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Understanding the damping of fast magnetization precession in ferromagnetic metals is important for many
applications. Spin-orbital effective fields fluctuating as a result of electron collisions with the lattice defects are
known to cause magnetic damping of the Gilbert type. Formulas convenient for numerical estimates derived
using exact linear-response theory are discussed in terms of the Fermi golden rule. Estimates of the damping
rates in Fe and Ni based on band structures matched to ab initio calculations and on the lifetime approximation
account for a substantial part of the experimental values. The relevance of the lifetime approximation is
discussed and supported by a simple model calculation.
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I. INTRODUCTION

General interest in the damping of fast magnetization pre-
cession has been revived by projects of fast memories em-
ploying films of magnetic metals. While immediate interest
seems to concentrate on nonlocal damping effects in ultrathin
film structures,1,2 such experiments also detect the local “in-
trinsic” Gilbert damping, known in bulk ferromagnetic
resonance3–9 �FMR� and usually described by the last term in
the equation of motion10 for the magnetization M,

dM

dt
= − ��M � Heff� + �� M

Ms
�

dM

dt
� . �1�

Here, Heff is the “effective” magnetic field �including the
Maxwell H and effects of macroscopic magnetic anisotropy�,
��0 is the gyromagnetic ratio, Ms is the saturation magne-
tization, and � is the damping parameter, often measured in
terms of the Landau-Lifshitz damping rate6 �=��Ms �in cgs
units�.

Since uniform precession is not affected by isotropic ex-
change interaction, the source of the Gilbert damping has
been sought in magnetic forces. Dipolar damping is gener-
ally associated with nonuniform magnetization and at least
qualitatively understood in terms of scattering into nonuni-
form magnons.11 The role of spin-orbit coupling �SOC� in
magnetic 3d metals had been schematically described by
Brooks.12 Orbital moments quenched by electron itinerancy13

are only partly, weakly restored by SOC and depend on the
prevalent spin direction as well as on the direction of the
electron wave vector k. Thus, orbital moments of itinerant
electrons change as M turns and also when k is changed in
collisions with lattice defects. Random scattering is, thus, a
source of noise in the effective SOC fields acting on the spin
system, similarly as in electron spin resonance of conduction
electrons in simple metals.14–16

Unfortunately, we can, so far, only roughly estimate the
range of itinerant lifetimes �from the resistivity�, but not yet
include a specific scattering mechanism in a realistic detailed
theory.

It was, nevertheless, possible to estimate the influence of
electron lifetimes at the Fermi level on the Gilbert damping
caused by oscillating electron levels17–20 as well as by oscil-
lating orbital polarization20–22 �i.e., oscillation of the mean-

field Hamiltonian, not only of the energy values�. The com-
mon features of these estimates had been, on the one hand,
more or less accurate calculations of the frequency spectra of
the effective SOC fields, including interband excitations at
low optical frequencies, in the band structures of ideal crys-
tals and, on the other hand, phenomenologically expected
change of these spectra when the energy levels are broad-
ened due to finite lifetimes of the electron states.

While the inaccuracy of earlier quantitative estimates has
been recently removed,18–20 there remain several points
where an improved presentation may foster better general
understanding of the subject and provoke further theoretical
progress.

In the presented work, we try �i� to simplify the derivation
of the torque correlation formula21 used in the numerical
estimates, particularly the inclusion of interband excitations;
�ii� in this context and in connection with different
formulations2,23,24 and with numerical calculations, to distin-
guish the roles of several types of interband excitations �that
may mainly change the spin or orbital state, or both�; and,
finally, �iii� to discuss the relevance and limitations of the
lifetime approximation �LTA� in relation to various types of
interband polarizations. The last point caused an early
controversy24–26 and was most neglected in all previous
treatments of the subject. It may also be important for ex-
plaining the remaining differences between theoretical and
experimental results.

Since our main objective is to contribute to general, at
least qualitative, understanding, we use elementary argument
where possible, particularly the Fermi golden rule in Sec. II
and in the rather extended discussion in Sec. IV. In Sec. III,
we revise our previous numerical results17,21,22 by improved
calculations �employing ab initio energy spectra�. We refer to
established linear-response and Green’s function methods in
Appendix A for support of the golden-rule approach of Sec.
II, and in Appendix B for the LTA of Sec. III and of the
necessary �vertex� corrections, which are only briefly dis-
cussed in Sec. IV B. These technical matters are formulated
differently by other authors. We also try to show, on a simple
point-defect model, that the �vertex� correction to LTA does
not diminish the damping derived from interband SOC exci-
tations, although it is known to invalidate the simple LTA in
models with effective fields derived from isotropic exchange.
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II. ELEMENTARY FORMULATION

Interaction of the collective magnon mode with electrons
near the Fermi level may be phenomenologically described
by an effective Hamiltonian17,27

Hme = �b†b + �
�	

�E�
�	 + ��	
† b + ��	b†�c�

† c	, �2�

where b+ �b� and c�
+ �c�� create �annihilate� uniform mag-

nons and electrons in states ��	. All energy variables like H,
E, and � will be assumed in units of frequency �divided by
��. The interaction elements may be derived from the equa-
tions of motion �used in linear-response theory, cf. Appendix
A�. The uniform magnon is a quantum of electron spin de-
viation,

be = Ns
−1/2�

�	

S�	
− c�

† c	, �3�

where S− is in units of � and Ns=−2
��	S�	
z c�

+c		e,c. The
symbol 
 	e,c denotes macroscopic average over electron and
lattice states.28 We require that the right-hand side of
i�b /�t= �b ,Hme� from Eq. �2� be equal to �be ,Hel�, where Hel

is the full �many-body� electron Hamiltonian. The only two
terms in Hel that do not commute with the total spin are the
SOC, Hso, and the dipolar interactions. Ignoring the latter �or
including them in macroscopic Heff in Eq. �1��, we get

��	 = Ns
−1/2F�	

− , �4a�

F�	
− = �S−,Hso��	. �4b�

SOC is well represented by the one-electron operator

Hso = L · S , �5a�

L = �
j

 jL j , �5b�

where L j denotes electron orbital angular momentum with
respect to atom site j, and  j is a scalar functional29,30 or its
average value in simplified models.12,31 Following Eqs. �4�
and �5�,

F�	
− = �LzS

− − L−Sz��	. �6�

The Fermi golden rule determines the magnon creation
and destruction rates, p+ and p−, as

p± = 2���
�	

�
nb ± 1;n� + 1,n	 − 1�Hme�nb;n�,n		�2

� 
�E� − E	 ± ���
e,c

, �7�

where nb and n� are the magnon and electron occupation
numbers. The average 
 	e,c will be taken separately over the
electron �e� degrees of freedom and then over the lattice
configurations �c� affected by disorder. The 
 function and
the subsequent treatment correspond to the basic adiabatic
approximation.

The squared element of c�
+c	 alone is �1−n��n	, while b+

�b� give 1+nb �nb� in p+ �p−�. Swapping � and 	 in p+, we

get the net p− and p+ with the same ���	
+ �2 and 
 factors.

Assuming that electrons remain in equilibrium, i.e., the mean

n�	e equal f�= f�E��, where f�E�= 1+exp��E−EF� /kT��−1

is the Fermi function, and using the identity �1− f	�f�= �f	

− f��g�E�−E	�, where g�E� is the Bose function 1
−exp�E /kT��−1, we get the net rate

p− − p+ =
nb − nb0

�b
,

1

2��b
= ��

�	

���	
† �2�f	 − f��
�E� − E	 − ���

c

�8�

where nb0=g��� is the equilibrium magnon number and 1/�b

is the magnon decay frequency.27

Since the Gilbert equation �1� gives �� for the decay rate
of linear magnetization deviations 
M, while 1 /�b describes
the decay of magnon numbers, i.e., of �
M�2, the Gilbert �
may be identified with 1/2��b or, strictly, with the limit
��1/2�b� /�� at �=0. This limit is

� = ���
�	

���	
† �2��E	�
�E� − E	��

c

, �9�

with ��E�=−�f�E� /�E peaked at the Fermi level EF.
For a discussion of lattice disorder, it is useful to separate

the explicit dependence on the temperature in the Fermi fac-
tor ��E� and the normalizer Ns �proportional to Ms�, writing
Eq. �9� as �=���E��EdE,

�E = ���
�	

���	
† �2
�E − E��
�E − E	��

c

�10a�

=�Ns
−1
TrF+D�E�F−D�E��	c, �10b�

where D�E� is the spectral density matrix:

D�E�mk,nk� = �
�

Umk,�
�E − E��U�,nk�
† , �11a�

��	 = �
mk

�mk	Umk,�, �11b�

if the states ��	 needed for the exact energy balance are
regarded as �so far unknown� mixtures of the Bloch states
�mk	 of an ideal crystal.

III. LIFETIME APPROXIMATION

Band calculations in pure metals give us only the periodic
part of F±, diagonal in the wave vector k, and allow us to
estimate only the averaged spectral densities of individual
band states as


D�E�mk	c =
1

�

wmk

�E − Emk�2 + wmk
2 . �12�

A single index is used for diagonal elements, and the Bloch
level width wmk= �2�mk�−1 is related to the Bloch state life-
time, �mk. Using only these averages instead of the D matri-
ces in Eq. �10� yields the lifetime approximation
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�E
�L� = �Ns

−1 �
mk,n

�Fmk,nk
+ �2
D�E�mk	c
D�E�nk	c, �13�

which may be evaluated numerically as a function of the
lifetimes �mk regarded as free parameters.

The damping parameters calculated for iron and nickel are
shown in Figs. 1 and 2. The energy spectrum Emk was cal-
culated using the ab initio WIEN2K package,30 and the sum-
mation �13� was done using interpolation schemes �of ten 3d
linear combination of atomic orbitals �LCAO� bands hybrid-
ized with eight orthogonal plane wave bands, as designed by
Hodges et al.32 for fcc Ni and adapted33 for bcc Fe�. SOC
was included as defined in Eqs. �5� and �6�, with L
elements31 taken only between the 3d LCAO and the SOC
parameters  matched to the X25� splitting in Ni and H25�

splitting in Fe in the WIEN2K spectra. Except for the variable
�, substituted as a single free parameter for all unknown �mk,
there remained no adjustable parameters.

The vertical axes in Figs. 1 and 2 show the frequency �
=��Ms �in cgs units�, which is more common in experimen-
tal literature and more conveniently normalized �the Gilbert
� contains the temperature-dependent Ms due to Ns

−1

=�� /2Ms�, with � for the normalization volume�. The for-
mula used in the calculation takes for � only �E

�L� from Eq.
�13� at the Fermi level EF, i.e.,

� =
�2�

2��at
��

m,n
�Fmk,nk

+ �2
w

Emk�2 + w2

w

Enk�
2 + w2�

k

. �14�

Here, �at is the atomic volume, 
 	k denotes an average over
the first Brillouin zone, E�=E−EF, and w= �2��−1 is a free
parameter replacing the unknown wmk in Eq. �12�.

The horizontal axis in Figs. 1 and 2 is linear in �−1/2 in
order to facilitate comparison with the experimental plots5–9

of � against the temperature, T; it may be assumed that 1 /�
is proportional to the resistivity, which, in turn, is
proportional7 to T2.

Besides the total �, the figures also show separately the
contributions of intraband terms �diagonal, m=n, dashed-dot
lines�, apparently dominant at low 1/�, and the interband
contributions �off-diagonal, m�n in Eqs. �13� and �14�,
dashed lines� that initially increases with 1/�, but then, more
or less, saturate, particularly in Ni.

The dotted lines in Figs. 1 and 2 are plots of � in the cubic
approximation, which includes SOC in Fmk,nk elements but
not in the Emk spectra, and appears to be sufficient for high
1/�. This approximation allows us to distinguish spin-down
and spin-up bands, and to separate the contributions of the
LzS

+ and L+Sz excitations constituting F± �cf. Eq. �6��. In
Ni, the largest share in the calculated � comes from the es-
sentially orbital excitations L+Sz in the prevalent minority-
spin �up� states at the Fermi level. In Fe, a great part �about
2 /3� of � at high 1/� is due to spin excitations LzS

+ �be-
tween orbitally different states, not to be confused with pure
spin Stoner excitations�.

IV. DISCUSSION

A. Effective field elements

The magnon-electron interaction in Eq. �2� may be inter-
preted as a variation of the mean-field Hamiltonian Hmf of
electrons �near the Fermi level� caused by a small angular
deviation 
m of the magnetization direction m=M /Ms from
the static position mo=z. The last term in Eq. �2� may be
written as


Hmf = − F · 
m , �15�

where 
m is regarded as a dynamic variable represented by
magnon operators,11 
mx− i
my→−2Ns

−1/2b, and F has only
components transverse to z: following Eq. �6�, for F−=Fx
− iFy,

FIG. 1. Calculated Landau-Lifshitz damping rate � for iron
�solid line� as function of the electron lifetime � �note the nonlinear
�−1/2 scale�. The intraband �dashed-dot line� and interband �dashed
line� components of � and the cubic approximation �dotted line� are
discussed in the text.

FIG. 2. Calculated Landau-Lifshitz damping rate � for nickel
�solid line� as function of the electron lifetime � �note the vertical
scale 10� larger than in Fig. 1�. The intraband �dash-dot line� and
interband �dashed line� components of � and the cubic approxima-
tion �dotted line� are discussed in text.
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F = �L � S� � mo. �16�

On the other hand, the effective magnetic field acting on the
collective magnetization is represented by the electron opera-
tor hef determined from

�hef =
2

Ns
�
�	

F�	c�
† c	 �17�

�if again Hmf and F are in frequency units and Ns
=2Ms� /���. The connection of the Gilbert damping with
the formal theory of effective field fluctuation was recently
reviewed by Heinrich.2 In the present approximation, we get
from Eq. �8� for �=1/2��b at finite �

���� =
�

���
�	

���	
+ �2�f	 − f��
�E� − E	��

c

=
1

2�Ns
�

−�

�


�F−�t�,F+�	e,ce
i�tdt

=
1

2Ns
�

−�

� �
0

�


F−�t − is�F+	e,cdsei�tdt , �18�

where (F�t�)�	=F�	 exp�i�E�−E��t� in the second line, giv-
ing the spectral density of the retarded function34,35 derived
in Appendix A. The form of the third line where �=� /kBT is
obtained as one of the well-known Kubo identities34,36 for
averages over canonical distributions. It also follows from
the formal fluctuation theory,36 where, however, the F�t� de-
pendence contains only random field, from which all projec-
tions onto the collective magnon mode are removed.36 In the
present simplified formulation giving the second and first
lines, the damping results from energy and angular momen-
tum transfer to electron-hole excitations, with the dynamics
described by the static Hmf in which low-frequency magnons
do not exist.

The variational form of 
Hmf has been derived earlier in
two different ways. It has been noted that Eq. �15� with Eq.
�16� is the variation of the SOC Hamiltonian,17,29 i.e., 
Hmf
=
Hso, because the form of Hso varies31 when spin variables
are written in the rotating frame, with the spin quantization
axis �time-dependent z� axis� following the magnetization
direction m but orbital variables in the static frame.

On the other hand, in earlier formulations,24,37 variation of
the electron mean field caused by 
m is naturally derived
from the rotating mean exchange field acting on the electrons
in the static frame. If the mean exchange field is schemati-
cally described by Hex=�S ·m, where �=��a�a	
a� is a
Stoner splitting operator,38 the static part Hex

0 =�Sz is in-
cluded in Hmf, while the dynamic part is


Hex = �S · 
m . �19�

Quantized 
m renders the interaction term in Eq. �2� with
matrix elements, instead of Eqs. �4� and �6�,

��	
�ex� = − Ns

−1/2��S−��	. �20�

These elements joining states of opposite spin across the
Stoner gaps are clearly different from Eqs. �4� and �6�. Thus,
it is necessary to recall that the equations of motion used in

Sec. II and the energy conservation condition strongly re-
strict the choice of exchange-field elements that contribute to
the damping. Isotropy of exchange implies that ��S−��	 is
equal to �S− ,Hex

0 ��	, while

�S−,Hex
0 + Hso + Hz��	 = �E	 − E��S�	

−

for elements between the static eigenstates. In particular, for
the states involved in the “golden rule” Eq. �7�, the right-
hand side is equal to �S�	

− and to the Zeemann term
�S− ,Hz��	. Hence, ��S−��	=−F�	

− and the ��	 elements from
Eq. �20� and from Eq. �6� are the same. This is particularly
true for the diagonal �intraband� elements contributing to the
damping in the theory of Korenman and Prange24,26 and in
the “breathing Fermi surface” model.18,19

The role of interband matrix elements in the lifetime ap-
proximation is discussed in more detail further below. Both
Hso and F± are strictly off-diagonal in the Bloch states31,32

�ask	 = �
�

Cask
� Nat

−1/2�
j

eik·rj��j	�s	 , �21�

with fixed spin labels s, containing atomic orbitals ��j	,
where j denotes the r j site and � one of the real 3d wave
functions. The Cartesian Lr components �r=x ,y ,z� are off-
diagonal in such atomic orbital �AO� basis as well as in the
LCAO as long as Cask

� are also real �i.e., before including Hso
in Hmf�. Thus, F± connect LCAO states with different orbital
parts so that the space of SOC field excitations �17� is sepa-
rated from the spin-wave operator space.

This concerns also the LzS
± part of the field elements,

between bands of opposite spin but also of different orbital
�AO� compositions. According to the numerical estimates in
Sec. III, these “spin-spin” excitations cause approximately
2/3 of the damping in Fe at high �−1, where � is simply
proportional to 2. This proportionality is pointed out by
Heinrich2 in a formula39 for � that is recently used and dis-
cussed in context with experiments supporting such
proportionality.23 The quoted formula2,39 is, however, based
on a truncated magnon-electron interaction, with F− in Hm-e
reduced to the SzL

− terms. This resulted from regarding only
the transverse r=x and y in Hso=�LrSr as in electron para-
magnetic resonance �EPR� damping,14–16 also quoted in the
sd model.37 There is, however, no obvious reason for ne-
glecting the “secular” term �r=z� in Hso, leading to a spin-
spin process of scattering collective magnon to electron-hole
pairs of opposite spins combined with orbital Lz excitation. It
is similar to the two-magnon process caused by random local
hz fields.11,40 While fluctuations of the transverse LrSr com-
ponents are known to cause EPR and also NMR damping,41

the secular spin-orbital terms LzSz must, intuitively, cause
slight dephasing of spin excitation of Bloch states during
their short lifetime.

The present discussion is deliberately limited to local
damping of uniform precession. The damping of nonuniform
spin waves represented by spatially modulated operators Sq

−

=S−eiq·r has two additional features. The spin-orbital
effective-field operators �4b� are also spatially modulated;
they have no strictly diagonal elements in the Bloch repre-
sentation, and the breathing Fermi surface mechanism analo-
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gous to the Drude-Sommerfeld picture of electromagnetic
wave absorption is modified to direct absorption analogous
to Pippard’s “anomalous” skin effect17,24 if the electron mean
free path is longer than the spin wave length. Second, the
nonuniform Sq

− does not commute with electron kinetic en-
ergy so that the effective field contains, besides the magnetic
F− from Eq. �4b�, also diffusive terms q ·vSq

−, where v is the
electron velocity. The matrix elements of this diffusive
“force” join states with opposite spins and �nearly� the same
orbital parts, like the Stoner S− excitations. The resulting
diffusive damping is small in usual skin-effect conditions in
ferromagnetic resonance, but its importance increases in het-
erostructures with ultrathin ferromagnetic components.2 This
nonlocal damping is, of course, not described by the macro-
scopic Gilbert equation.

B. Lifetime approximation and corrections

As in EPR damping,14–16 we should consider two sources
of randomness and noise in effective-field excitations. One is
disorder in SOC, which might be represented by a local
variation of i parameters. The other is ordinary scattering,
which also causes electrical resistance. An obvious weakness
of the present LTA is in neglecting the local variation of Hso
and F, regarded as periodic operators �diagonal in k�. The
calculated damping is, thus, certainly underestimated.

Another less obvious weakness with possibly serious con-
sequences is the severe truncation of interfering scattering
amplitudes between different bands, implied by using in Eq.
�13� only the average diagonal elements of the spectral den-
sities �12�, instead of all the interfering elements �11a� con-
tained in Eq. �10b�.

The finite lifetimes of the Bloch states result from scatter-
ing by aperiodic perturbation potential, say, V, superposed on
the average periodic mean field. Relations between the scat-
tering amplitudes, the spectral density matrix, and the aver-
ages needed in Eq. �10b� are usually treated by perturbation
theory for complex transforms of D�E� �as recalled in Ap-
pendix B�. The essence of the implicit truncation in the LTA
is clearly seen in the simple first Born approximation, sub-
stituting for ��	 in Eq. �11b� only weakly perturbed Bloch
states,

�m̃k	 = �mk	 + �
pk�

�pk�	
Vpk�,mk

Emk − Epk�
. �22�

The F+ elements between such states are, for k��k and to
first order in V,

Fp̃k�,ñk
+ = �

m

Vpk�,mkFmk,nk
+

Emk − Epk�
+ �

q

Fpk�,qk�
+ Vqk�,nk

Enk − Eqk�
. �23�

Substituting their absolute squares to Eq. �10a�, we get the
LTA for � if, among all the various products of V elements,
we keep only the absolute squares �Vpk�,mk�2, i.e., only the
absolute squares of the individual terms in Eq. �23� in the
averages 
 	c. We also neglect perturbation of the energy val-
ues, note that �Fpk�,qk�

+ �2 equals �Fqk�,pk�
− �2, and express both in

terms of the Hermitian rectangular components Fr, r=x and

y in Eq. �16�. We note �cf. also Eq. �B7� in Appendix B� that

2���
pk�

�Vpk�,mk�2
�E − Epk���
c

=
1

�mk
�24�

is the golden-rule probability of scattering from �mk	 to the
states at level E, and get

�E
�L� = Ns

−1 �
nk,m,r

�Fnk,mk
r �2
�EF − Enk�
�Emk − Enk�2�mk

. �25�

The same result for � is obtained from Eq. �13�, with the
averaged spectral densities following Eqs. �11a�, �11b�, and
�22�, with 
V	c=0,


D�E�mk	c = 
�E − Emk� +
�2��mk�−1

�E − Emk�2 . �26�

This approximate 
D	c is singular at E=Emk and obviously
not normalized �the integral over E is not unity�, as a result
of failure to subtract the density scattered from the peak at
E=Emk into the “tail,” and failure to take into account also
energy variations. These failures are corrected in the im-
proved approximation recalled in Appendix B, leading to
Lorentzian 
D	c used in Eq. �12�. Without this correction,
Eqs. �22�–�26� are only applicable and may be used for the
discussion of interband F± contributions.

Summation of all averages 
Vmk,pk�Vqk�,nk	c contained in
the mean absolute square of the elements �23� would be
equivalent to including off-diagonal elements of the D ma-
trices in Eq. �10b�, at least to first order in V:

Dmk,nk�
�1� = Vmk,nk��
�E − Emk�

E − Enk�
+


�E − Enk��

E − Emk
� �27�

�cf. also Eq. �B6a�, second term�. Such complete summation
requires more effort and also knowledge of V.

The following tractable example shows the importance of
checking the LTA in the s-d models and other formulations
using effective-field elements derived from isotropic ex-
change interactions. With ��ex� elements from Eq. �20�, the
LTA predicts spurious damping from overlapping densities of
↑ and ↓ spin states, i.e., � from Eq. �25� with Fr replaced by
�Sr and Emk−Enk equal to the exchange gap. This damping
would persist even without SOC. However, it may be readily
shown that the averages 
D�1��exD�1�	c with spin-independent
V elements in Eq. �27� cancel the 
D	c overlap terms from
Eq. �13�, so that the result in Eq. �10b� is 0. In simpler terms,
the relevant ��ex�+ elements �23� between the Born states �22�
with sharp orbital labels a and b and spin labels s=↓ and ↑
vanish:


b̃↑k���S+�ã↓k	 =
Vb↑k�,a↑k�ak

Eb↑k� − Ea↑k
+

�bk�Vb↓k�,a↓k

Ea↓k − Eb↓k�

equals 0 due to isotropy of exchange, for the low-energy
transitions where Ea↓k=EF=Eb↑k�, the two energy denomina-
tors equal −�ak and �bk�, respectively, and the V elements
are the same.

Korenman and Prange24,26 refer to exchange-field ele-
ments in LTA, but avoided the “spurious overlap” error by
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reducing “relevant” elements to those diagonal in the band
number index �equal to the SOC elements�.

Most versions37,42 of the s-d model avoid such overlap
error by using a different LTA, referring explicitly to spin
lifetime ascribed to SOC of the s-p states2,37 or to
impurities,42 but the present form of Eq. �13� with Eq. �12�
and isotropic exchange, instead of SOC elements for F as-
sumed in another recent version,43 is not so realistic.

Figure 3 schematically illustrates the generation of an
electron-hole pair at EF caused by the electron-magnon in-
teraction F combined with scattering by random V.

In the preceding example, m and p denote ↑ spin bands
and n ,q denote ↓ spin bands; a Fmk,nk

�ex� excitation at k may be
destroyed by Vpk�,mk, but this is not sufficient to cause mag-
netic damping, because the interfering Vnk,qk� restores a
F

pk�,qk�
�ex� excitation at k�, so that total spin is �naturally� con-

served. In this case, there is strong correlation between the
F�ex� elements and the energy gaps, and also between the two
V elements.

Analogous interference should not be a priori ignored in
the case of spin-orbital fields F, but the result is quite differ-
ent. It is again best visible in the structure of approximate
�ask	 bands �21� without SOC �with no intraband F elements
and the interband F connecting different orbital states�.
Variation of the Fbs�k,ask elements, with k running over the
48 values in the cubic star of k, is determined by variation of
the Lbk,ak

r elements, and that, in turn, is the variation of axial
vector components �in particular, the Lbk,ak

r elements of all
three components, r=x ,y ,z, attain the same set of values in
the star�. This variation is completely decoupled from the
behavior of the interband energy gaps since Eask are invari-
ant in the star. This feature led to the assumption21,26 that the
F elements are, generally, not conserved in V scattering and
that the correction to LTA is negligible.

To support or falsify this assumption, the correction had
been estimated22 in a simple model of point-defect scatter-
ing, which conserves Lr at each scattering site, but Lr ele-
ments between the Bloch states are dispersed due to their
dependence on the direction of propagation, k. This model is
hardly appropriate for thermal �phonon� deformation, but it

is the simplest available for a qualitative discussion of “ver-
tex” corrections. In addition, it may simulate scattering ef-
fects in alloys, such as 5% Cu in Ni in the remarkable ex-
periment that had most strongly supported the role of
itinerant electron scattering in the Gilbert damping.6,24,44

The calculation is particularly simple for the truncated 3d
model, consisting only of the six bands composed of the
three t2g orbitals �considered by Brooks12 for magnetic an-
isotropy and by Obata41 for NMR relaxation by orbital Lr

fluctuations�. The calculation is presented in Appendix B in
the Green’s function formalism that parallels the present
Born approximation. This approximation led earlier22 to a
simple result for � due to same-spin �s� elements SzL

x,y

�that have the same mean squares in the star, for any pair of
band indices a�b; cf. also Eqs. �B13� and �B17��:

�E,s = �s
−1Ns

−1Zs�E��2/3��
�s
−2	 + 
�s

−1	2� , �28�

where �s from Eq. �24� depends only on s, like Zs�E� that
denotes the spin-resolved density of states; 
�s

−2	 is the mean
inverse-square band distance Eask−Ebsk measured from
Eask=EF �as would be obtained from Eq. �25� with �F�2 re-
placed by an average value�, and 
�s

−1	 is the analogously
averaged inverse distance.

The second term in Eq. �28� is the correction to LTA, in
this case definitely positive, but smaller than the LTA result
because of dispersion in �. Quantitative relevance of Eq. �28�
is very small because the t2g subspace used in the illustration
contains only 20% of Tr L j

2 on each atom. Strict proportion-
ality to 1/� results from neglecting 1/�2 in the Lorentzian
denominators �12�. However, the result may be extended to
models with all five 3d bands; we have checked that the
corrections computed numerically remain positive and
smaller than the LTA result, which supports the relevance of
the LTA for better than only qualitative estimates.

C. Numerical results

Correspondence of the intraband contributions to � �m
=n in Eq. �14��, with the result derived previously from the
model of “breathing” Fermi surface,18,19 may be shown ana-
lytically. The squared Lorentzian in Eq. �14� gives � /2w
=�� on integration over Emk� through its peak at Emk� =0; the
peak is very sharp and selects the peak value of the squared
matrix element, i.e., it has the same effect45 as ��
�Emk� �.
The intraband contribution �D is, thus, proportional to the
lifetime �, with

�D

�
=

�2�

2�at
��

nk
�Fnk,nk

† �2
�Enk� ��
k

�29�

�we recall that F and E� are assumed in frequency units�.
The high � in Ni at low values of 1 /� correspond to the

low-temperature FMR experiments pioneered by
Rodbell.3,6,8 The calculated values of �D /� are 6.5
�1021 s−2 for Ni and only 0.74�1021 s−2 for Fe �by an order
of magnitude less�, in fair agreement with the ab initio
calculations.18,19

Tracking the origin of these high values in Ni shows that
the diagonal effective-field elements Fmk,mk

+ are large, of first

FIG. 3. Schematic illustration of electron-hole pair �nk− pk��
generated by combined interband polarization F and scattering by
defect V. The lifetime approximation neglects correlation between
Vmk,pk� and Vnk,qk� elements.
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order in the SOC parameter , on two large minority-spin
sheets of the Fermi surface near their intersections with the
110� planes46 �between the �X and �L symmetry axes�,
where the sheets are accidentally almost in contact. Diagonal
elements of L and F± are restored by SOC wherever the
strength of orbital momentum quenching, measured by the
vertical splitting between the cubic band energies, is small.
No such wide areas of nearby Fermi surface sheets are ob-
served in Fe. The integral weight of the low-splitting areas
near the symmetry degeneracies on the 
100	 axes in the k
space �quoted in earlier qualitative considerations21� is rela-
tively very small both in Fe and Ni.

The interband contributions to � �dashed lines in Figs. 1
and 2� first increase in proportion to 1/�. It corresponds
qualitatively to m�n terms in the formula

�off �
�2�

�at
� �

m�n

�Fmk,nk
† �2

w

�mn,k
2 + 4w2
�Enk� ��

k

, �30�

with �mn,k=Emk� −Enk� . The form of Eq. �30� �obtainable
analogously45 to Eq. �29�� corresponds to intuitive broaden-
ing of the transition resonance in Eq. �8� rather than of the
individual levels in Eq. �10�. The initial increase of �off
�1/� occurs in the range of 2w=1/� smaller than the mini-
mum interband gaps, which arises from the SOC splitting of
cubic degeneracies and are of the order of the SOC param-
eter .

The flat parts of the � vs 1/� plots at high 1/� result
qualitatively from integration over the wide spectrum of the
vertical interband intervals �mn,k in Eq. �30�. It corresponds
to the flat part of the temperature dependence6,7 of � in Ni.

The computed values of � are 0.36�108 s−1 at the mini-
mum in Fe and 1.31�108 s−1 in the flat part in Ni, both
about one-half of the experimental values.6,7,9

The nonvanishing damping with only weak dependence
on the electron lifetime when 1/� exceeds the SOC param-
eter  was our main qualitative result.21 It indicates chances
to interpret quantitatively the relatively low damping ob-
served in many high-resistivity alloys.

V. CONCLUDING REMARKS

Alternative derivations of formulas estimating the Gilbert
damping coefficient in terms of earlier phenomenology of
magnon-electron interaction27 and from an extension of for-
mal linear-response theory21,24 may hopefully contribute to
the general consensus on the importance of the interaction of
uniform magnons with orbital moments of 3d electrons near
the Fermi level.

Numerical results based on ab initio electron energy spec-
tra confirm that it may account for a substantial part of the
Gilbert damping in iron and nickel. The calculated damping
is much higher in nickel than in iron, particularly at low
electron scattering rates, in accordance with the model of
breathing Fermi surface and with ferromagnetic resonance
data. At higher scattering rates expected at room temperature
and also in alloys, the calculated values are smaller than the
experimental values by a factor of about 2 �but much higher
than in the model of breathing Fermi surface�. Since in this

region they exhibit only very little dependence on the elec-
tron scattering rates, our ignorance about the scattering
mechanisms is less prohibitive than it would be in the theory
of resistivity.

The results of evaluation of the same formula �13� with
Eq. �12� reported in Ref. 20 were published after submission
of the present work; the values of � in the regions of high
1/� are somewhat higher than our estimates �by approxi-
mately 10% in Fe and by approximately 20% in Ni�.

The fact that the lifetime approximation �LTA� �13� ne-
glects disorder in the spin-orbit coupling may be one reason
why the calculated damping is smaller than the experimental
data. The discussion of the relevance of the LTA in Sec. IV B
and the model calculation of the vertex correction in Appen-
dix B indicate that neglecting the correction may also lead to
underestimated damping.
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APPENDIX A: LINEAR RESPONSE

Linear response to a harmonic field such that hx− ihy is
proportional to e−i�t is described by a single susceptibility
function �m��� if z is at least threefold axis of crystal sym-
metry. The drive field and the response are clockwise �CW�
or counterclockwise �CCW� polarized depending on the sign
of �. The Gilbert equation predicts

�m��� = − �Ms�� − �Heff + i���−1. �A1�

Proportionality between the magnetization and the total spin
allows us to consider only the transverse spin susceptibility
�s��� determined by formal first-order response theory34,35

as

�s��� = − i�
0

�

ei��+i0�
�S−�t�,S†�	T, �A2�

where 
 	T denotes the average over the equilibrium density
matrix and S−�t� denotes the Heisenberg time dependence,
which may be written as S−�t�=exp�−itH�S−, where

HA = �A,H� �A3�

denotes commutation with the Hamiltonian H divided by �
�i.e., H in frequency units� for any operator A.

Korenman and Prange noticed24 that the mean commuta-
tor in Eq. �A2� is a bilinear function in the Hilbert space of
operators, with all properties of an inner product, except
positive definiteness. It may be denoted as

A�B� = 
�B,A†�	T. �A4�

Symbolic integration in Eq. �A2� shows that such definition
allows us to write �s��� as a diagonal matrix element
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�s��� = S−�G�� + i0�S−� �A5�

of the resolvent of the “superoperator” H, satisfying

zG�z� = 1 + HG�z� �A6�

for complex z off the real axis. The diagonal elements of
these three terms are

z�s�z� = Ns + S−�HG�z�S−� , �A7�

with the same Ns as in Eq. �3�. The last term may be factor-
ized into a product with �s�z�, in analogy to similar tasks in
irreversible statistics.36 Defining a projector P onto S−, based
on Eq. �A4�, as

PA = Ns
−1S−�A�S−, �A8�

we may separate G�z� in Eq. �A7� into PG�z� and QG�z�,
where Q=1−P, and observe that

PG�z�S− = Ns
−1�s�z�S−. �A9�

To factorize similarly the other term, QG�z�S−, we need the
modified resolvent

GQ�z� = Q�z − HQ�−1 �A10�

describing excitations in the space of variables not propor-
tional to the collective S−. We get

QG�z�S− = Ns
−1�s�z�GQ�z�HS− �A11�

from Eq. �A6�, written as �z−HQ�G�z�=1+HPG�z� and
multiplied by GQ from the left. Substituting Eqs. �A9� and
�A11� into Eq. �A7� and observing that H is Hermitian in the
product �A4�, we get �s�z� in the required form

�s��� = Ns�z − �o − �m�� + i0��−1, �A12a�

�o = Ns
−1S−�HS−� , �A12b�

�m�z� = Ns
−1F−�GQ�z�F−� , �A12c�

F− = HS−. �A12d�

The real term �o was identified by other authors.24 The
real part of self-energy �corresponding to �Heff in Eq. �A1��
needs both Eq. �A12b� and the real part of Eq. �A12c�; both
these terms are of order 2, but their balance is of order 4 in
cubic crystals,47 as in the static theory.12

The complex �m contains the damping in the imaginary
part. Comparing Eqs. �A1� and �A12a� gives

���� = − �−1 Im �m�� + i0� . �A13�

Obtaining Eq. �9� form Eq. �A13� requires the following
additional steps: �i� replacing GQ in Eq. �A12c� by Gmf from
Eq. �A6�, with H=Hmf consisting of electron transition fre-
quencies in mean-field approximation, and �ii� adiabatic ap-
proximation for the general average of one-electron vari-
ables, 
A	T= 
Tr�f�Hmf�A�	c, where f�E� is the Fermi function
and 
 	c denotes configuration average added for the lattice
degrees of freedom. Then Hmf may be at least symbolically

diagonalized as H�	,�	=E	−E�, and Eq. �9� follows from
Eq. �A13� with Im�E+ i0�=−�
�E� in the limit of �→0.

The projection formalism allows us to use the mean-field
approximation only for the low-frequency self-energy �rather
than for the spin susceptibility, where it would be hardly
appropriate�. The mean-field approximation is used for the
low-frequency dynamics of the effective fields, and particu-
larly for the damping term determined by electron spectra
near the Fermi level. Formal separation of the effective-field
modes from the collective magnon corresponds to the intui-
tive form of the magnon-electron interaction �2�.

APPENDIX B: WEAK SCATTERING

Perturbation theory for the Lorentzian mean spectral den-
sities and consistently averaged 
DFD	c products needed in
linear response is reviewed, e.g., by Velický.48 The resolvent
G�z�= �z−H0−V�−1, where H0 is periodic and V is random,
determines both from

D�E� =
i

2�
�
t=±1

tG�Et� , �B1�


D�E�FD�E�	c =
− 1

4�2 �
t,t�=±1

tt�K�Et,Et�� , �B2�

K�z1,z2� = 
G�z1�FG�z2�	c, �B3�

with Et=E+ it�, �→0+, and F=F− for brevity. The average

Ḡ�z� = 
G�z�	c = �z − H0 − ��z��−1 �B4�

defines the complex self-energy ��z�, which distinguishes

the average propagator Ḡ from the unperturbed G0= �z
−H0�−1. The average 
D�E�	c from Eq. �B1� has the form
�12� with Re �mk�E−� added to Emk�E−� and

wmk = Im �mk�E−� . �B5�

Iteration to order V2 in the second line of the well-known
identities

G = G0 + G0VG �B6a�

=Ḡ + Ḡ�V − ��G �B6b�

gives

��z� = 
VḠ�z�V	c, �B7�

K�z1,z2� = Ḡ�z1��F + 
VK�L�V	c�Ḡ�z2� , �B8�

KL�z1,z2� = Ḡ�z1�FḠ�z2� . �B9�

Using Ḡ instead of G0 in these expansions removes the in-
consistency of sharp energy levels in the simpler approxima-
tions based on Eq. �22�.

While K�L� alone gives the lifetime approximation, the
term 
VKV	c in Eq. �B8� appears as a correction to F inter-
action �called, therefore, vertex correction�.
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Application of this general expansion is very simple in the
model used in the qualitative theories of magnetic
anisotropy12 and nuclear spin relaxation,41 with Bloch states
of the LCAO form �21� with definite spin and the AO re-
stricted to the three t2g functions. Recalling the definition of
the single-site Fj elements in Eqs. �6� and �5b�, we may write
Eq. �B9� in the AO representation as

K̂j
�L�ss� = �

i

Ḡ
ˆ

ji
s F̂i

ss�Ḡ
ˆ

ij
s�, �B10�

where hats denote matrices in the AO indices ���. As long as

F̂i is the same at all sites, so is K̂j
�L�, and the dyadic operation

�iḠ
ˆ

ji
s . . . Ḡ

ˆ
ij
s� exhibits cubic symmetry. Symmetrization may

use the inverse transform from Eq. �21� to local AO, regard-

ing that �iḠ
ˆ

ji
s . . . Ḡ

ˆ
ij
s� is applied to the transfer of axial-vector

variables41 Lr. Summation of products containing four coef-
ficients Cask

� over the cubic star of k then selects only one
appropriate invariant and gives a simple result for the six-
band t2g model:

K̂j
�L�ss� = F̂j

ss� · bss�, �B11�

bss��z1,z2� =
1

Nat
�

k,a�b

Ḡask�z1�Ḡbs�k�z2� . �B12�

Substitution to Eqs. �B9�, �B2�, and �10b� gives the LTA,

�E
�L� =

�2

6Ns
�

k,a�b,s,s�

D̄�E�askD̄�E�bs�k, �B13�

where D̄ask= 
Dask	c has the form �12�, with wask from Eq.

�B5� and the local symmetrized Tr�F̂j
+ss�F̂j

s�s+ F̂j
+s�sF̂j

ss��
equal to 22 in the t2g model. Equation �B13� also follows
from Eq. �13�, with the interband �Fask,bs�k

+ �2 replaced by the
cubic average 2 /6 in the t2g model.

Disorder may simply be modeled by point defects at ran-
dom sites i,

V = �
i,�

�i��i	
�i� , �B14�

with no effect on the AO shapes, and random changes of k of
the band states taken into account by single-site averages in

 	c. Then the self-energy �at E=EF� in the t2g model depends
only on the spin, with

ws = �2�s�−1 = ��/3��2Zs�E� , �B15�

where Zs�E� is the spin-resolved density of states �per atom�
and v2= 
vi

2	c.
The result for the vertex correction in Eq. �B8� written in

local representation is also simple: the mean local 
VK̂j
�L�V	c

equals v2K̂j
�L� and the second term in Eq. �B8� is

K̂j
�V�ss� = F̂j

ss� · �2bss�
2 . �B16�

Substitution to Eqs. �B8�, �B2�, and �10b� gives additional
terms to �E, i.e., the correction to the LTA,

�E
�V� =

�2

Ns/at
2�2 Tr�PP†� , �B17�

where Ns/at=Ns /Nat, and P is a 2�2 matrix in s,

Pss� =
1

6Nat
�

k,a�b

D̄ask Re Ḡbs�k. �B18�

Equation �28� is obtained if D̄ in Eq. �B13�, and Eq. �B18�
is approximated as in Eq. �26� and Re Ḡask as �E−Eask�−1.
The products Pss�Ps�s are obviously positive for s=s�, indi-
cating that the vertex correction in this model would enhance
the LTA value of the damping parameter. Numerical results
obtained with this scattering model and including all 3d
bands �and scalar bss� replaced by 3�3 matrices� confirmed
this conclusion.
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