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We have reanalyzed the microscopic origin of the isotropic deviations that are observed from the energy
spacings predicted by the Heisenberg–Dirac–van Vleck �HDVV� Hamiltonian. Usually, a biquadratic spin
operator is added to the HDVV Hamiltonian to account for such deviations. It is shown here that this operator
cannot describe the effect of the excited atomic non-Hund states which brought the most important contribution
to the deviations. For systems containing more than two magnetic centers, non-Hund states cause additional
interactions that are of the same order of magnitude as the biquadratic exchange and should have significant
effects on the macroscopic properties of extended systems.
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The magnetic interactions between S=1/2 sites can accu-
rately be parametrized with the standard Heisenberg–Dirac–
van Vleck �HDVV� Hamiltonian.1 Usually, this Hamiltonian
is extrapolated to systems with higher spin moments, and the
interaction between such magnetic sites gives rise to an en-
ergy spectrum with a regular spacing between the different
levels, the so-called Landé pattern: E�S−1�−E�S�=SJ,
where J parametrizes the strength of the magnetic coupling
between magnetic centers. However, in some cases, signifi-
cant deviations from this regular pattern are observed and
extra terms must be added to the HDVV Hamiltonian. One
of the most commonly applied extensions of the HDVV
Hamiltonian is the addition of the biquadratic exchange
term:

Ĥ = �
�ij�

Jef fŜi · Ŝj + �ef f�Ŝi · Ŝj�2, �1�

where �ij� are couples of interacting sites, Jef f is the effective
bilinear exchange, and �ef f is the biquadratic exchange. Nu-
merous theoretical and experimental studies have established
that the biquadratic interaction significantly affects the mag-
netic properties of both ferromagnets and
antiferromagnets.2–6 For instance, the ferromagnetic phase
transition7 changes character from first order to second order
for a critical value �c

ef f. The spontaneous magnetization, the
exchange energy, and the spin-correlation function exhibit
discontinuous jumps at �ef f =�c

ef f and unstable behavior for
�ef f ��c

ef f. One may also quote that from spin wave theory,
both ferromagnetic and antiferromagnetic spin structures
change abruptly to canted ones8 for a critical value of �ef f.
More recently, the phase diagram of the S=1 model given in
Eq. �1� has been precisely studied in triangular lattice in a
magnetic field, with emphasis on the quadrupolar phases9 as
well as in spin 1 chains where the open question of the ex-
istence of a ferroquadrupolar phase between the dimerized
and the ferromagnetic phases is addressed.10

The theoretical explanation of the appearance of a biqua-
dratic exchange was initially given by Anderson11 and
Kittel.12 The analysis of its physical content was performed

based on a Hubbard Hamiltonian applied to a dimer of mag-
netic sites.13 The microscopic origin of the isotropic non-
Heisenberg behavior is reanalyzed here. A magnetic Hamil-
tonian is extracted at the fourth order of perturbation from a
Hubbard Hamiltonian of a trimer of magnetic sites. In com-
parison to previous works, the derivation of the Hamiltonian
is not limited to two-body operators. As shown hereafter, the
resulting effective magnetic Hamiltonian, which contains
three-body operators, dramatically improves the treatment of
the isotropic deviation to Heisenberg behavior with respect
to the Hamiltonian of Eq. �1�.

Let us call a1, b1 and a2, b2 the magnetic orbitals of the
two magnetic sites M1 and M2. To simplify the derivation of
the Hamiltonian, it is assumed that orbitals a and b belong to
different irreducible symmetry representations of the local
point group symmetry. In this way, the model involves only

two hopping integrals ta= �a1�Ĥ�a2� and tb= �b1�Ĥ�b2�. This
simplification has no consequences on the general conclu-
sions drawn in this letter. The HDVV Hamiltonian model
space is restricted to products of atomic ground states. For a
system with two unpaired electrons per magnetic center,
these atomic states are the three ms components of the triplet
�T− ,T0 ,T+� and the corresponding products for the dimer are

T0T0= 1
2 ��a1b̄1+b1ā1��a2b̄2+b2ā2��, T+T−= �a1b1ā2b̄2�, and

T−T+= �ā1b̄1a2b2�. The subsequent second-order perturbation
theory derivation of the HDVV Hamiltonian from a Hubbard
Hamiltonian including the Hund on-site exchange integral JH
provides the physical content of the exchange integral J,

J =
ta
2

Ua
+

tb
2

Ub
, �2�

where Ua and Ub are the energies of the ionic configurations
Ni+Ni3+, i.e., the Coulombic repulsion of two electrons in the
same orbital a or b. The bicentric direct exchange integrals
Ka1a2

and Kb1b2
give a small ferromagnetic contribution to J

and are neglected.
The analysis of the physical content of the interactions

Jef f and �ef f in Eq. �1� can be obtained from the derivation of
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a magnetic Hamiltonian at the fourth order of perturbation
from the Hubbard Hamiltonian on a bicentric system. Omit-
ting terms proportional to U−3 that would bring negligible
contributions and make the presentation heavier, one gets the
following expressions:

Jef f = J +
B2

JH
, �3a�

�ef f =
B2

JH
−

J2

4JH
−

ta
2tb

2

8JH
� 1

Ua
+

1

Ub
� , �3b�

where B=
ta
2

Ua
−

tb
2

Ub
is usually nonzero. One should, however,

note that in some systems, the overlaps between the atomic
orbitals of the two centers are equal for symmetry reasons,
leading to ta= tb and hence B=0 if Ua=Ub. However, in most
cases, one hopping integral is dominant and J and B are of
the same order of magnitude. The largest contributions to the
biquadratic exchange � B2

JH
− J2

4JH
� are provided by configura-

tions involving a locally excited non-Hund singlet state S0:

S0 =
a1b̄1 + b1ā1

	2
. �4�

The energy of the configurations built from a product of an
atomic ground state on one magnetic site and S0 on the other
is only 2JH higher than the energy of the HDVV Hamiltonian
model space functions, while other outer space configura-
tions are higher in energy.

The complete analysis of the magnetic Hamiltonian at the
fourth order of perturbation from the Hubbard Hamiltonian
matrix of a trimer of magnetic sites is rather elaborate, since
the corresponding Hubbard space contains 400 determinants.
This derivation is, however, much easier if one limits the
extraction to the configurations external to the model space
with the largest contribution to the fourth order in the bicen-
tric system, namely, the non-Hund state S0. As will be justi-
fied later and confirmed by the numerical illustration of the
theoretical analysis, the neglect of the other configurations
has actually no significant consequences. Unlike the deriva-
tion performed for the two-center system, the magnetic
Hamiltonian is no longer restricted to two-body operators
when the number of magnetic sites exceeds 2. For the trimer,
locally excited non-Hund states generate interactions which
couple the three magnetic sites through a three-body opera-
tor. To illustrate the mechanism involved in this operator,
two pathways are sketched in Fig. 1 that generate a coupling
between �T0T+T−� and �T+T−T0� at the fourth order of pertur-
bation. The systematic evaluation of all these interactions
leads to the following Hamiltonian:

Ĥ = �
�ij�


Jij
ef fŜi · Ŝj + �ij

ef f�Ŝi · Ŝj�2�

+ �
i,�jk�

�ij
ef f�ik

ef f
�Ŝi · Ŝj� · �Ŝi · Ŝk� + �Ŝi · Ŝk� · �Ŝi · Ŝj�

− �Ŝi · Ŝi� · �Ŝj · Ŝk�� . �5�

Here, �ij
ef f �ik

ef f =
BijBik

2JH
in the derivation that only considers the

non-Hund state S0. These interactions are nonzero for
ta
2

Ua
�

tb
2

Ub
.

To compare the two Hamiltonians �with and without the
three-body operator� and their ability to reproduce the devia-
tions to a strict Heisenberg behavior, the spectrum of both
Hamiltonians will be compared to the “exact” N-electron
spectrum of two-center and three-center embedded clusters
of the La2NiO4 perovskite. These spectra are determined
with ab initio quantum chemical schemes that approximate
as accurate as possible the eigenfunctions of the exact elec-
tronic Hamiltonian. The embedded cluster method consists in
a highly correlated treatment of the electronic structure of a
fragment of the material. This cluster contains a limited num-
ber of magnetic sites �in the present case, two or three Ni
ions� and their nearest ligands �O sites� and is embedded in a
set of pseudopotentials and point charges that reproduce the
main electrostatic effects of the crystal in the cluster region.
The zeroth-order configuration interaction space of the elec-
tronic structure description, called the complete active space
�CAS�, is the Hubbard model space. Hence, nondynamical
correlation effects are exactly treated. Next, a variational
treatment of the difference dedicated configuration interac-
tion �DDCI� space is performed to include the screening ef-
fect, responsible for the decrease of the on-site Coulomb
repulsion U, and, consequently, the increase of the exchange
integral Jef f.

The DDCI method is implemented in the CASDI code14

and is one of the most precise ab initio methods available for
the treatment of magnetic systems. The method has fre-
quently been applied to extract accurate effective
interactions15 in strongly correlated materials. The magnetic
orbitals are optimized with the complete active space self
consistent field �CASSCF� method. These orbitals are
strongly localized on the Ni2+ ions with small delocalization
tails on the neighboring O, see Fig. 2. Due to the larger Ni-O
distance in the z direction, the Ni 3d�z2� orbitals are less
destabilized by the crystal field in comparison to the
Ni 3d�x2−y2� orbitals. For symmetry reasons, the electron
occupying the b1=d1�z2� 
respectively, a1=d1�x2−y2�� or-
bital of atom 1 can only delocalize into the b2=d2�z2� 
re-
spectively, a2=d2�x2−y2�� orbital of atom 2. Hence, only the
ta and tb hopping integrals are nonzero. The electronic circu-

FIG. 1. Two pathways of the fourth-order quasidegenerate per-
turbation theory interaction between T+T−T0 and T0T+T−. The cou-
pling goes through ionic configurations, then a function involving a
non-Hund state, and finally again ionic configurations. The local
spin functions T0 and S0 are, respectively, distinguished by the signs
� and � in upper index of the parentheses.
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lation between the left and right orbitals is clearly less im-
portant for the d�z2� orbitals than for the d�x2−y2� orbitals,
for which a superexchange mechanism occurs involving the
2p��� orbital of the bridging oxygen. As a consequence, the
B terms are nonzero 
see Eq. �3�� and one may expect that
the three-body operator is active in this system.

The ab initio spectra of both the dimer and a linear trimer
have been calculated at several levels of correlation:
CASSCF, CAS+DDCI2, CAS+DDCI, and extended
CAS+DDCI2.16,17 The deviation from the Heisenberg be-
havior may be appreciated by the spread of the J values
which are extracted from the energy difference between sev-
eral spin states. The minimal Jmin and maximal Jmax values
are reported in Table I, as well as the percentage of variation

in J defined as �=100�
2�Jmax−Jmin�

Jmax+Jmin
. In the first place, we ob-

serve that the calculated values of Jef f compare very well
with the experimental value J=30 meV.18 The calculation of
the trimer at the CAS+DDCI level is unfortunately impos-
sible due to the large size of the configuration interaction
space. Therefore, the discussion of the model Hamiltonians
will be based on the comparison with the CAS+DDCI2
spectrum. Although this spectrum includes only partially the
important screening effects, it preserves the nature of the
interactions and their physical content.

The interactions Jef f �bilinear exchange�, �ef f �biquadratic
exchange�, and �ef f �three-body interaction� are optimized to
minimize the difference between the spectrum of the model
Hamiltonians and the ab initio spectrum. Table II collects the
results of the parameter optimization. One must note here
that the numerical procedure of optimization of the interac-
tions phenomenologically takes into account contributions of
any outer space configurations such as the di-ionic and other
non-Hund configurations that were neglected in the deriva-
tion of Eqs. �3a� and �3b�. The deviation of each state can be
appreciated by the difference between the model and the ab
initio energy. To get an average deviation per state, we have
added all these energy differences and divided by the spec-
trum width and the number of states. A percentage of devia-
tion to the Heisenberg behavior �	� is then defined such that
the HDVV Hamiltonian 
case �a�� reproduces 0% of the de-
viation while the ab initio spectrum reproduces 100%.

The introduction of the biquadratic first neighbor ex-
change interaction 
�12

ef f, case �b�� only accounts for 7.5% of

TABLE I. Exchange integrals �in meV� extracted from the
ab initio dimer and trimer spectra. The active space in the
CAS�ext�+DDCI2 calculation is extended with the 2p��� orbital of
the bridging oxygen.

Dimer Trimer

Jmin Jmax � Jmin Jmax � �%�

CAS 7.40 7.55 2.7 7.33 7.66 4.4

CAS+DDCI2 19.13 20.22 5.5 18.57 21.60 15.09

CAS+DDCI 24.35 26.46 8.3

CAS�ext�+DDCI2 26.99 29.52 9.0

TABLE II. Effective interactions �in meV� extracted from the
CAS+DDCI2 spectrum of the trimer. 	 is the percentage of devia-
tion accounted for by the model.

Models

�a� �b� �c� �d� �e� �f�

J12
ef f 20.12 20.24 20.085 20.086 20.38 20.38

J13
ef f 0.077 0.075 0.057

�12
ef f 0.301 0.073 0.368 0.368

�13
ef f 0.002

�12
ef f�23

ef f 0.259 0.268

�12
ef f�13

ef f 0.005

	 0 7.5 9.4 15.1 84.5 100

FIG. 2. Left strongly localized orbitals.
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FIG. 3. Comparison of the model spectra with the
CAS+DDCI2 spectrum. �a� Heisenberg model with J12

ef f, �b�
Heisenberg model extended with �12

ef f, �e� magnetic Hamiltonian
given in Eq. �5� including J12

ef f, �12
ef f, and the three-body operator

interactions �12
ef f�23

ef f, and �f� magnetic Hamiltonian given in Eq. �5�
extended with the second neighbor interactions J13

ef f, �13
ef f, and

�12
ef f�13

ef f.
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the deviation observed in the ab initio spectrum. Figure 3
shows that the Hamiltonian given in Eq. �1� cannot remove
the degeneracy between the 3B3u and the 5Ag states, where
this loss of degeneracy is actually the most remarkable dif-
ference between the spectrum of the HDVV Hamiltonian and
the ab initio spectrum. The second neighbor interaction J13

ef f

does not significantly improve the model spectrum 
cases �c�
and �d��. Table II indicates that J13

ef f is small and 	 remains
quite small. Case �e� considers the Hamiltonian given in Eq.
�5� with bilinear and biquadratic exchange and the three-
body interaction parametrized by �12

ef f�23
ef f. Initially, only first

neighbor interactions have been optimized. The three-body
operator introduces a major improvement in the treatment of
the deviations from the HDVV Hamiltonian observed in the
ab initio spectrum. The model spectrum reproduces 85% of
the deviations and is able to lift the degeneracy between the
3B3u and the 5Ag states. �12

ef f�23
ef f is of the same order of mag-

nitude as �12
ef f, which, in turn, has approximately the same

value as in case �b�. The increase of 	 is not just an effect of
the increasing number of parameters. Notice that it is the
same as in case �d�, but the differences with the ab initio
spectrum are significantly smaller than after the fitting with-
out the three-body interaction. Finally, the values of the in-
teractions have been refined considering second neighbor in-
teractions 
case �f�� in order to evaluate the consistency of
the extraction. The number of extracted parameters is now
equal to the number of energy differences, and hence, the
percentage of deviation 	 accounted for is 100%. It is, how-
ever, interesting to note that the values of the second neigh-
bor interactions are very small and the first neighbor interac-

tions are almost identical to those obtained in case �e�, thus
validating the use of the smaller set of three parameters for a
subsequent treatment of the collective properties.

In conclusion, the results show that a biquadratic ex-
change is a necessary ingredient but is not sufficient to ac-
count for deviations to strict Heisenberg behavior in ex-
tended systems. In the here-considered example, the three-
body operator happens to be responsible for the main
contribution to the deviation. Recalling that the three-body

interaction can only be active when
ta
2

Ua
�

tb
2

Ub
, it is worth not-

ing that this is generally the case and that this interaction is
most probably of importance in other systems. At the fourth
order of perturbation, four-body operators involving non-
Hund states cannot appear in the Hamiltonian of a tetrameric
cluster. They would only appear at the sixth order of pertur-
bation and, hence, can safely be neglected. Let us mention
the existence of ring four-body operators in plaquettes in-
volving interactions proportional to t4 /U3 �which have been
neglected here�.

The study of collective properties in extended systems
should be performed using a magnetic Hamiltonian involv-
ing three-body operators. This will be the subject of a forth-
coming paper.
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