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The static mass density of a composite is simply the volume average of its constituents’ densities. The
dynamic density of a composite is defined to be the quantity that enters in evaluating the elastic wave velocity
at the low-frequency limit. We show through a rigorous derivation that the effective dynamic mass density of
an inhomogeneous mixture can differ from its static counterpart when the composite matrix is a fluid or, more
generally, when there are relative motions between the matrix and inclusions. Derivation of the dynamic mass
density expressions, involving taking the long wavelength limit of the rigorous multiple scattering theory, is
detailed for the two-dimensional case. We also extend the effective dynamic mass density expression to finite
frequencies where there can be low-frequency resonances. By combining both analytical and numerical ap-
proaches, negative or complex dynamic mass density is obtained for composites that contain a sufficient
fraction of locally resonant inclusions. Thus, the dynamic mass density of a composite can differ from the static
�volume-averaged� value even in the zero frequency limit, although both must be positive in that limit.
Negative or complex dynamic mass density can occur at finite frequencies. These two results are shown to be
consistent with each other, as well as related by the same underlying physics. As by-products of our rigorous
derivation, we also verify some prior known results on the effective elastic moduli of composites.
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I. INTRODUCTION

Recent excitement on metamaterials has cast attention on
the seemingly mundane subject of composite mass density.
This is because for the electromagnetic metamaterials, a
negative index of refraction is realized when both the dielec-
tric constant � and magnetic permeability � are negative. If
there are corresponding acoustic metamaterials, then both the
elastic modulus and mass density should be negative. How-
ever, can the mass density be negative? The static mass den-
sity �ef f of a composite can never be negative since it must
be equal to the volume average of its constituents’ densities.
However, for metamaterials, the relevant density Def f is that
used in calculating the acoustic wave velocity V
=�Bef f /Def f, where Bef f denotes the effective bulk modulus.
The relevant question is: Does �ef f =Def f always? The con-
ventional wisdom says “yes,” at least in the low-frequency
limit. However, what we would like to show in this work is
that the answer is actually “no”; i.e., the static and dynamic
mass densities can differ in certain cases even in the low-
frequency limit. Moreover, by extending the dynamic mass
density expression to finite frequencies, we show that it can
actually be negative or complex as well. Hence, acoustic
metamaterials are potentially realizable.

Below, we recapitulate the prior and contemporary works
on this topic in Sec. II, followed in Sec. III by a statement of
main results. In Sec. IV, we present the rigorous derivation of
the effective dynamic mass density expression in two-
dimensional �2D� composites by taking the long wavelength
limit of the multiple scattering theory �MST�. It will be
shown that depending on whether the composite matrix is
fluid or solid, the resulting effective dynamic density expres-
sion can be different. The derived mass density expression is
used to explain some recent experimental data in Sec. V,
from which a physical understanding of the different mass
density expression emerges. In Sec. VI, we extend the effec-

tive dynamic mass density expression to finite frequencies
and show that when there exist low-frequency local reso-
nances, the effective dynamic density can be complex in gen-
eral and negative in some particular frequency regimes. This
holds true for composites with either solid or fluid matrix. In
Sec. VII, we conclude by addressing the relevance of our
results to acoustic metamaterials. In order not to interrupt the
main line of exposition, the more tedious algebraic deriva-
tion steps are given in the appendixes.

II. RECAPITULATION

More than 30 years ago, in the study of seismic wave
propagation in two-phase media, Kuster and Toksöz1 found a
surprising result that the effective dynamic mass density D of
a three-dimensional composite is not the same as the intui-
tive volume-averaged mass density �VAMD�, �, provided the
composite matrix is fluid. Ten years later, in studying the
wave properties of composites in the long wavelength limit,
Berryman2 also derived the effective dynamic mass density
expression by using both the average T matrix approximation
and the coherent potential approximation �CPA�. He obtained
the same result—that the dynamic mass density is not equal
to the static mass density for the fluid-matrix composites,
while for composites with the solid matrix, the two are the
same. However, these results were greeted mostly with curi-
osity, in part because of the strong feeling within the com-
munity that the volume-averaged density is unique, at least
in the long wavelength limit, and in part also because there
has been no experimental support for the validity of the al-
ternative mass density expression. The fact that the deriva-
tion was nonrigorous also contributed to the lack of confi-
dence in deviating from the VAMD.

Recently, the proposal and realization of locally resonant
sonic materials �LRSMs�,3,4 consisting of hard spheres
coated with soft cladding and dispersed in a stiff host me-
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dium, have shown experimentally that the LRSM can display
a negative effective response in certain frequency regimes, at
frequencies where the relevant wavelengths in the matrix are
2 orders of magnitude larger than the feature sizes. Such
negative responses can be attributed to either negative effec-
tive modulus or negative effective mass density. Subse-
quently, in Ref. 5, an analytic model was constructed to show
that around the locally resonant frequencies, the effective
mass density of the LRSM is negative, thus providing the
first support to the fact that effective dynamic mass density
can be not only different from, but also opposite in sign from
the static mass density. However, that still leaves open the
question: Are the conclusions of Kuster and Toksöz and Ber-
ryman correct in the limit of zero frequency?

In a recent paper,6 we resolved that question by using the
rigorous MST to derive the Berryman mass density expres-
sion, and explained the experimental data by Cervera et al.7

on that basis. Thus, we have established unambiguously that
the effective dynamic mass density can be different from the
static one at the long wavelength �or zero frequency� limit.
Moreover, the extension to finite frequencies can directly
lead to the results, as previously evidenced by LRSM. Con-
temporary with our work, Milton and Willis8 reported their
finding that the effective mass density of a composite at any
given frequency is, in general, a second-order tensor if the
composite is inhomogeneous on a length scale smaller than
the scale of practical observation. In addition, Ávila et al.9

studied an elastic matrix containing very compliant inclu-
sions and also found that the effective mass density can be
frequency dependent and anisotropic.

Related to the effective dynamic mass density is the ef-
fective bulk modulus. The recent work of Fang et al. has
shown that by using Helmholtz resonators �HRs�, the effec-
tive bulk modulus can indeed turn negative in certain
frequencies.10 Thus, by combining the LRSM with the HR, it
is possible that the acoustic metamaterials can be realized,
with all the attendant novel characteristics.

III. STATEMENT OF MAIN RESULTS

The main purpose of this work is to provide a coherent
and unified account of the dynamic mass density issue. In
particular, we present �1� the justification and detailed rigor-
ous derivation of the dynamic mass density expressions, put-
ting on a firm basis some of the previously known results; �2�
a comparison with experiment and the accompanying physi-
cal understanding of the dynamic mass density that emerges;
and �3� the extension of the dynamic mass density expression
to the finite frequency regime where there can be low-
frequency local resonances, so as to establish the link to
locally resonant sonic materials.

The dynamic mass density of composites at the zero fre-
quency limit depends crucially on whether the matrix is fluid
or solid. For the fluid matrix, the dynamic mass density is the
Berryman mass density, i.e.,

Def f =
�D2 + D1� + �D2 − D1�f

�D2 + D1� − �D2 − D1�f
D1,

while for the solid matrix, the dynamic mass density is the
same as the static VAMD, i.e., Def f =�ef f = �1− f�D1+ fD2.

As by-products of our derivation, we also verify some
prior known results on the effective Lamé constants of com-
posites. For the fluid-matrix composites, the effective bulk
modulus is the harmonic average of its constituents’ bulk
moduli, i.e.,

1

Bef f
=

1 − f

B1
+

f

B2
.

For the solid-matrix composites, the effective elastic moduli
are given by

�ef f − �1

�ef f + �1
= f

�2 − �1

�2 + �1

and

��ef f + �ef f� − ��1 + �1�
�ef f + �ef f + �1

= f
��2 + �2� − ��1 + �1�

�2 + �2 + �1
.

At finite frequencies, the dynamic mass density is closely
related to the scattering coefficient of the embedded inclu-
sions. For the fluid-matrix composites, the dynamic mass
density is given by

Def f − D1

Def f + D1
=

4f

i���1r�2S1�1� ,

where S1�1�=T11 is the n=1 angular channel Mie scattering
coefficient for the inclusion in the longitudinal mode, with �1
being the longitudinal wave number in the fluid matrix, and f
and r being the filling ratio and radius of the �cylindrical�
inclusions, respectively. Here, S1�1�=T11 is defined by Eqs.
�11� and �36�. For the solid-matrix composites, the dynamic
mass density is determined by

Def f

D1
− 1 =

4f

i���1r�2

b03�1�
a03�1�

,

where b03�1� /a03�1�=T03,03 is the n=0 angular channel Mie
scattering coefficient for the inclusion in the transverse
mode, with �1 being the transverse wave number in the solid
matrix. Here, b03�1� /a03�1�=T03,03 is defined by Eqs. �49�
and �50�.

Similarly, the effective bulk modulus of the fluid-matrix
composites at finite frequencies is given by

− 1 +
B1

Bef f
=

4f

i���1r�2S0�1� ,

where S0�1�=T00 is the n=0 angular channel Mie scattering
coefficient for the inclusion in the longitudinal mode, defined
by Eqs. �11� and �36�.

For the solid-matrix composites, the effective Lamé con-
stants are determined by

�ef f − �1

�ef f + �1
=

4if

���1r�2

b13�1�
a13�1�

and
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��ef f+�ef f� − ��1 + �1�
�ef f + �ef f + �1

=
4if

���1r�2

b01�1�
a01�1�

,

where b13�1� /a13�1�=T13,13 is the n=1 angular channel Mie
scattering coefficient for the inclusion in the transverse mode
and b01�1� /a01�1� is the n=0 angular channel Mie scattering
coefficient for the inclusion in the longitudinal mode. Here,
b13�1� /a13�1�=T13,13 and b01�1� /a01�1� are defined by Eqs.
�49� and �50�.

By taking the zero frequency limits of the finite frequency
expressions, we have obtained consistency with the respec-
tive independently derived, long wavelength limit expres-
sions for the dynamic mass density and elastic moduli.

By using the multiple scattering theory to numerically
evaluate the scattering cross sections at finite frequencies, we
obtained the effective dynamic mass densities for the LRSM
composites. It is shown in Figs. 7 and 9 that in the vicinities
of the local resonances, the dynamic mass density can be
complex in general and negative in particular frequency re-
gions. The finite frequency elastic moduli of LRSM can be
similarly evaluated.

IV. EFFECTIVE DYNAMIC MASS DENSITY IN THE
LONG WAVELENGTH LIMIT

In this section, we use the rigorous MST to derive the
effective dynamic mass density expression. MST can be ex-
act because it considers periodic structures. Its application to
random composites is made possible by the fact that in the
limit of zero frequency �or the long wavelength limit�, the
dispersion relation �the 	-k relation� must be linear with a
slope �indicative of the effective wave speed� that depends
only on the relative volume fraction �or area fraction for 2D
composites� of the composite constituents. In other words,
provided the lattice structure or arrangement of the scatterers
preserves the isotropy requirement �for the anisotropic case,
see below�, structural considerations enter only as higher-
order terms in our low-frequency expansions; hence, the ef-
fective wave speed obtained is independent of whether the
composite is periodic or random, at least to the leading order.
However, such an approach, of course, has its limitations in
that the random composite should not have long-range cor-
related microstructures, e.g., percolating clusters, that are ab-
sent in the original periodic system. This point is emphasized
below.

In order to be self-contained, we briefly justify �1� the
linear dispersion relation in the long wavelength limit and �2�
that the slope should be the same for either the periodic or
random composites. Details can be found in Ref. 11.

Consider the scalar wave equation for an isotropic, inho-
mogeneous composite,

�2
 +
	2

c2�x��

 = 0, �1�

in which 	 denotes angular frequency and c=�B /� is the
local wave speed, where B is the bulk modulus and � the

static mass density of the constituent at position x�. Equation
�1� can be rearranged into a form

�2
 +
	2

c0
2 
 =

	2

c0
2 �1 −

c0
2

c2�x��
�
 , �2�

where the right-hand side denotes the scattering source, and
c0 is the wave speed of the matrix material, or the value
suitably determined by, e.g., the CPA �or its extension to the
intermediate frequency regime�.11 It is important to note that
for the classical waves, the scattering source strength is pro-
portional to 	2, as indicated by the right-hand side of Eq. �2�.
In particular, it implies that scattering vanishes as 	→0, as
evidenced by the frequency dependence of the Rayleigh scat-
tering cross section. From Eq. �2�, one can obtain for a ran-
dom composite the configurationally averaged Green’s func-
tion in the wave vector representation,

�G�c =
1

�	2/c0
2� − k2 − ��	,k�

, �3�

where k is the magnitude of the wave vector, � �c denotes
configurational averaging over random configurations with
the same statistics, G is the Green’s function, and � denotes
the self-energy that arises from multiple scattering �owing
to the nonzero right-hand side of Eq. �2�	. Equation �3� is
formally rigorous; no approximation is involved. Due to the
fact that the scattering source strength is proportional to 	2,
it can be shown explicitly that in the limit of 	→0,
the leading-order term for � is proportional to 	2. That is,
�
�0	2+ . . . . In addition, if �0 exists �as implied by the
existence of the CPA solution�, then in the long wavelength
limit it must be independent of k. This is because, physically,
the wave vector dependence arises from spatial correlations
�i.e., spatial derivatives�, and in the long wavelength limit the
scattering becomes point-particle-like �and multiple scatter-
ings are inherently higher order�; hence, to the leading order,
it contains no information on correlations and is therefore
independent of k. As a consequence, in the long wavelength
limit, Eq. �3� becomes

�G�c 

1

�	2/Vef f
2 � − k2 , �4a�

with

Vef f
2 =

c0
2

1 − �0c0
2 . �4b�

Since the zero of the Green’s function denominator directly
yields the dispersion relation, Eqs. �4a� and �4b� tell us that,
indeed, at the �low-frequency� long wavelength limit, the
dispersion relation is always linear. The slope of that linear
relation is independent of whether the system is periodic or
random, although it does depend on the relative volume frac-
tion �or area fraction for 2D composites� of the constituents.

It follows from the above discussions that we can take the
rigorous MST, formulated for periodic composites, and take
its long wavelength limit to obtain the effective wave speed
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for either the periodic or random composites. In fact, for
acoustic waves we have explicitly verified the wave speed to
be independent of whether the lattice is hexagonal or square
symmetry, at least to the leading order, as long as the area
fraction of the inclusions is the same and the isotropy as-
sumption is maintained. While the above considerations are
for the scalar wave equation, its conclusions are generally
valid for classical waves in general.

However, three caveats must be noted in the application
of the above argument. First, if the system is anisotropic,
which might arise from either the anisotropic arrangement
�lattice for the periodic case� of isotropic scatterers or the
anisotropy of the scatterers �e.g., ellipsoid instead of
spheres�, then �G�c can display anisotropy as well since the
configurational averaging is only over the random placement
of the structural units, hence preserving the anisotropic char-
acteristics even after averaging. In that case, there can be
different self-energy values along the different directions,
giving rise to anisotropy in speeds. Second, in a random
system it is often the case that if the scatterers are placed
randomly, then there is necessarily a percolation threshold,
i.e., a concentration at which the scatterers can form an infi-
nitely connected network. What we describe here does not
apply to systems where the scatterers can form percolation
clusters. Instead, we require the scatterers to be separated by
the matrix medium, no matter how high the concentration of
scatterers. That is, we require the dispersion microstructure
to be preserved, whether in periodic lattice or in random
composites. Third, when the concentration of scatterers is
very high �almost close packing�, it is expected that higher-
order terms in T−1 and G matrices would start to contribute a
non-negligible part to the effective wave speed. It is physi-
cally reasonable that more angular channels are needed to
accurately describe the situation when the scatterers almost
touch each other. For such high concentrations, the effective
sound speeds could be different between the square lattice
and the hexagonal lattice; i.e., they become structure sensi-
tive, although the effective sound speed itself is still isotropic
for either lattice.

A. Multiple scattering theory

We begin with a short description of the rigorous MST for
two-dimensional phononic crystals.12 For a time-harmonic
wave, the elastic wave equation may be written as

� · ���u� + ��u��T	 + ��� � · u�� + D	2u� = 0, �5�

where D is the mass density, � and � are the �spatially vary-
ing� Lamé constants, u� is the displacement vector, and ��u��T

denotes the transpose of the tensorial quantity �u� . MST rep-
resents a solution of the elastic wave equation �Eq. �5�	 for a
periodic composite that accounts fully for all the multiple
scattering effects between any two scatterers, as shown sche-
matically in Fig. 1, plus the inherent vector character of elas-
tic waves. Thus, it is an exact theory without any approxi-
mation.

Before going directly to the details of the MST, it is
meaningful to inspect the boundary conditions which will be

used in our approach. For solid �cylinder� scatterers embed-
ded in an inviscid fluid matrix, the elastic boundary condi-
tion requires that the tangential shear stress be zero at the
interface between the scatterer and the fluid matrix. How-
ever, it is well known that for real fluid with a finite viscosity
�, there is a thin fluid layer next to the interface where the
viscosity effect dominates over the inertial effect. Waves will
be exponentially attenuated in a fluid channel with width l if
l is smaller than this viscous layer thickness. This is the
viscous regime in ac permeability, where the Darcy law
holds. However, if l�� /�	, where � denotes the fluid den-
sity, then the inertial effect dominates and waves can propa-
gate in the fluid channel as though the fluid is inviscid. This
latter regime is assumed in our approach, which can be in-
sured by letting viscosity �→0. Thus, in application to ac-
tual physical systems, we must check the condition � /�	l2

�1 to be valid, where l is the minimum fluid channel width
in the system. In Sec. V we show this condition to be indeed
well satisfied in a recent experiment to which we compare
our findings.

For our more specific case of 2D phononic crystals with a
fluid matrix, MST has a rather simple form. In polar coordi-
nates, the incident wave on scatterer i may be expressed
generally as

u� i
in��� i� = �

n

an
i J�n

i ��� i� �6�

and the wave scattered by scatterer i may be expressed as

u� i
sc��� i� = �

n

bn
i H� n

i ��� i� , �7�

where the vector functions J�n���� and H� n���� are defined as

J�n���� = ��Jn��1��ein�	 ,

H� n���� = ��Hn��1��ein�	 , �8�

with �1=	�D1 /�1 being the wave number in the fluid ma-
trix, D1 and �1 denoting the mass density and Lamé constant

FIG. 1. Schematic diagram of the multiple scattering theory
�MST�.
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of the matrix, �� = �� ,�� being the polar coordinates, and Jn�x�
and Hn�x� on the right side of Eq. �8� denoting the nth Bessel
function and Hankel function of the first kind, respectively.
Since the incident wave on scatterer i comes from scattered
waves by all the scatterers except i �for the purpose of cal-
culating the dispersion relation, we do not need an externally
incident wave�, we have

u� i
in��� i� = �

j�i
�
n�

bn�
j H� n�

j ��� j� , �9�

where �� i and �� j refer to the position of the same spatial point

measured from scatterers i and j, respectively. With R� i�j� de-
noting the position of scatterer i�j�, we have proven that �see
Ref. 12 for details�

H� n�
j ��� j� = H� n�

j ��� i − �R� j − R� i�	 = �
n

Gn�n
ij J�n

i ��� i� , �10�

where the structure constant Gn�n
ij =Gn�n�R� j −R� i�

=Hn−n���1�R� j −R� i��e−i�n−n��
 denotes the translation coeffi-

cients, with 
=arg�R� j −R� i�. There is a relation between the
expansion coefficients an

j � and bn
j �,

bn = �
n�

Tnn�an�, �11�

in which T= Tnn�� is the elastic Mie scattering matrix12 for a
single scatterer. After substituting Eqs. �6�, �10�, and �11�
into Eq. �9�, we arrive at

�
jn�

��ij�nn� − �
n�

Gnn�
ij Tn�n�

j �an�
j = 0. �12�

For a periodical system, Eq. �12� may be Fourier transformed
to

�
n�
��nn� − �

n�

Gnn��k
��Tn�n��an� = 0, �13�

where Gnn��k
��=�R��0Gnn��−R� �exp�ik� ·R� �. The normal modes

of the periodic system may be obtained by solving the fol-
lowing secular equation:

det�Tnn�
−1 − Gnn��k

��� = 0. �14�

For the more general case of solid-matrix phononic crystals,
the corresponding MST expressions can be found in Ref. 12.

B. Fluid-matrix composites

By taking the low-frequency limit and retaining terms to
the order of 	−2, both the T−1 matrix and the G matrix can be
simplified to a 3�3 matrix as follows �see Appendixes A
and B for details�:

T−1 = − I +
4i

�r2

1

�1
2�

D1 + D2

D1 − D2
0 0

0
�2 + �2

�2 + �2 − �1
0

0 0
D1 + D2

D1 − D2

�
�15�

and

G = − I +
4i

A

1

1 − x2

1

�1
2� − x2 xe−i�0 e−2i�0

− xei�0 − x2 xe−i�0

e2i�0 − xei�0 − x2 � . �16�

In Eq. �15�, r is the radius of the cylindrical inclusions, and

�T−1�00 = − 1 +
4i

�r2

1

�1
2

�2 + �2

�2 + �2 − �1

is the low-frequency limit of the n=0 angular channel scat-
tering coefficient, while

�T−1�11 = − 1 +
4i

�r2

1

�1
2

D1 + D2

D1 − D2

is the low-frequency limit of the n=1 angular channel scat-
tering coefficients. As evident in the expression of the T−1

matrix, the mass densities �D1 and D2� and the Lamé con-
stants ��1, �2, and �2� represent separate, yet at the same
time parallel, wave scattering channels. In Eq. �16�, A de-
notes the area of the unit cell and x=Vef f /V1 is the ratio of
the effective sound velocity to the fluid-matrix sound veloc-
ity. It is the unknown to be evaluated.

By substituting Eqs. �15� and �16� into Eq. �14�, the secu-
lar equation in the low-frequency limit is given by

det�
D1 + D2

D1 − D2
+

x2f

1 − x2

ixf

1 − x2 −
f

1 − x2

−
ixf

1 − x2

B2

B2 − B1
+

x2f

1 − x2

ixf

1 − x2

−
f

1 − x2 −
ixf

1 − x2

D1 + D2

D1 − D2
+

x2f

1 − x2

� = 0, �17�
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in which B1=�1 and B2=�2+�2 are the bulk moduli for the
liquid matrix and the solid inclusions, respectively, while f
=�r2 /A is the filling ratio of the solid inclusions. If we de-
fine dimensionless quantities M0 and M1 as

M0 =
B2

B2 − B1
,

M1 =
D1 + D2

D1 − D2
, �18�

then the secular equation det�T−1−G�=0 is equivalent to the
following equation:

�f − M0��f − M1�x4 + �fM1 − f2 − 2M0M1�x2 + M0�f + M1�

= 0. �19�

If we further define the coefficients of x2 by the symbols

E1 = �f − M0��f − M1� ,

E2 = fM1 − f2 − 2M0M1,

E3 = M0�f + M1� , �20�

it is easy to get the roots of Eq. �19�,

x2 =
− E2 ± �E2

2 − 4E1E3

2E1

=
− �fM1 − f2 − 2M0M1� ± �f2 − fM1 − 2fM0�

2�f − M0��f − M1�
. �21�

By retaining the “�” sign in Eq. �21�, we get x2=1, which is
obviously a trivial root and should be discarded. However, if
the “�” sign is adopted, we obtain the physically meaningful
root as

x2 =
M0�f + M1�

�f − M0��f − M1�

=
�D2 + D1� − �D2 − D1�f

�D2 + D1� + �D2 − D1�f

B2

B2 + �B1 − B2�f
. �22�

By applying the definition of x and recognizing the sound
velocity in the fluid matrix as

V1 =�B1

D1
, �23�

we arrive at the effective sound velocity of the composite,

Vef f =�Bef f

Def f
=� B2

B2 + �B1 − B2�f
B1

�D2 + D1� + �D2 − D1�f

�D2 + D1� − �D2 − D1�f
D1

. �24�

It is well known that according to the effective medium
theory �EMT�,11 the effective bulk modulus Bef f of the fluid-
solid composite is given by

1

Bef f
=

1 − f

B1
+

f

B2
�25a�

or

Bef f =
B2

B2 + �B1 − B2�f
B1. �25b�

It can be seen from Eqs. �17�, �25a�, and �25b� that the ef-
fective bulk modulus Bef f is completely determined by the
n=0 angular scattering channel.

By using Eq. �24� and the effective medium expressions
for Bef f �i.e., Eqs. �25a� and �25b�	, we arrive precisely at the
Berryman effective mass density in two dimensions,

Def f − D1

Def f + D1
= f

D2 − D1

D2 + D1
�26a�

or

Def f =
�D2 + D1� + �D2 − D1�f

�D2 + D1� − �D2 − D1�f
D1. �26b�

At this point it is interesting to note that the effective mass
density Def f is completely determined by the n=1 angular
channel. As pointed out previously, the effective mass den-
sity and the effective bulk modulus represent separate but
parallel wave scattering channels.

Equation �24� is noted to be valid for both the square and
the hexagonal lattices to 	−2. That is, the effective wave
speed is indeed independent of the microstructure to the
leading order, as mentioned previously. Hence, the effective
mass density expression is generally valid for isotropic com-
posites. Our derivation also verifies at the same time the
effective bulk modulus formulas �Eqs. �25a� and �25b�	,
which are valid in general for isotropic composites consist-
ing of solid inclusions in fluid.11

However, when the concentration of scatterers is very
high �near close packing�, it is expected that higher-order
terms in T−1 and G matrices would no longer be negligible. It
is physically understandable that the dipole approximation is
not accurate enough to describe the situation where the scat-
terers almost touch each other. For such high concentrations,
the effective sound speeds can be different for the square and
the hexagonal lattices, although isotropy still holds.

C. Solid-matrix composites

If the matrix is made of solid instead of liquid, we can
also take its low-frequency limit in a similar way. However,
a different effective medium formula may be expected since
in the solid matrix not only longitudinal waves but also
transverse waves can propagate. It is well known that in
two-dimensional phononic crystals, when the wave vector is
confined in the 2D plane �i.e., the x-y plane� perpendicular to
the cylinder axis direction �i.e., the z direction�, the elastic
waves can be decoupled into an out-of-plane transverse z
mode and an in-plane mixed xy mode.12

As shown schematically in Fig. 2, for the transverse z
mode the displacement is always perpendicular to the x-y
plane, and thus easier to deal with. By taking the low-
frequency limit on the rigorous MST12 and retaining the
dominant terms, the T−1−G matrix can also be simplified to
a 3�3 matrix �see Appendix C for details�,

MEI et al. PHYSICAL REVIEW B 76, 134205 �2007�

134205-6



T−1 − G =
4i

�r2

1

�1
2�

�2 + �1

�2 − �1
+ f

x2

1 − x2

ixf

1 − x2e−i�0 −
f

1 − x2e−2i�0

−
ixf

1 − x2ei�0
D1

D1 − D2
+ f

x2

1 − x2

ixf

1 − x2e−i�0

−
f

1 − x2e2i�0 −
ixf

1 − x2ei�0
�2 + �1

�2 − �1
+ f

x2

1 − x2

� , �27�

in which x=Vef f /V1 is the quantity to be evaluated. By de-
fining the dimensionless quantities M0� and M1� as

M0� =
D1

D1 − D2
,

M1� =
�2 + �1

�2 − �1
, �28�

the secular equation det�T−1−G�=0 can be written as

�f − M0���f − M1��x
4 + �fM1� − f2 − 2M0�M1��x

2 + M0��f + M1��

= 0. �29�

By solving Eq. �29�, we obtain the root

x2 =
M0��f + M1��

�f − M0���f − M1��
=

D1

�1 − f�D1 + fD2

�
��2 + �1� + ��2 − �1�f

��2 + �1� − ��2 − �1�f
. �30�

Since the definition of the transverse wave velocity in the
solid matrix is given by

V1 =��1

D1
, �31�

we arrive at the effective transverse wave velocity of the
composite as

Vef f =��ef f

Def f
=���2 + �1� + ��2 − �1�f

��2 + �1� − ��2 − �1�f
�1

��1 − f�D1 + fD2	D1
. �32�

It can be recognized from Eq. �32� that the effective shear
modulus �ef f, completely determined by the n=1 angular
channel �see Eqs. �27� and below	, is given by

�ef f − �1

�ef f + �1
= f

�2 − �1

�2 + �1
�33a�

or

�ef f =
��2 + �1� + ��2 − �1�f

��2 + �1� − ��2 − �1�f
�1. �33b�

Equations �33a� and �33b� are identical to that derived by
Kuster and Toksöz1 by using the averaged T matrix approxi-
mation. It is interesting to point out that Eqs. �33a� and �33b�
have nearly the same form as Eqs. �26a� and �26b�, and this
similarity is due to the fact that both �ef f in Eqs. �33a� and
�33b� and Def f in Eqs. �26a� and �26b� arise from the n=1
angular channel scattering.

According to Eq. �32� and the effective shear modulus
expression for �ef f, i.e., Eqs. �33a� and �33b�, we arrive at
the VAMD for the transverse z mode,

Def f = �1 − f�D1 + fD2. �34�

Distinct from the fluid-matrix case, here the effective mass
density for the solid-matrix composite is determined by the
n=0 angular channel.

It should be noted that the volume-averaged mass density
was found to be the quantity in predicting the low-frequency
wave velocity for the solid-matrix case by Berryman.2 Here,
we use the rigorous MST to verify this result.

If we let �1→0, then according to Eqs. �33a� and �33b�
we have �ef f →0. That is, when the solid matrix is gradually
reduced to the limit of zero shear modulus, then the whole
composite would also act like a zero shear modulus system;
i.e., the composite would behave like a fluid. However, it is
important to note that even in this limit the VAMD formula,
i.e., Eq. �34�, still holds. That is, the order of taking the two
limits cannot be interchanged. By first taking the low-
frequency 	→0 limit and then the �1→0 limit, we arrive at
the VAMD expression. However, reversing the order of tak-
ing the two limits leads to the expressions given by Eqs.
�26a� and �26b�. The physical reason for this noninterchange-
ability will become clear in the following section.

u

k

y

x

z

FIG. 2. The transverse z mode �i.e., the displacement vector is
perpendicular to the x-y plane� of the elastic waves propagating in a
two-dimensional phononic crystal.
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V. COMPARISON WITH EXPERIMENTAL DATA

Cervera et al. have recently measured the sound velocity
in a two-dimensional phononic crystal composed of a hex-
agonal array of aluminum cylinders in air.7 Here, the fre-
quency of sound is 600 Hz and the Al cylinders have a maxi-
mum diameter of 3.175 cm, with a hexagonal lattice constant
of 6.35 cm. The wavelength of sound in air, 57 cm, is thus
much larger than either the cylinder diameter or the lattice
constant. The wavelengths of sound in Al, 10.68 m for the
longitudinal wave and 5.19 m for the transverse wave, are
even larger. The use of the effective medium prediction is
thus justified. The viscosity and mass density of air at normal
temperature are 1.827�10−5 Pa s and 1.292 kg/m3, respec-
tively. The minimum cylinder-cylinder �surface to surface�
separation is 2.35 cm. At the experimental frequency of
�600 Hz, we have � /�	l2�1. Thus, the boundary condi-
tion of the zero tangential shear stress is justified. In Fig. 3, it
is seen that there is a very large discrepancy between the
experimentally measured velocity with that predicted by us-
ing the VAMD and the effective bulk modulus Bef f given by
Eqs. �25a� and �25b�. In contrast, when the dynamic effective
mass density given by Eqs. �26a� and �26b� is used, an ex-
cellent agreement is seen. The difference between the two
predictions lies in the fact that the VAMD is an upper bound
to the dynamic mass density �Eqs. �26a� and �26b�	. This can
be easily seen by subtracting the two expressions,

�ef f − Def f = ��1 − f�D1 + fD2	 −
�D2 + D1� + �D2 − D1�f

�D2 + D1� − �D2 − D1�f

=
f�1 − f��D1 − D2�2

D1�1 + f� + D2�1 − f�
� 0.

As the static version of the effective mass density must be
the VAMD �verifiable through a simple weighing of the com-
posite and its constituents and by measuring the volumes�,
the reason for the different �long wavelength� dynamic ver-

sion can be found in the fact that for wave properties, VAMD
contains the implicit assumption of wave field homogeneity
in the long wavelength limit. This assumption can be vio-
lated �even in the long wavelength limit� when there is a very
large impedance mismatch between the two components,
such as in the experiment of Cervera et al. In Fig. 4�a�, we
show the numerically calculated wave field intensities �using
MST�, in color, for the relevant experiment. It is noted that
the wave field is nearly zero inside the cylinders, which is
plausible. Hence, it is almost impossible to have the condi-
tion for the validity of VAMD, and the observed decrease in
wave velocity with increasing solid cylinder concentration
can be ascribed to the increased wave paths’ tortuosity. How-
ever, when the impedance mismatch is relatively moderate,
e.g., when the mass density contrast is small, then the effec-
tive dynamic mass density yields the VAMD. That is, VAMD

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

V
ef

f
/V

1

Filling ratio f

FIG. 3. The effective sound velocities calculated with the effec-
tive bulk modulus given by Eqs. �25a� and �25b� with VAMD �solid
squares�, and with the mass density given by Eqs. �26a� and �26b�
�solid triangle�. The experimentally measured effective sound ve-
locity is shown as open triangles. While the VAMD gives results
very far removed from the experiment, the mass density given by
Eqs. �26a� and �26b� is shown to yield an almost perfect agreement
with measured results.

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

(a)

x / a

y
/a

0
0.8000
1.600
2.400
3.200
4.000
4.800
5.600
6.400
7.200
8.000
8.800
9.600
10.40
11.20
12.00
12.80
13.60
14.40
15.20
16.00
16.80
17.60
18.40
19.20
20.00
20.80
21.60
22.40
23.20
24.00

-1.0 -0.5 0.0 0.5 1.0

-0.5

0.0

0.5

(b)

x / a

y
/a

0
0.8000
1.600
2.400
3.200
4.000
4.800
5.600
6.400
7.200
8.000
8.800
9.600
10.40
11.20
12.00
12.80
13.60
14.40
15.20
16.00
16.80
17.60
18.40
19.20
20.00
20.80
21.60
22.40
23.20
24.00

FIG. 4. �Color online� �a� MST-calculated displacement field
intensities in a 2D hexagonal lattice of Al cylinders in air, with the
relevant experimental parameter values as those in Ref. 7. Blue
�dark gray� indicates low field intensity, and yellow �light gray�
indicates high field intensity. The wave vector is along the y direc-
tion, with a being the lattice constant. It is seen that the wave
amplitude is nearly zero inside the Al cylinders. Decreasing the
frequency further does not alter this fact. �b� The same for PMMA
cylinders in water. The wave field is seen to be much more homo-
geneous than that in �a�.
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can be a special case of the dynamic mass density. For com-
parison with Fig. 4�a�, we have also plotted the displacement
field intensities for the polymethyl methacrylate �PMMA�-
water system in Fig. 4�b�, in which the wave field homoge-
neity is very evident. As our derivation is obtained by taking
the long wavelength limit of the scattering wave field solu-
tions, it is not surprising that such formula inherently ac-
counts for the wave field inhomogeneities as they exist in
reality. We may conclude that relative motion between the
components of a composite is the basic reason leading to the
difference between the VAMD and the effective dynamic
mass density.

It follows that in a solid-matrix composite, the presence of
a finite shear modulus for the matrix component means that
in the long wavelength limit, the uniform motion of the ma-
trix and the inclusions is guaranteed. As a result, the dynamic
mass density for the solid-matrix composites is always the
VAMD. When one further takes the limit of �1→0 in that
case, only the relative ratio of the longitudinal wavelength to
the transverse �shear� wavelength is altered, which is the
reason that the effective mass density expression still re-
mains the same as VAMD.

VI. EFFECTIVE MASS DENSITY AT FINITE
FREQUENCIES

The underlying physical reason for the existence of two
mass densities, i.e., the relative motion between the constitu-
ents of a composite, implies that if there are local resonances
�e.g., arising from the microstructure and material properties
of the inclusions�, some very interesting behaviors can result.
In this section, we extend the effective dynamic mass density
expressions, �Eqs. �26a� and �26b�	 to finite frequencies. By
employing the CPA,11 we show that a generalized effective
mass density expression can be obtained, which reduces to
Eqs. �26a� and �26b� in the long wavelength limit and which
can yield complex and negative dynamic mass densities
when there exist low-frequency resonances. While the CPA
was originally developed for the long wavelength limit �or
the low-frequency limit�, here the extension to finite frequen-
cies is based on the idea that we can treat the case of matrix
plus inclusions by requiring only the wavelength in the ma-
trix to be much larger than the size of the inclusions or the
inclusion separations. The inclusion is treated as a black-box
scatterer, in which there can be complex fine-scale internal
microstructures, with material properties such that the usual
CPA requirement of long wavelength �compared to the typi-
cal feature size� can be violated. So, the scattering from the
inclusion�s� will be represented by the accurately evaluated
�either numerically or analytically� scattering amplitude�s�.
The scattering from the inclusion can even include local
resonances internal to the inclusions. Such extension to the
finite frequency regime is sometimes denoted as the dynami-
cal CPA �DCPA�, or dynamical EMT.13 Below, we first treat
the fluid-matrix case, followed by the solid-matrix case.

A. Fluid-matrix composites

Consider a composite consisting of solid particle inclu-
sions with mass density D2 and Lamé constants �2 and �2

�assuming the inclusions have no fine-scale microstructure�
embedded in a fluid matrix with mass density D1 and Lamé
constant �1. In accordance with the rule of CPA, we assume
that the parameters for the effective medium are Def f and
�ef f, which are to be determined by minimizing the average
overall scattering of the system. Accordingly, the wave num-
bers in the fluid, the particle, and the effective medium are
�1, �2, and �ef f, respectively.

To illustrate the geometry of the CPA calculation, we
show in Fig. 5 the basic idea of homogenization. That is, in
Fig. 5�a� the dashed lines schematically divide the composite
into similar structural units, each consisting of an inclusion
with a layer of the matrix material. For the purpose of CPA
calculation, the composite in Fig. 5�a� is replaced by the
geometry shown in Fig. 5�b�, in which the medium outside
of one particular structural unit is treated as a homogeneous
effective medium, whereby the origin is set at the center and
the area of the structural unit �consisting of the inclusion and
the matrix coating layer� of radius R is defined to be the
same as the area of one unit cell, while the radius of the core
�the inclusion� is given by r. The idea here is that the effec-
tive medium is composed of similar structural units �see Ref.
11�. The cylindrical inclusion may have finer-scale internal
microstructures that are not detailed at this level.

Within the layer of the fluid medium, the displacement
field can be written as

u�1���� = �
n

an�1� � �Jn��1��ein�	 + bn�1� � �Hn��1��ein�	� ,

�35�

in which an�1� and bn�1� have the relationship

bn�1� = Sn�1�an�1� , �36�

where Sn�1�=Tnn is exactly the Mie scattering coefficient
defined in Eq. �11�.

The displacement field in the effective medium can be
written similarly as

u�ef f���� = �
n

an�eff� � �Jn��ef f��ein�	

+ bn�eff� � �Hn��ef f��ein�	� , �37�

in which an�eff� and bn�eff� are related by Sn�tot� as

bn�eff� = Sn�tot�an�eff� , �38�

where Sn�tot� is the scattering cross section for the whole
coated particle.

By matching the normal components of displacement and
pressure on the interface between the fluid medium and the
effective medium, we get the following equations:

�dJn��ef f��
d�

�
�=R

an�eff� + �dHn��ef f��
d�

�
�=R

bn�eff�

= �dJn��1��
d�

�
�=R

an�1� + �dHn��1��
d�

�
�=R

bn�1� , �39�
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�ef f�dJn��ef f��
d�

+ �
d2Jn��ef f��

d�2 −
n2Jn��ef f��

�
�

�=R
an�eff�

+ �ef f�dHn��ef f��
d�

+ �
d2Hn��ef f��

d�2

−
n2Hn��ef f��

�
�

�=R
bn�eff�

= �1�dJn��1��
d�

+ �
d2Jn��1��

d�2 −
n2Jn��1��

�
�

�=R
an�1�

+ �1�dHn��1��
d�

+ �
d2Hn��1��

d�2 −
n2Hn��1��

�
�

�=R
bn�1� .

�40�

In the lowest order of frequency, the scattering cross sec-
tion is dominated by the n=0 and n= ±1 terms only. In order
to minimize the overall average scattering of the system,
CPA requires the lowest orders of scattering coefficients to
be zero, i.e.,

Sn�tot� = 0 �41�

for n=0, ±1. This condition is physically sensible since only
then can one treat the medium as being a homogeneous ef-
fective medium in some sense. After substituting Eqs. �36�
and �38�–�40� into Eq. �41�, we get

nJn��1R� − �1RJn+1��1R�
nJn��ef fR� − �ef fRJn+1��ef fR�

−
�1

�ef f

− 2�n + 1��1RJn+1��1R� + ��1R�2Jn+2��1R�
− 2�n + 1��ef fRJn+1��ef fR� + ��ef fR�2Jn+2��ef fR�

= � �1

�ef f

− 2�n + 1��1RHn+1��1R� + ��1R�2Hn+2��1R�
− 2�n + 1��ef fRJn+1��ef fR� + ��ef fR�2Jn+2��ef fR�

−
nHn��1R� − �1RHn+1��1R�

nJn��ef fR� − �ef fRJn+1��ef fR��Sn�1� . �42�

By retaining the dominant terms to the order of 	2 in the
series expansions of Bessel and Hankel functions, we arrive
at the following formulas

− 1 +
�1

�ef f
=

4

i���1R�2S0�1� , �43�

Def f − D1

Def f + D1
=

4

i���1R�2S1�1� , �44�

where Sn�1�=Tnn is the Mie scattering coefficient as defined
by Eq. �11�. Alternatively, the equations may be written as

− 1 +
�1

�ef f
=

4f

i���1r�2S0�1� , �45�

Def f − D1

Def f + D1
=

4f

i���1r�2S1�1� , �46�

in which f =�r2 /�R2= �r /R�2 is the filling ratio of the solid
cylinder, with r being the radius of the solid core.

In fact, as demonstrated in Appendix B, the Mie scattering
coefficient Tnn has the following form:

Sn�1� = Tnn =
�C21C32 − C22C31�A1 − �C11C32 − C12C31�A2

�C11C32 − C12C31�B2 − �C21C32 − C22C31�B1
,

�47�

in which the coefficients A, B, and C are defined in Eq. �B3�.
After some algebraic manipulation, it can be shown that

(a)

FIG. 5. �Color online� �a� Schematic diagram of the coherent
potential approximation �CPA�. The dashed lines indicate a sche-
matic division of the composite into structure units, each consisting
of an inclusion with a coating layer of the matrix material. �b� The
composite in �a� is replaced by that represented in �b� for the CPA
calculation, consisting of a coated cylinder of radius R embedded in
the effective medium with parameters Def f and �ef f, to be deter-
mined by minimizing the overall average scattering. For the coated
cylinder, the core is the inclusion and the coating is the matrix
material.
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S1�1� = T11 = −
F1�J1��1R� − �1RJ2��1R�	 + F2�4J2��2R� − �1RJ3��1R�	

F1�H1��1R� − �1RH2��1R�	 + F2�4H2��2R� − �1RH3��1R�	
, �48�

where F1 and F2 are very complicated functions of variables
�1, �2, �2, and R. At this level, S1�1� just denote the scatter-
ing amplitude from a single solid inclusion. Its accurate form
�the F1 and F2� would depend on the internal microstructure
and material properties of the solid inclusion unit. In the
simplest case, it can be shown that if the core cylinder is
made of a uniform solid medium, then by taking the low-
frequency limit, S1�1�→ ����1r�2 /4i	��D1−D2� / �D1+D2�	;
i.e., one recovers Eqs. �26a� and �26b� exactly.

It should be noted that, as evident in Eq. �46�, the effec-
tive mass density Def f can be negative for �S1�1��
���1r�2 /4f . However, if there is a resonance in the n=1
channel, the modulus of the complex scattering amplitude
can indeed be very large. This fact was noted in Ref. 14.

It is evident in Eq. �46� that the scattering coefficient is
the basic reason for the complex and/or negative value of the
effective mass density Def f. To treat a more interesting case
in which the solid inclusions can have fine-scale internal
microstructures, let us regard each inclusion to consist of a
lead cylinder coated by a layer of silicone rubber, i.e., the
microstructure for the LRSM. This is shown schematically in
Fig. 6. The numerically evaluated scattering coefficient S1�1�
�by using the MST� is plotted vs frequency in Fig. 7, together
with the normalized effective mass density Def f /D1. The cal-
culated system is that of a lead cylinder coated with a layer
of silicone rubber, placed in water. The filling ratio of the
coated cylinder �lead cylinder+silicone rubber coating� is
40%, while the filling ratio of just the lead cylinder is 25%.
It can be seen from Fig. 7 that the complex or negative
effective mass density of such type of locally resonant inclu-
sions arises from the resonant behavior of the scattering co-
efficient. The mass density and elastic constants used in the
calculation are as follows3 �=11.6�103 kg/ m3, �=4.23
�1010 N/m2, �=1.49�1010 N/ m2 for lead, �=1.3
�103 kg/m3, �=6�105 N/m2, �=4�104 N/m2 for the
silicone rubber, and �=1.0�103 kg/m3, �=2.22
�109 N/m2 for water. It is seen that first of all, there are two
resonances, typical of the LRSM.4 Also, the resonant behav-
ior of the dynamic mass density occurs at frequencies differ-
ent from those of the scattering coefficient. This is due to the
fact that the divergence of the effective dynamic mass den-
sity occurs for those frequencies at which the right-hand side
of Eq. �44� �or Eq. �46�	 is 1.

The physical picture about why the dynamic mass density
can be negative should now be intuitively clear: It is caused
by the 180° out-of-phase motion of the core lead cylinders.
Since the core lead cylinder has a very high mass density and
since the area fraction of such cylinders is sufficiently high,
the net average result within a narrow frequency regime is
that the overall effective dynamic mass density is negative.
In this regard, complex dynamic mass density is just a gen-
eralization to the degree of phase lag between the displace-
ment in the matrix and that of the lead cylinder motion.

Similarly, the finite frequency effective bulk modulus can
also be numerically evaluated from Eq. �45�. They are shown
in Fig. 8. It is evident in Fig. 8 that the effective bulk modu-
lus Bef f is very small in magnitude as compared to that of
water. This is physically reasonable since the coated cylin-
ders are very compressible �due to the soft coating�, and
when one mixes something hard with something soft, the
compressibility �or bulk modulus� is dominated by the soft
component, just as in the case of a sandwich made of two
steel plates with a sponge in between, where the compress-
ibility of the sandwich is clearly dominated by the sponge.
On the high-frequency side, the real part of the effective bulk
modulus also turns negative. However, we should not expect
this to be the realization of acoustic metamaterials �as the
effective dynamic mass density is also negative� since Bef f
has a comparable imaginary component. When both are con-
sidered together, the phase and group velocities have the
same direction.

intern
microstructures

silicon rubber

lead
solid
inclusion

FIG. 6. An example of the locally resonant inclusion: Each in-
clusion can have a finer-scale microstructure, consisting of a lead
cylinder coated by a layer of silicon rubber.
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FIG. 7. The scattering coefficient S1�1� and normalized effective
mass density Def f /D1 of a lead cylinder coated with a layer of
silicon rubber, placed in water, as functions of normalized fre-
quency 	a /2�c, with c being the sound speed in water. The filling
ratio of the coated cylinder is 40%, while the filling ratio of the lead
cylinder is 25%. Solid lines and dashed lines denote the real and
imaginary parts of the plotted quantities, respectively.
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B. Solid-matrix composites

For the solid-matrix case, we can similarly extend the
dynamic effective mass density expression to finite frequen-
cies where there exist low-frequency resonances. We will
show that for inclusions with a fine-scale microstructure that
consists of a lead core and silicone rubber coating, the dy-
namic mass density can also be negative around resonances.
This should not be surprising since in either the fluid-matrix
case or the solid-matrix case the physical reason for the
negative dynamic mass density is the out-of-phase motion of
the core lead cylinder.

As in preceding sections, we assume that a solid cylinder,
the inclusion, with mass density D2 and Lamé constants �2
and �2 �assuming a uniform material with no fine-scale mi-
crostructure�, is embedded in a matrix solid material with
mass density D1 and Lamé constants �1 and �1. The geom-
etry for the DCPA calculation is the same as that shown in
Fig. 5; i.e., the inclusion plus a layer of matrix coating is
embedded in the effective medium. We also assume that the
parameters for the effective medium are Def f, �ef f and �ef f,
which are to be determined in accordance with the DCPA.
Accordingly, the longitudinal and transverse wave numbers
in the core, the coating layer, and the effective medium are
�1, �1, �2, �2, and �ef f, �ef f, respectively.

Similar to Fig. 5, the origin is set at the center of the core,
and the area of the whole cylinder �including the core and
coating layer� of radius R is defined to be the same as the
area of one unit cell, while the radius of the core is r.

Within the coating layer, the displacement field can be
written as.12

u�1���� = �
n

an1�1� � �Jn��1��ein�	 + bn1�1� � �Hn��1��ein�	�

+ �
n

an2�1� � � �ẑJn��1��ein�	 + bn2�1� �

� �ẑHn��1��ein�	�

+ �
n
�an3�1�

1

�1
� � � � �ẑJn��1��ein�	

+ bn3�1�
1

�1
� � � � �ẑHn��1��ein�	� , �49�

in which an��1� and bn��1� have following relationship:

bn��1� = �
n���

Tn�n����1�an����1� , �50�

where �=1 is for the longitudinal mode and �=2,3 repre-
sents the two transverse modes, with Tn�n����1� being the
Mie scattering coefficients of the core.12

Similarly the displacement field in the effective medium
can be written as

u�ef f���� = �
n

an1�eff� � �Jn��ef f��ein�	

+ bn1�eff� � �Hn��ef f��ein�	� + �
n

an2�eff� �

� �ẑJn��ef f��ein�	 + bn2�eff� � � �ẑHn��ef f��ein�	�

+ �
n
�an3�eff�

1

�ef f
� � � � �ẑJn��ef f��ein�	

+ bn3�eff�
1

�ef f
� � � � �ẑHn��ef f��ein�	� , �51�

in which an�eff� and bn�eff� are related by

bn��eff� = �
n���

Tn�n����eff�an����eff� , �52�

in which Tn�n����eff� is the Mie scattering coefficients for the
whole coated cylinder.

Displacement and normal stress continuity at the interface
requires that

�dJn��1��
d�

�
�=R

an1�1� + �dHn��1��
d�

�
�=R

bn1�1�

+ � inJn��1��
�

�
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�

�
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bn2�1�

= �dJn��ef f��
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an1�eff� + �dHn��ef f��
d�

�
�=R

bn1�eff�

+ � inJn��ef f��
�

�
�=R

an2�eff� + � inHn��ef f��
�

�
�=R

bn2�eff� ,

�53�
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FIG. 8. The scattering coefficient S0�1� and normalized effective
bulk modulus Bef f /B1 of a lead cylinder coated with a layer of
silicon rubber, placed in water, as functions of normalized fre-
quency 	a /2�c, with c being the sound speed in water. The filling
ratio of the coated cylinder is 40%, while the filling ratio of the lead
cylinder is 25%, i.e., the same structure unit as that in Fig. 7. Solid
lines and dashed lines denote the real and imaginary parts of the
plotted quantities, respectively.

MEI et al. PHYSICAL REVIEW B 76, 134205 �2007�

134205-12



� inJn��1��
�

�
�=R

an1�1� + � inHn��1��
�

�
�=R

bn1�1�

+ �− dJn��1��
d�

�
�=R

an2�1� + �− dHn��1��
d�

�
�=R

bn2�1�

= � inJn��ef f��
�

�
�=R

an1�eff� + � inHn��ef f��
�

�
�=R

bn1�eff�

+ �− dJn��ef f��
d�

�
�=R

an2�eff�

+ �− dHn��ef f��
d�

�
�=R

bn2�eff� , �54�

� �2n + 2�Jn+1��1�� − �1�Jn+2��1��
�

�
�=R

an3�1�

+ � �2n + 2�Hn+1��1�� − �1�Hn+2��1��
�

�
�=R

bn3�1�

= � �2n + 2�Jn+1��ef f�� − �ef f�Jn+2��ef f��
�

�
�=R

an3�eff�

+ � �2n + 2�Hn+1��ef f�� − �ef f�Hn+2��ef f��
�

�
�=R

bn3�eff� ,

�55�

�2�1�n2 − n�Jn��1�� − ��1�2n + 2� + 2�1�2n + 1�	�1�Jn+1��1�� + ��1 + 2�1��1
2�2Jn+2��1��

�
�

�=R
an1�1�

+ �2�1�n2 − n�Hn��1�� − ��1�2n + 2� + 2�1�2n + 1�	�1�Hn+1��1�� + ��1 + 2�1��1
2�2Hn+2��1��

�
�

�=R
bn1�1�

+ �2in�1
�n − 1�Jn��1�� − �1�Jn+1��1��

�
�

�=R
an2�1� + �2in�1

�n − 1�Hn��1�� − �1�Hn+1��1��
�

�
�=R

bn2�1�

= �2�ef f�n2 − n�Jn��ef f�� − ��ef f�2n + 2� + 2�ef f�2n + 1�	�ef f�Jn+1��ef f�� + ��ef f + 2�ef f��ef f
2 �2Jn+2��ef f��

�
�

�=R
an1�eff�

+ �2�ef f�n2 − n�Hn��ef f�� − ��ef f�2n + 2� + 2�ef f�2n + 1�	�ef f�Hn+1��ef f�� + ��ef f + 2�ef f��ef f
2 �2Hn+2��ef f��

�
�

�=R
bn1�eff�

+ �2in�ef f
�n − 1�Jn��ef f�� − �ef f�Jn+1��ef f��

�
�

�=R
an2�eff� + �2in�ef f

�n − 1�Hn��ef f�� − �ef f�Hn+1��ef f��
�

�
�=R

bn2�eff� ,

�56�

�2in�1
�n − 1�Jn��1�� − �1�Jn+1��1��

�
�

�=R
an1�1� + �2in�1

�n − 1�Hn��1�� − �1�Hn+1��1��
�

�
�=R

bn1�1�

+ ��1
2�n − n2�Jn��1�� + 2n�1�Jn+1��1�� − �1

2�2Jn+2��1��
�

�
�=R

an2�1�

+ ��1
2�n − n2�Hn��1�� + 2n�1�Hn+1��1�� − �1

2�2Hn+2��1��
�

�
�=R

bn2�1�

= �2in�ef f
�n − 1�Jn��ef f�� − �ef f�Jn+1��ef f��

�
�

�=R
an1�eff� + �2in�ef f

�n − 1�Hn��ef f�� − �ef f�Hn+1��ef f��
�

�
�=R

bn1�eff�

+ ��ef f

2�n − n2�Jn��ef f�� + 2n�ef f�Jn+1��ef f�� − �ef f
2 �2Jn+2��ef f��

�
�

�=R
an2�eff�

+ ��ef f

2�n − n2�Hn��ef f�� + 2n�ef f�Hn+1��ef f�� − �ef f
2 �2Hn+2��ef f��

�
�

�=R
bn2�eff� , �57�
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��1
2n�n + 1�Jn+1��1�� − �3n + 4��1�Jn+2��1�� + �1

2�2Jn+3��1��
�

�
�=R

an3�1�

+ ��1
2n�n + 1�Hn+1��1�� − �3n + 4��1�Hn+2��1�� + �1

2�2Hn+3��1��
�

�
�=R

bn3�1�

= ��ef f

2n�n + 1�Jn+1��ef f�� − �3n + 4��ef f�Jn+2��ef f�� + �ef f
2 �2Jn+3��ef f��

�
�

�=R
an3�ef f�

+ ��ef f

2n�n + 1�Hn+1��ef f�� − �3n + 4��ef f�Hn+2��ef f�� + �ef f
2 �2Hn+3��ef f��

�
�

�=R
bn3�ef f� . �58�

In the lowest order of frequency, the scattering cross sec-
tion is dominated by the n=0 and n= ±1 terms only. The rule
of the DCPA is to require the lowest orders of Mie scattering
coefficients to be zero,

�Tn�n����eff��n,n�=0,±1 = 0. �59�

After substituting Eqs. �50� and �52�–�58� into Eq. �59� and
retaining the dominant terms to the order of 	2 in the series
expansions of Bessel and Hankel functions, we arrive at the
following formulas:

Def f

D1
− 1 =

4

i���1R�2

b03�1�
a03�1�

, �60�

�ef f − �1

�ef f + �1
=

4i

���1R�2

b13�1�
a13�1�

, �61�

��ef f+�ef f� − ��1 + �1�
�ef f + �ef f + �1

=
4i

���1R�2

b01�1�
a01�1�

. �62�

Alternatively, the above equations may be written as

Def f

D1
− 1 =

4f

i���1r�2

b03�1�
a03�1�

, �63�

�ef f − �1

�ef f + �1
=

4if

���1r�2

b13�1�
a13�1�

, �64�

��ef f+�ef f� − ��1 + �1�
�ef f + �ef f + �1

=
4if

���1r�2

b01�1�
a01�1�

, �65�

in which f =�r2 /�R2= �r /R�2 is the filling ratio of the solid
cylinder, with r being the radius of the solid core.

Since b03�1� /a03�1� is the n=0 channel scattering coeffi-
cient for the z-direction transverse mode in the solid matrix,
it is a complex number in general. As evident from Eq. �63�,
the real part of the dynamic effective mass density Def f can
be negative for Im�b03�1� /a03�1�	�−���1r�2 /4f . However,
if there is a resonance in the n=0 channel, the imaginary part
of the complex scattering amplitude can be a very large
negative number, so the effective mass density can turn nega-
tive as well.

If the inclusions have no fine-scale microstructure and
consist of uniform materials, then in the low-frequency limit,

b03�1�
a03�1�

→
i���1r�2

4
�D2

D1
− 1� ,

b13�1�
a13�1�

→
���1r�2

4i
��2 − �1

�2 + �1
� ,

b01�1�
a01�1�

→
���1r�2

4i
� ��2 + �2� − ��1 + �1�

�2 + �2 + �1
� .

Hence, the low-frequency limit of Eqs. �63�–�65� is given by

Def f = �1 − f�D1 + fD2, �66�

�ef f − �1

�ef f + �1
= f

�2 − �1

�2 + �1
, �67�

��ef f+�ef f� − ��1 + �1�
�ef f + �ef f + �1

= f
��2 + �2� − ��1 + �1�

�2 + �2 + �1
, �68�

which are identical to Eqs. �34�, �33a�, and �33b�. It is seen
that the both the DCPA and the MST give the same effective
medium formulas in the low-frequency limit, which is, of
course, a physically consistent result.

In addition, Eq. �68� can also help us to determine �ef f on
the condition that �ef f is known. If we let �1→0, then ac-
cording to Eq. �67�, we have �ef f →0. It follows in that case
that Eq. �68� reduces to

�ef f−�1

�ef f
= f

��2 + �2� − �1

�2 + �2
. �69�

Since Bef f =�ef f, B1=�1, and B2=�2+�2, it is easy to realize
that Eq. �69� is equivalent to

1

Bef f
=

1 − f

B1
+

f

B2
. �70�

Not surprisingly, Eq. �70� is identical to Eqs. �25a� and �25b�.
While the order for the two limit processes of 	→0 and

�1→0 can be interchanged for the effective moduli, the
same is not true for the effective dynamic mass density as we
noted earlier.
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If the inclusions have a fine-scale LRSM microstructure,
just as that described in the previous section, i.e., a lead
cylinder with a silicone rubber coating, then the scattering
coefficient can be calculated numerically by using the MST.
In Fig. 9, we show the scattering coefficient b03/a03 and the
normalized effective mass density Def f /D1 plotted as func-
tions of frequency �for a lead cylinder coated with a layer of
silicone rubber, embedded in epoxy�. The filling ratio of the
coated cylinder is 40%, while the filling ratio of the lead
cylinder is 20%. It is seen that the complex/negative effec-
tive mass density of such locally resonant structures corre-
sponds exactly to the similar behavior of the scattering coef-
ficient. While the parameters relevant to lead and silicone
rubber are given previously, the parameters of epoxy are3 �
=1.18�103 kg/m3, �=4.43�109 N/m2, and �=1.59
�109 N/m2.

From the plotted results, it can be seen that for locally
resonant structures, it does not matter whether the matrix is
fluid or solid. In both cases, a complex/negative effective
dynamic mass density is obtained.

The finite frequency effective elastic moduli can be simi-
larly evaluated by using the MST. The results are shown in
Figs. 10 and 11. As evident in Eq. �64�, the resonant behavior
of the effective shear modulus in Fig. 10 corresponds exactly
to the similar behavior of the scattering coefficient b13/a13.
On the other hand, although no resonance exists in the curve
of b01/a01, we still observe a resonant behavior in �ef f /�1.
The reason is that in Eq. �65�, �ef f and �ef f are coupled
together: On the condition that the summation of them vary
smoothly with frequency, the resonance of one will definitely
lead to the resonance of the other.

VII. RELEVANCE TO ACOUSTIC METAMATERIALS

We have shown through rigorous derivation that the ef-
fective dynamic mass density of an inhomogeneous mixture

can differ from its static counterpart even in the zero fre-
quency limit �but must still be positive�. The dynamic mass
density can be negative or complex at finite frequencies
when there are inclusions with locally resonant microstruc-
tures. These two results are shown to be consistent with each
other and are related by the common underlying physics. The
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FIG. 9. The scattering coefficient b03/a03 and normalized effec-
tive mass density Def f /D1 of a lead cylinder coated with a layer of
silicon rubber, placed in epoxy, as functions of normalized fre-
quency 	a /2�c, with c being the transverse velocity in epoxy. The
filling ratio of the coated cylinder is 40%, while the filling ratio of
the lead cylinder is 20%. Solid lines and dashed lines denote the
real and imaginary parts of the plotted quantities, respectively.
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FIG. 10. The scattering coefficient b13/a13 and normalized ef-
fective shear modulus �ef f /�1 of a lead cylinder coated with a layer
of silicon rubber, placed in epoxy, as functions of normalized fre-
quency 	a /2�c, with c being the transverse velocity in epoxy. The
filling ratio of the coated cylinder is 40%, while the filling ratio of
the lead cylinder is 20%, i.e., the same structure unit as that in Fig.
9. Solid lines and dashed lines denote the real and imaginary parts
of the plotted quantities, respectively.
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FIG. 11. The scattering coefficient b01/a01 and normalized ef-
fective Lamé constant �ef f /�1 of a lead cylinder coated with a layer
of silicon rubber, placed in epoxy, as functions of normalized fre-
quency 	a /2�c, with c being the transverse velocity in epoxy. The
filling ratio of the coated cylinder is 40%, while the filling ratio of
the lead cylinder is 20%, i.e., the same structure unit as that in Fig.
9. Solid lines and dashed lines denote the real and imaginary parts
of the plotted quantities, respectively.
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relevance of these results to acoustic metamaterials is clear:
Since both bulk modulus and dynamic mass density can be
negative, for the realization of acoustic metamaterials it only
requires both to occur within the same frequency regime.
Recently, the Berkeley group has realized a negative bulk
modulus by using HRs. It has thus been proposed that by
combining the locally resonant inclusions and the HRs, it
may be possible to realize acoustic metamaterials. A sche-
matic picture envisioning this scheme is depicted in Fig.
12.15
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APPENDIX A

In this appendix, we evaluate the G matrix �defined in Eq.
�13�	 in the long wavelength limit. The structure matrix ele-
ments of G may be expressed as12

Gnn��k
�� = �− 1�lS−l��1,k�� , �A1�

where l=n�−n and Sl��1 ,k�� is defined as16

Sl��1,k�� = Sl
J��1,k�� + iSl

Y��1,k�� ,

Sl
J��1,k�� = − �l,0,

Sl
Y��1,k��Jl+m��1� = − �Ym��1�

+
1

�
�
n=1

m
�m − n�!
�n − 1�! � 2

�1
�m−2n+2��l,0

− il 4

A�
h
� �1

Qh
�mJl+m�Qh�

Qh
2 − �1

2 eil�h, �A2�

in which Qh= �Q� h�, �h=arg�Q� h�, Q� h=K� h−k�, with K� h being the

reciprocal lattice vector and k� denoting the reduced wave
vector in the first Brillouin zone, and Yn being the Neumann
function �i.e., Bessel function of the second kind�. Here, A is
the unit cell area.

In Eq. �A2�, m is an arbitrary non-negative integer used to
improve the convergence of the lattice sum. For conve-
nience, if we set m=0, then

Sl
Y��1,k��Jl��1� = − Y0��1��l,0 − il 4

A�
h

Jl�Qh�
Qh

2 − �1
2eil�h.

�A3�

To obtain the low-frequency dispersion curve, we consider

the quasistatic limit of �k��→0. In this limit, �1 is linearly
proportional to k so that it can be written as �1=xk→0 when

k�→0, in which parameter x is the constant to be evaluated. It

should be noted that Qh�Kh �for Kh�0� and Q� 0=k� �for
Kh=0�. Under the dipole approximation, the lattice sums in-
volve orders of 0, 1, and 2 only,17

S0
Y��1,k�� � −

4

A

1

k2�1 − x2�
−

2

�
ln �1 −

4

A
�
h�0

J0�Kh�
Kh

2 ,

�A4�

S1
Y��1,k�� � − i

4

A

1

k2x�1 − x2�
ei�0 − i

8

�1A �
h�0

J1�Kh�
Kh

2 ei�h�,

�A5�

S2
Y��1,k�� �

4

A

1

k2x2�1 − x2�
e2i�0 +

32

�1
2A

�
h�0

J2�Kh�
Kh

2 e2i�h�,

�A6�

where �0 is the polar angle of k� and �h�=arg�K� h�. Generally,
for any array of cylinders, the last term on the right-hand side
of Eq. �A4� converges to a constant, while the corresponding
term in Eq. �A5� vanishes identically. The last term on the
right-hand side of Eq. �A6� vanishes only for the square or
hexagonal lattice.17 For simplicity, in what follows we re-
strict ourselves only to the square or hexagonal lattice. It
follows from the above that the dominant terms in Eqs.
�A4�–�A6� are

S0
Y��1,k�� � −

4

A

1

k2�1 − x2�
, �A7�

B < 0(b)

ω < ω 0 ω > ω 0

(a)

FIG. 12. �Color online� �a� When the core particle oscillation is
in phase with the wave in the matrix medium �	�	0�, the dynamic
mass density must be positive, as shown on the left. When 		0,
the core particle oscillates out of phase with the wave in the matrix
medium, as shown on the right, and the dynamic mass density can
be negative provided that the density of coated inclusions is suffi-
ciently high and the core particles have a higher density than that of
the matrix medium. �b� Acoustic metamaterial is realized when the
dynamic mass density is negative and the fluid medium is also
resonant, with negative bulk modulus as a result.
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S1
Y��1,k�� � − i

4

A

1

k2x�1 − x2�
ei�0, �A8�

S2
Y��1,k�� �

4

A

1

k2x2�1 − x2�
e2i�0. �A9�

It is noted that the lattice sums of negative order are given by
the complex conjugate of the lattice sums of corresponding
positive order,

S−l
Y ��1,k�� = Sl

Y*
��1,k�� . �A10�

After some algebraic manipulations, the G matrix can be
simplified into a 3�3 matrix,

G = � G0��1� G1��1� G2��1�
G−1��1� G0��1� G1��1�
G−2��1� G−1��1� G0��1�

�
= � S0��1,k�� − S−1��1,k�� S−2��1,k��

− S1��1,k�� S0��1,k�� − S−1��1,k��

S2��1,k�� − S1��1,k�� S0��1,k��
�

= − I + i� S0
Y��1� − S−1

Y ��1� S−2
Y ��1�

− S1
Y��1� S0

Y��1� − S−1
Y ��1�

S2
Y��1� − S1

Y��1� S0
Y��1�

�

� − I +
4i

A

1

1 − x2

1

�1
2� − x2 xe−i�0 e−2i�0

− xei�0 − x2 xe−i�0

e2i�0 − xei�0 − x2 � .

�A11�

APPENDIX B

In this appendix, we demonstrate the procedure to obtain
the Mie scattering matrix, i.e., the T matrix, in the low-
frequency limit. Suppose the solid cylinders of radius r, mass
density D2, and Lamé constants �2 and �2 are placed in a
fluid with corresponding parameter values D1 and �1. Dis-
placement and normal stress continuity at the interface re-
quires that �please see Ref. 12 for details�

�u1,���=r = �u2,���=r,

��1,����=r = ��2,����=r,

0 = ��2,����=r, �B1�

which leads to the following equations:

A1an1 + B1bn1 = C11cn1 + C12cn2,

A2an1 + B2bn1 = C21cn1 + C22cn2,

0 = C31cn1 + C32cn2, �B2�

where

A1 =
nJn��1r� − �1rJn+1��1r�

r
,

B1 =
nHn��1r� − �1rHn+1��1r�

r
,

C11 =
nJn��2r� − �2rJn+1��2r�

r
,

C12 =
inJn��2r�

r
,

A2 =
− �1�2n + 2��1rJn+1��1r� + �1�1

2r2Jn+2��1r�
r

,

B2 =
− �1�2n + 2��1rHn+1��1r� + �1�1

2r2Hn+2��1r�
r

,

C21 =
2�2�n2 − n�Jn��2r� − ��2�2n + 2� + 2�2�2n + 1�	�2rJn+1��2r� + ��2 + 2�2��2

2r2Jn+2��2r�
r

,

C22 = 2in�2
�n − 1�Jn��2r� − �2rJn+1��2r�

r
,
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C31 = 2in�2
�n − 1�Jn��2r� − �2rJn+1��2r�

r
,

C32 = �2
2�n2 − n�Jn��2r� + 2n�2rJn+1��2r� − �2

2r2Jn+2��2r�
r

. �B3�

According to the series representation of the Bessel
function,18 we have

Jn�z� =
zn

2n�
k=0

�

�− 1�k z2k

22kk!��n + k + 1�
,

�Nn�z� = 2Jn�z�ln
z

2
− �

k=0

n−1
�n − k − 1�!

k!
� z

2
�2k−n

− �
k=0

�

�− 1�k 1

k!�k + n�!� z

2
�n+2k

����k + 1� + ��k + n + 1�	 , �B4�

where ��x� is the psi function. In order to evaluate the scat-
tering matrix at the low-frequency limit �→0 or �→0, we
retain only two leading-order terms in the Bessel function
series expansions,

J1��1r� →
1

2
r�1 −

1

16
r3�1

3,

J2��1r� →
1

8
r2�1

2 −
1

96
r4�1

4,

J3��1r� →
1

48
r3�1

3 −
1

768
r5�1

5,

¯

H1��1r� →
1

2
r�1 −

1

16
r3�1

3 − i
2

�

1

r�1
+ i

�0 −
1

2

�
r�1,

H2��1r� →
1

8
r2�1

2 −
1

96
r4�1

4 − i
4

�

1

r2�1
2 − i

1

�
,

H3��1r� →
1

48
r3�1

3 −
1

768
r5�1

5 − i
16

�

1

r3�1
3 − i

2

�

1

r�1
,

. . . , �B5�

where �0�0.577 215 denotes the Euler constant.
Since an=�n��T

−1�nn�bn�, according to Eq. �B2�, we can
arrive at

�T−1�nn� =
�C11C32 − C12C31�B2 − �C21C32 − C22C31�B1

�C21C32 − C22C31�A1 − �C11C32 − C12C31�A2
�nn�.

�B6�

It turns out that for the n=0 angular scattering channel,

�T−1�00 → − 1 +
4i

�r2

�2 + �2

�2 + �2 − �1

1

�1
2 ,

while for the n= ±1 angular scattering channels,

�T−1�nn → − 1 +
4i

�r2

D1 + D2

D1 − D2

1

�1
2 .

So, we finally obtain the T matrix limiting behavior as

T−1 = − I +
4i

�r2

1

�1
2�

D1 + D2

D1 − D2
0 0

0
�2 + �2

�2 + �2 − �1
0

0 0
D1 + D2

D1 − D2

� .

�B7�

APPENDIX C

In this appendix, we evaluate the T−1−G matrix for the
case of the solid matrix in the long wavelength limit. We first
note that the G matrix for the transverse z mode should have
almost the same form as Eq. �A11�. The only difference be-
tween the two is that for the G matrix of the transverse z
mode, we should replace each �1=	�D1 /�1 in Eq. �A11�
with �1=	�D1 /�1 to obtain

G = − I +
4i

A

1

1 − x2

1

�1
2� − x2 xe−i�0 e−2i�0

− xei�0 − x2 xe−i�0

e2i�0 − xei�0 − x2 � �C1�

because we are now concerned with the transverse mode
instead of the longitudinal mode.

For the T matrix, let us assume that the solid cylinders of
radius r, mass density D2, and Lamé constants �2 and �2 are
now embedded in a solid matrix with mass density D1 and
Lamé constants �1 and �1. Displacement and tangential
stress continuity at the interface requires that �see Ref. 12 for
details�
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�u1,z��=r = �u2,z��=r,

��1,�z��=r = ��2,�z��=r, �C2�

which leads to the following equations:

A1an3 + B1bn3 = C1cn3,

A2an3 + B2bn3 = C2cn3, �C3�

where

A1 =
�2n + 2�Jn+1��1r� − �1rJn+2��1r�

r
,

B1 =
�2n + 2�Hn+1��1r� − �1rHn+2��1r�

r
,

C1 =
�2n + 2�Jn+1��2r� − �2rJn+2��2r�

r
,

A2 = �1
2n�n + 1�Jn+1��1r� − �3n + 4��1rJn+2��1r� + �1

2r2Jn+3��1r�
r

,

B2 = �1
2n�n + 1�Hn+1��1r� − �3n + 4��1rHn+2��1r� + �1

2r2Hn+3��1r�
r

,

C2 = �2
2n�n + 1�Jn+1��2r� − �3n + 4��2rJn+2��2r� + �2

2r2Jn+3��2r�
r

. �C4�

According to Eq. �C3�, elements of the inverse T matrix are
given by

�T−1�nn� =
B2C1 − B1C2

A1C2 − A2C1
�nn�. �C5�

By retaining two leading-order terms in the series expansions
of Bessel and Hankel functions, we get for the n=0 channel

�T−1�00 → − 1 +
4i

�r2

D1

D1 − D2

1

�1
2 ,

while for the n= ±1 channels

�T−1�nn → − 1 +
4i

�r2

�2 + �1

�2 − �1

1

�1
2 .

So, we would arrive at the limiting form of the T matrix as

T−1 = − I +
4i

�r2

1

�1
2�

�2 + �1

�2 − �1
0 0

0
D1

D1 − D2
0

0 0
�2 + �1

�2 − �1

� .

�C6�
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