. Accurate simulation and
HTSE results have been published in the form of tabulated
data. The present analyses show that the appropriately nor-
malized leading terms are good approximations over the en-
tire temperature range, with small but identifiable corrections
due to confluent and noncritical terms. We obtain estimates
of nonuniversal critical parameters such as critical ampli-
tudes CF and confluent correction amplitudes aF from the
high-precision numerical data. Our extended scaling analyses
are in each case entirely consistent with field theoretical and
HTSE estimates of the critical parameters.

An important result of the present analysis is to demon-
strate that the prefactors 	F which have been introduced
play a crucial role in extracting accurate values of the critical
exponents from simulation data even in a temperature range
close to Tc, such as ��0.01. In the standard scalings without
the prefactors, the estimates of the leading critical term and
of the confluent term from analyses of numerical data turn
out to be modified to order �� �note t=� / �1−���.

The same approach based on the HTSE should be directly
applicable to a wide class of systems having the same intrin-
sic HTSE structure as the simple ferromagnets. Extensions to
more complex systems such as spin glasses are in principle
straightforward.6

The paper is organized as follows. In Sec. II, we explain
our extended scaling scheme for various thermodynamic ob-
servables and discuss confluent corrections to scaling terms
in our scheme. In Sec. III, we give methods of analysis for
numerical data using our extended scaling scheme. We show
how they work in practice for Ising, XY, and Heisenberg
ferromagnets in Secs. IV–VI, respectively. In Sec. VII, we
make concluding remarks and discuss related problems.

II. EXTENDED SCALING SCHEME

A. Optimized expression for observables F„�…

Let us suppose that HTSE of an observable F�	� is given
by

F�	� = aF,0	F�1 + aF,1	 + aF,2	2 + ¯ � . �5�

The most important ingredient of our extended scaling
scheme is then to write Fc�	� as

Fc�	� = RF
c ���aF,0	F�−�F, �6�

where

RF
c ��� = RF

*�1 + aF�
 + ¯ � , �7�

with RF
* =CF / �aF,0	c

F�. In particular, the leading contribu-
tion without the confluent correction is represented as

Fc
*�	� = RF

*aF,0	F�−�F. �8�

The idea here is to let Fc�	� not only represent the correct
power-law divergence �−�F with the critical amplitude CF
�and with certain confluent correction terms� at temperatures
close to Tc but also have an asymptotic form consistent with
the HTSE in the high-temperature limit. The observable F�	�
is then approximated as

F�	� � Fopt�	� = Fc�	� + bF,0	F�1 + bF,1	 + ¯ � . �9�

Here, the second term represents the analytic �noncritical�
correction term in the present scheme. Its coefficients bF,0
and bF,i are determined in such a way that Eq. �9�, combined
with Eqs. �6� and �7�, coincides with Eq. �5� termwise as a
function of 	, for example,

bF,0 = aF,0 − 	c
−FCF�1 + aF + ¯ � , �10�

and a similar expression for bF,1. The above set of equations
with the minimum number of the confluent and analytic cor-
rection terms is an optimized expression we propose for the
function F�	�, which is analytic in the range 0�	�	c and
is singular at 	=	c. An important quantity for analyzing our
extended scaling scheme is RF��� defined by

RF��� =
F�	�

aF,0	F�−�F
. �11�

It is the ratio of the measured values of observable F�T� to its
leading critical term including the 	F prefactor but without
the critical amplitude CF. Explicitly, in the vicinity of Tc
where F�	��Fc�	�, it behaves as

RF��� � RF
c ��� � RF

*�1 + af�

 + ¯ � . �12�

The plot RF��� versus �
 near �=0 thus becomes a straight
line with intercept RF

* and slope RF
*aF, where the values of

Tc, �F, and 
 are assumed to be known �F and aF,0 are given
by the HTSE analysis�. In the limit 	→0, on the other hand,
it becomes RF���=1+ �aF,1−�F /	c�	+¯. Between these
limits, the form of RF��� will depend on the entire collection
of unspecified higher order corrections to scaling.

B. Susceptibility

The “true” susceptibility, naturally defined through the
magnetization response to an infinitesimal applied field, is
given by the fluctuation-dissipation theorem as

�t�	� = 	
1

N	
ij


SiSj� . �13�

The reduced susceptibility �red=�t /	 is �confusingly� almost
always referred to in the literature as “the susceptibility.” For
consistency, we will follow this convention and write the
reduced susceptibility as �, but we will refer systematically
in the text to the “reduced susceptibility.”
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The HTSE for the reduced susceptibility ��	� in S=1/2
ferromagnets is of the form with �=0 and a�,0=1 or with
abbreviation of a�,i=ai,

��	� = 1 + a1	 + a2	2 + a3	3 + ¯ . �14�

Then, the leading divergent expression, Eq. �8�, is written as

�c
*�	� = R�

*�−�, �15�

with R�
* =C�. The ratio R���� of Eq. �11� is reduced to

R���� = ��	�/�−��=�c�	�� , �16�

where �c�	� is Eq. �6� for ��T�. Note that R��0�=R�
* at

Tc, R����=R�
*�1+a��
+ ¯ � near Tc, and R��	�=1

+ �a1−� /	c�	+¯ near infinite temperature. If R���� remains
close to 1 over the whole temperature range �which is the
case for the systems we consider as we will see below�, the
leading critical contribution without the correction terms,
�c

*�	�=R�
*�−�, is a good approximation for the reduced sus-

ceptibility, ��	�. Furthermore, the small difference ��	�
−�c

*�	� of the Ising and XY ferromagnets in the whole tem-
perature range 0�	�	c turns out to be reproduced surpris-
ingly well by our optimized expression, �opt�	� of Eq. �9�,
only with one confluent and two noncritical correction terms.

C. Correlation length

There are different alternative definitions for the correla-
tion length, but any correlation length diverges at criticality
as ��T���T−Tc�−�. The second moment correlation length
�sm is defined through the second moment

�2�	� = 	
r

r2
S0Sr� = 2d��	��sm�	�2, �17�

with d the space dimensionality.3 From now on, we will refer
to �sm�	� simply as ��	�. The HTSE results show that for
N-vector S=1/2 spins, the series for �2�	� is of the form
B1	+B2	2+B3	3+¯ and is well behaved with B1=z /N,
where z is the number of nearest neighbors. This yields �

=1/2 and a�,0= �z /2dN�1/2. We then reduce Eq. �8� to

�c
*�	� = R�

*� z	

2dN
1/2

�−�, �18�

where R�
*=C� / �z	c /2dN�1/2 with C� being the standard criti-

cal amplitude in Eq. �3� for �. The nonstandard normalization
prefactor 	1/2 for �c

*�	� is our main result. The mean-field
calculation9 of the correlation length through the fluctuation-
dissipation theorem provides an example confirming the ex-
tended scaling form of Eq. �18� �see also the analysis of
Fisher and Burford,10 particularly their temperature depen-
dent “effective interaction range” parameter r1�T��.

The critically divergent part of ��	� with the confluent
correction terms is represented by �c�	� and is written as

�c�	� = R�
*�1 + a��


 + ¯ �� z	

2dN
1/2

�−�. �19�

The ratio R���� becomes

R���� = ���	�/�z	/2dN�1/2�/�−�. �20�

Again, because of the confluent correction, it becomes
R�����	c

1/2R�
*�1+a��


+ ¯ � near Tc and R��	�=1
+ ��B2 /2B1�− �a1 /2�−� /	c�	+¯ with a1 being the coeffi-
cient in Eq. �14� near infinite temperature.

D. Specific heat

The usual analysis of the specific heat �defined as the
derivative of the internal energy at fixed volume C�T�
= �dU�T� /dT�V� near criticality assumes the form

Cc�T� = CC��T − Tc�/Tc�−� + K , �21�

where �=2−�d and CC is the critical amplitude of C�T�, and
it is standard practice to introduce a large noncritical �in fact,
temperature independent� contribution K �see, e.g., Ref. 11�.

While the series for the reduced susceptibility and the
second moment �2 are polynomial functions of 	 with both
odd and even terms, for bipartite �such as bcc and simple
cubic� lattices the HTSE expression for C�	� consists of
even powers of 	 only12,13 and can be written as

C�	� = c2	2 + c4	4 + c6	6 + ¯ . �22�

One can carry through the same type of argument6 as in
the case of �2�T�, except that as all the terms in the series
are even in �	 /	c�, the critical behavior must be rewritten
in terms of the scaling variable �1− �	 /	c�2� replacing
�1− �	 /	c�� in the equivalent expressions for the correlation
length. Thus, with C=2, one can write the leading critical
term, which corresponds to Eq. �8�, as

Cc
*�	� = 	2RC

*�1 − � 	

	c
�2−�

�
1

T2�T − Tc

T
−�

, �23�

where RC
* =CC2� /	c

2. If the confluent correction terms are
included, we obtain the expression corresponding to Eq. �6�
as

Cc�	� = Cc
*�	��1 +

aC

2
 �1 −
	2

	c
2


+ ¯ � , �24�

where aC is the confluent correction amplitude. It is noted
that, since the two critical amplitudes CC and aC are intro-
duced in the standard way �as represented by Eq. �21� for
CC�, the factors 2� and 1/2
 appear in the definition of RC

*

and in Eq. �24�, respectively. In fact, there is a hyperuniver-
sal relationship linking this CC to C�,

14

Chyper = ��CC�1/dC� = ��RC
*

2� 1/d

R�
*	c

1/2+2/d� z

2d
1/2

,

�25�

where Chyper is a constant whose value is known rather
accurately.3 Equation �23� is not standard, but it can be seen
to tend to the appropriate limit, Cc

*�T���T−Tc�−�, as T ap-
proaches Tc.

In practice, RC
* is much larger than unity �as will be seen

later in the case of the three-dimensional �3D� Ising model�,
which is the reason for the large noncritical contribution to
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C�	�. The noncritical contribution is, in fact, not a parameter
to be adjusted freely, but it has to be determined through the
high-temperature limit of an equation which corresponds to
Eq. �9�. Ignoring the confluent correction so as to clarify the
discussion, we know the exact high-temperature limits for
Cc�	���Cc

*�	�� from Eq. �23� and for C�	� by Eq. �22�.
Then, C�	� truncated to two leading noncritical correction
terms is explicitly written as

C�	� = Cc�	� + K2	2 + K4	4, �26�

where the noncritical parameters Ki are given by K2=c2
−RC

* and K4=c4−�RC
* /	c

2. The coefficients c2 and c4 are
known from HTSE. So if �, 	c, and R�

c have been measured
independently, we can evaluate all the parameters which one
needs to fix, the functional form of C�	� such as �=2−�d
and RC

* determined through Eq. �25�. We assume this to be
Copt�	�, an optimized expression for C�	�, in the whole 	
range 0�	�	c. The thus calculated curve Copt�	� can be
tested by comparing with simulation and HTSE data.

E. Finite-size scaling

Though we will discuss the thermodynamic limit behavior
only and will not analyze finite-size-scaling �FSS� data ex-
plicitly in the present paper, we note for reference that the
extended scaling normalization modifies the FSS expres-
sions. The canonical FSS ansatz15 is

F�T,L� � L�F/�F̃�L/��T�� , �27�

where F̃�x� is a universal scaling function. The frequently
used FSS expression derived from Eq. �27�,

F�T,L� � L�F/�F̃�L1/��T − Tc�� , �28�

contains the implicit assumption of T scaling for the correla-
tion length. It is thus only appropriate if restricted to a very
narrow range of temperature around Tc. With the extended
scaling and the finite-size correlation length ��L ,	�, the FSS
ansatz can be rewritten6 as

F�L,	� � 	F� L

	1/2�F/�

F�� L

	1/21/��1 −
	

	c
� �29�

or

F�L,	� � 	F� L

	1/2�F/�

F̂� L

��L,	�� , �30�

where the scaling functions behave as F�x��x−�F and F̂�x�
�x−�F/� at x�1. For the reduced susceptibility with �=0,
the FSS form is written as

��L,	� � � L

	1/2�/�

F��� L

	1/21/��1 −
	

	c
�

= �−�F̃��� L

	1/21/�

�� , �31�

where F��x��x−� and F̃��x��const at x�1. In a similar
manner, the FSS form for the correlation length ��L ,	�, for
which ��=� and �=1/2, is written as

��L,	� � LF��� L

	1/21/��1 −
	

	c
� , �32�

where F��x��x−� at x�1. While the extended FSS scheme
for the susceptibility is modified from the standard one only

by the 	 prefactor in the argument of F̃��x�, the scaling plot
is significantly improved for two-dimensional Ising ferro-
magnetic and 3D Ising spin glass models.6

III. ANALYSES USING EXTENDED SCALING

In order to make a stringent test of the extended scaling
scheme, we study the three canonical ferromagnets, Ising,
XY, and Heisenberg, on three-dimensional simple cubic lat-
tices. High-precision numerical data have been obtained for
each of these systems for the temperature domain ranging
from close to Tc to about 1.1Tc, and the authors have gener-
ously published their data in tabulated form.16–18 The data
have been taken on systems large enough for the data points
to be representative of the thermodynamic limit. Long HT-
SEs have also been published for � and �2 and for C for all
three systems,12,19 and relatively longer series for the free
energy and the specific heat have been calculated for the
Ising model;13 these series can be used to calculate ��T�,
��T�, and C�T� explicitly for the region T well above Tc.
Below, we call these HTSE and Monte Carlo �MC� data as
the real data. Thanks to a combination of results from field
theory and HTSE, the values of the critical temperatures, the
critical exponents, and the critical amplitudes are known to a
high degree of accuracy, and the confluent correction expo-
nents are also well known. The �nonuniversal� confluent cor-
rection amplitudes are small for these three systems and the
estimates are much less accurate �see Ref. 19 for a detailed
account�.

In each case, we will plot the ratios R���� and R����, re-
spectively, defined by Eqs. �16� and �20� with respect to �
,
where we have used z=2d for simple cubic lattices. The plots
near �=0 give us the critical and the confluent amplitudes, as
explained at the end of Sec. II A. The ratios are defined in a
way that they approach unity at infinite temperature. We will
see that the two ratios defined in the extended scaling
scheme are, in fact, close to unity �within several hundredth
deviation from unity at most� in the whole range of �.

In addition, a simple scaling relation links the observables
��	� and ��	� through ��	���2−��	� to leading order. This
equation has the advantage that it can in principle be used to
determine the exponent � directly from a log-log plot of
��	� against ��	� near 	c without any explicit knowledge of
	c. For the extended scaling scheme �	 scaling with the 	F

factors�, the relation can be rewritten to leading order

��	� =
�t�	�

	
� � ��	�

�	/N
�2−�

. �33�

We will analyze the ratio defined by

R��� =
��	�

���	�/�	/N�1/2�2−	 . �34�

Including the leading confluent correction factors, it behaves
near Tc as
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R��� � R*�1 + B�
 + ¯ � , �35�

where R*=R�
* / �R�

*�2−�=C� / �C� /	c
1/2�2−� and B=a�− �2

−��a�. We also note that the ratios a� /a� are universal and
are known to be about 0.7.5,19 This means that B�−0.40a�.

IV. THREE-DIMENSIONAL SIMPLE
CUBIC ISING FERROMAGNET

For the 3D simple cubic Ising case N=1, together with the
high-precision MC data at temperatures close to Tc by Kim
et al.16 and the HTSE estimates at relatively high tempera-
tures by Butera and Comi,12 our own MC data are also used
in order to interpolate them and to see overall temperature
dependences of �, �, and C. In our simulation, we used the
exchange MC method in combination with the 64 bit multi-
spin coding technique for making the equilibration fast. The
64 different temperatures simulated are distributed in the
range of 4.0�T /J�15.0. The amount of total MC steps for
L=48 is 2.4�105 and the last 8�104 MC steps are used for
taking thermal averages.

Figure 1 shows the parameter-free log-log plot in the ex-
tended scaling form of the reduced susceptibility � against
� /�	 data. Without allowing for corrections, the slope of the
line fitted to the data points �ignoring our MC data when they
are polluted by finite-size effects� gives a first estimate �
�0.037. Figure 2 is the equivalent standard �T or 	 scaling�
log-log plot of � against � with the slope fixed to the one
obtained from Fig. 1. It can be seen that in the standard
scaling form, the linear relationship breaks down rather
quickly, while in the extended scaling form with the same
input data, the linearity persists to a good approximation up
to an infinite temperature and down to temperatures near Tc
until limited by finite-size effects.

We examine the leading correction of the extended scal-
ing formula given by Eq. �35�. To higher precision, Fig. 3

shows a plot of � / �� /�	�2−� against �
, assuming 	c

=0.221 654 4, �=0.0368, and 
=0.504.7,20 The line is ob-
tained by fitting the data points at �
�0.4 to Eq. �35�. The
intercept at �=0, R*=0.971�4�, is in good agreement with
the value C� / �C� / �	c�1/2�2−�=0.9767�20� assuming the criti-
cal amplitudes from HTSE.19 From the initial slope, B=a�

− �2−��a�=0.086�11�, which we will comment on below.
Figures 4 and 5 show the ratios R���� and R���� of Eqs.

�16� and �20�, respectively. The numerical data are taken
from Kim et al.,16 and the higher temperature values are
calculated using the tabulated series of Butera and Comi.12

The HTSE terms were simply summed, and the points
quoted correspond to the temperature range where the con-
tributions from further terms can be considered negligible on
the scale of the plots. By using appropriate extrapolation
techniques, such as differential approximations, the range
over which the published HTSE data12 could be used to
evaluate the temperature dependence of the observables to
high precision could be considerably extended. The assumed
critical parameters are �=1.2372, �=0.6302, and 
=0.504.20

From the initial intercepts and slopes of the fitted line
at small �, we obtain R�

* =1.132�6�, R�
*=1.074�3�, a�
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FIG. 1. �Color online� An extended scaling plot of � against
� /�	 in the 3D Ising ferromagnet. The filled squares represent the
high-precision MC data by Kim et al. �Ref. 16� and the filled circles
the numerical estimates from the HTSE of Butera and Comi �Ref.
12�. Monte Carlo data with L=16, 32, and 48 by ourselves are also
shown. The straight line has a slope of 2−� with �=0.037�1�. In
this and the following figures, our MC data are finite size limited
for T close to Tc, particularly in the case of L=16.
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FIG. 2. �Color online� A conventional scaling plot of � against �
in the 3D Ising ferromagnet. The data are the same as in Fig. 1.
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=−0.138�23�, and a�=−0.109�20�. The RF
* values are in ex-

cellent agreement with the HTSE estimates,19 R�
* =C�

=1.111�1� and R�
*=C� /	c

1/2=1.0677�7�. The aF values are
in qualitative agreement with the HTSE estimates, a�

=−0.10�3� and a�=−0.12�3�.19

An overall conclusion on the extended scaling analysis of
the 3D simple cubic Ising data, which will be confirmed by
the analyses of the two other systems as well, is that this
form of scaling is entirely consistent with the high-precision
values of critical parameters from extensive HTSE and field
theoretical �FT� work. It is remarkable that over the entire
temperature range from Tc to infinity, the maximum devia-
tions from the leading critical expressions of Eqs. �15� and
�18� are of the order of a few percent. Let us go into further
discussions about the R���� behavior. In the inset of Fig. 4,

we show the corresponding T-scaling ratio R̃��t����T� / t−�

plotted against t
. The latter is calculated using the same
values of the critical parameters Tc, 
, �, and C� as those for

R����, and so by construction in the low t, � limit, the inter-
cepts and slopes of both ratios must coincide. It can be seen
that, in fact, the T-scaling curve only approaches the 	 scal-
ing curve closely in the range of t, � extremely close to zero.
This result for � with =0 strongly suggests the superiority
of the 	 scaling, and hence our extended scaling, over the T
scaling.

The full curve in the main frame of Fig. 4 is the optimized
expression, R�

opt���, which is evaluated through �opt���, with
one confluent correction term discussed above and the two
noncritical terms. The first term of the latter is a constant,
b�,0=1−C�, which yields simply R�

opt=1 at �=1 or at an in-
finite temperature. Its second term b�,1, which is also calcu-
lated via the parameters already fixed, specifies the slope of
R�

opt��� at �=1. By taking into account only these three cor-
rection terms to the leading critical term, �c

*�	� of Eq. �15�,
we obtain R�

opt���, which reproduces surprisingly well the
real data in the whole temperature range 0���1. Notice
that �
=0.6 corresponds to T�1.57Tc. This result also indi-
cates the superiority of our extended scaling with the 	 scal-
ing: �c

*�	� not only represents the critical behavior of ��	�
close to Tc but also ��	� in the whole temperature range up
to infinity. In this context, we note again that =1 for the
“true” susceptibility and that the reduced susceptibility ��	�
is derived through our extended scaling scheme. We also
note that the similarity between the R���� plot in Fig. 4 and
the R���� plot in Fig. 5 over the entire range of temperature is
striking.

Lastly, Fig. 6 shows C�	� /	2 as a function of 1−	2 /	c
2.

The data points are calculated from the HTSE of Arisue and
Fujiwara which extends to powers up to 2n=46,13 MC en-
ergy data at L=128 and 96,11 and our numerical simulations
for different sizes up to L=48. We examine the extended
scaling with noncritical contributions to C�	� given by Eq.
�26�. By using the hyperuniversal relation with the value of
Chyper equal to 0.2664�1�3 for the 3D Ising model and our �
analysis, we obtain RC

* �29.4. Then, the noncritical param-
eters K2 and K4 are determined by c2 and c4 of HTSE and
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FIG. 4. �Color online� A plot of the ratio R���� against �
 in the
3D Ising ferromagnet. The straight line represents a fitting to
R����=R�

*�1+a��
� with R�
* =1.132�6� and a�=−0.138�23�, while

the curve the R���� calculated from �opt�	� of Eq. �9�. In the inset,

the T-scaling ratio R̃��t� against t
 is shown.
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with putting aC�0. The solid curve represents the no free
parameter plot of Eq. �26� with the � ,RC

* ,c2 ,c4 values cited
or estimated above. The agreement over the whole tempera-
ture range is very satisfactory; the noncritical correction is so
strong that the bare leading power law is a poor approxima-
tion until very much closer to Tc than the range covered by
the figure. We consider this result as an indication that the
extended scaling scheme combined with the optimized intro-
duction of correction terms is an effective method for ana-
lyzing critically divergent quantities in general.

V. THREE-DIMENSIONAL XY
SIMPLE CUBIC FERROMAGNET

The same analysis has been carried out for the 3D XY
model �N=2�. High-precision numerical data were published
by Gottlob and Hasenbusch17 and are supplemented here by
unpublished data kindly provided by Hasebusch.21 The
higher temperature data are calculated using the tabulated
series of Butera and Comi.19 The critical point is 	c
=0.454 165 2�5� and the exponents �, 
, �, and � are close to
0.0381, 0.53, 1.3178, and 0.6717, respectively.7,8,19 Figure 7
shows the �−� / �	 /2�1/2 log-log plot. The leading scaling
scheme works well up to very high temperatures, as in the
Ising case. The slope in Fig. 7 gives us the value of � which
is in agreement with the previously reported values.22 Figure
8 shows the plot of ���� / ����� /�	 /2�2−� against �
 assuming
the central values for the exponents � and 
 as mentioned
above. Figures 9 and 10 show R���� and R����, respectively,
against �
. From the �=0 intercept and the initial slope, one
can estimate R�

* =1.0471�4�, R�
*=1.0238�3�, a�=−0.093�3�,

and a�=−0.073�2�. These are all reasonably close to the quite
independent HTSE values19 R�

* =1.014�1�, R�
*=1.0102�6�,

a�=−0.04�2�, and a�=−0.07�3� but are probably more reli-
able as they are consistent with the independent FT estimate
of the universal ratio a� /a��0.65, see comments in Ref. 19.
Also, the values of R* and B in Eq. �35� calculated from thus
obtained set of the parameters reproduce well the data, as

shown in Fig. 8. This agreement again validates the extended
scaling protocol and demonstrates that a combination of in-
formation from FT, HTSE, and simulations analyzed using
this protocol can lead to consistent high-precision critical
parameter measurements.

For comparison, we plot the standard T-scaling ratio R̃��t�
introduced in Sec. IV also in Fig. 9. Its coincidence with
R���� will only hold for t�0.01. As is the case for the Ising

system, the slope of R̃��t� is opposite to that of R���� and the

magnitude of R̃��t�− R̃��0� is much larger than the corre-
sponding magnitude of the extended ratio already at t
, �


�0.2 or t, ��0.04. In Fig. 10, we also show the T scaling

R̃��t�= ���T� /�	c /2� / t−� and the R̄����= ���T� /�	c /2� /�−� by
	 scaling. The true leading term plus confluent correction
holds with the extended scaling form, R���� of Eq. �20� with
N=2 up to t�0.1, while with the other forms of scaling the
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FIG. 7. �Color online� An extended scaling plot of ��	� against
� /�	 /2 in the 3D XY ferromagnet. The squares represent the high-
precision MC data by Gottlob and Hasenbusch �Ref. 17� and
Hasenbusch �Ref. 21�, and the filled circles the numerical estimates
by HTSE of Butera and Comi �Ref. 12�. The fitted straight line has
a slope of 2−� with �=0.036.

0.9980.9980.9980.998

1111

1.0021.0021.0021.002

1.0041.0041.0041.004

1.0061.0061.0061.006

1.0081.0081.0081.008

1.011.011.011.01

1.0121.0121.0121.012

1.0141.0141.0141.014

0000 0.10.10.10.1 0.20.20.20.2 0.30.30.30.3 0.40.40.40.4 0.50.50.50.5 0.60.60.60.6 0.70.70.70.7 0.80.80.80.8 0.90.90.90.9 1111

χχχχ////
((((ξξξξ

////√
β√β√β√β

////2222
))))2−2−2−2−

ηηηη

ττττθθθθ

Hasenbusch dataHasenbusch dataHasenbusch dataHasenbusch data
HTSEHTSEHTSEHTSE

FIG. 8. �Color online� A plot of � / �� /�	 /2�2−� against �
 in the
3D XY ferromagnet. The critical parameters are assumed as 	c

=0.454 165 2, �=0.0381, and 
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correct limit will hold only for t�0.01. In particular, the

comparison of 	 scaling R̄���� with extended scaling R����
demonstrates the importance of the 	1/2 prefactor in Eq. �20�
of the extended scaling scheme. These results imply that
even close to Tc, the extended scaling is a considerable im-
provement over the standard scaling analysis for estimating
critical parameters including the correction terms.

The curve in Fig. 9 represents our optimized estimates
R�

opt��� up to the second order of noncritical corrections. It
reproduces about 5% change in R����, from about 1.05 at �
=0 to 1 at �=1, to a very good approximation. The corre-
sponding relative change in R���� is only less than 2%, as
seen in Fig. 10. To reproduce this change by R�

opt��� to an
approximation as good as R�

opt��� in Fig. 9, however, more
than third order noncritical correction terms are required.

VI. THREE-DIMENSIONAL HEISENBERG
SIMPLE CUBIC FERROMAGNET

The same analysis has been carried out for the 3D Heisen-
berg model �N=3�. High-precision numerical data were pub-
lished by Holm and Janke18 and are supplemented here by
higher temperature data calculated using the tabulated series
of Butera and Comi.19 The critical point is 	c=0.693 05�4�
and the exponents � and 
 are close to 0.036 and 0.55.7,19 A
recent exponent set22 gives �=1.3960�9�, �=0.7112�5�, and
�=0.0375�5�.

Figure 11 shows the ��T�−��T� /�	 /3 log-log plot, which
gives an estimate of � consistent with that of Ref. 22. Figure
12 shows the plot of ��T� / ���T� /�	 /3�2−� against �
 assum-
ing the exponent values as �=0.0375 and 
=0.55. From this
plot, it appears that the initial slope is very small, corre-
sponding to almost zero values for a� and a�. Figures 13 and
14 show, respectively, R���� and R���� against �
, assuming
the values of � and � in Ref. 22. The MC and HTSE points
may not appear to connect smoothly in these figures because
the manner in which the plots are presented enhances small

deviations from the leading term form. However, the changes
in the values of both R���� in Fig. 13 and R���� in Fig. 14 are
limited to within a few percent of their absolute magnitude in
a whole range of �, as is the case for the other two ferromag-
nets studied. From the straight line fit of the MC data at
small �
, one can estimate R�

* =0.952�2�, R�
*=0.967�2�, a�

=−0.04�1�, and a�=−0.03�2�. In this case, the parameters are
slightly less consistent with the HTSE estimates,19 R�

*

=0.9030�8�, R�
*=0.9447�5�, a�=0.06�3�, and a�=0.003�6�,

but it should be noted that the estimates for these �nonuni-
versal� parameters depend very sensitively on the precise
values taken for the critical exponents. We certainly need
more precise data near Tc to fix the values of these critical
parameters for the Heisenberg ferromagnet.

VII. CONCLUSION

We have outlined a systematic rule for the scaling and
normalization of thermodynamic observables having critical
behavior at continuous phase transitions. This “extended
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scaling” rule corresponds for ferromagnets to scaling of the
leading term of the reduced susceptibility above Tc as
�c�T�=R�

*�−� in agreement with standard practice, for the
leading term of the second moment correlation length as
�c�T�=R�

*	1/2�−� with R�
*=C� / �z	c /2dN�1/2 and for the lead-

ing term of the specific heat in bipartite lattices C�T�
=	2RC

* �1− � 	
	c

�2�−� with RC
* =CC2� /	c

2 plus strong noncriti-
cal correction terms which we explicitly evaluate by linking
to the HTSE.

Analyses are made of high-precision numerical data on
three canonical ferromagnets using these expressions allow-
ing for confluent scaling correction terms, plus noncritical
corrections for the specific heat. Near Tc, the results are en-
tirely consistent with the critical parameter sets �including
the confluent corrections�, which have been obtained inde-
pendently using sophisticated FT, HTSE, and simulation
techniques.7,19,20,22

The most important result found in the present work is
that for ��T� and ��T� the leading critical expressions with
the extended scaling normalizations Fc

*�	� of Eq. �8� agree to

a very good approximation with the true F�	� up to the in-
finite temperature. To demonstrate this fact more in detail,
we have introduced the ratio RF��� defined by Eq. �11�. For �
of the Ising ferromagnet, for example, it is equal to the criti-
cal amplitude C� at Tc ��=0� and to unity at infinite tempera-
ture ��=1� by definition. R���� evaluated from the true data
are represented by the data points in Fig. 4, while R����
evaluated through the leading expression �c

*�	� is indepen-
dent of � and equal to C�. The difference between the two is,
however, at most 13% in this case. The corresponding differ-
ences for R����’s of the two other ferromagnets as well as for
R����’s of the all three ferromagnets are less than several
percent. This is our first result mentioned just above.

We have next demonstrated that our extended scaling
scheme, in terms of the 	 scaling and with the temperature
dependent prefactor 	F, is of crucial importance in precisely
extracting the small amplitude aF of the leading confluent
correction term. The result is represented by the solid line in
Fig. 4 as well as those in Figs. 5, 9, and 13. In addition, we
have also checked that the optimized expression Fopt�	� of
Eq. �9�, consisting of Fc

*�	� and one confluent and two non-
critical corrections, yields RF

opt��� which reproduces the true
RF��� surprisingly well as shown by the curves in Figs. 4 and
9, though more than third order noncritical correction terms
would be required for equally good agreement in other ob-
servables.

The large noncritical terms in the specific heat C�T� are
also incorporated explicitly within our extended scaling
scheme with no further adjustable input parameters. For the
Ising ferromagnet on the simple cubic lattice, C�T� is calcu-
lated to a good approximation over the entire temperature
range �see Eq. �26��. Although the noncritical correction
terms are large for C�T�, the principle of the analysis is the
same as the one applied above to ��T� and ��T�, for which
the corrections to scaling are quite small. Namely, each criti-
cally divergent observable F�	� is represented by Fopt�	� of
Eq. �9� over the whole range of 	 to a good approximation.
The input consists of Fc

*�	�, a confluent correction term, and
a very limited number of noncritical correction terms derived
from HTSE.

Together, these results can be taken as validating the ex-
tended scaling approach. The approach could be systemati-
cally implemented in numerical work so as to improve yet
further the accuracy of critical parameter sets derived for
standard systems, possibly incorporating where necessary
further higher order correction terms.

Perhaps, a more fruitful application would concern the
analyses of numerical data in more complex systems, where
the present accuracy of the critical parameter sets is much
poorer. For instance, it has been pointed out that for the
analysis of data on spin glasses with symmetric interaction
distributions, 	 should be replaced by 	2 in all
expressions6,23 as all terms in the HTSE in these spin glasses
are strictly even in 	. The extended scaling protocol allow-
ing for this and with appropriate F�	� normalization factors
has indeed been shown to significantly improve the consis-
tency of critical exponent values derived from numerical
simulations on Ising spin glasses.6,24
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FIG. 13. �Color online� A plot of the ratio R���� against �
 in the
3D Heisenberg ferromagnet. The straight line represents a fitting to
R����=R�

*�1+a��
� with R�
* =0.952 and a�=−0.04, while the curve

the optimized form using up to the second noncritical correction
terms.
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FIG. 14. �Color online� A plot of the ratio R���� against �
 in the
3D Heisenberg ferromagnet. The line represents a fitting to R����
=R�

*�1+a��

� with R�

*=0.967 and a�=−0.03.
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