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Temporal evolution of step-edge fluctuations under electromigration conditions
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The temporal evolution of step-edge fluctuations under electromigration conditions is analyzed using a
continuum Langevin model. If the electromigration driving force acts in the step up or down direction, and
step-edge diffusion is the dominant mass-transport mechanism, we find that significant deviations from the
usual 74 scaling of the terrace-width correlation function occurs for a critical time 7 which is dependent upon
the three energy scales in the problem: k37, the step stiffness, v, and the bias associated with adatom hopping
under the influence of an electromigration force, +AU. For (1<7), the correlation function evolves as a
superposition of /4 £'* power laws. For t= 7 a closed form expression can be derived. This behavior is
confirmed by a Monte Carlo simulation using a discrete model of the step dynamics. It is proposed that the
magnitude of the electromigration force acting upon an atom at a step edge can be estimated by a careful

and

analysis of the statistical properties of step-edge fluctuations on the appropriate time scale.
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I. INTRODUCTION

During the past decade, continuum models and discrete
lattice simulations have been applied to understand direct
imaging observations of the thermal fluctuations of step
edges in which the step position is monitored as a function of
time."? Of particular interest has been the study of the dy-
namics of the equilibration of terrace width distributions
where the temporal evolution of step-edge fluctuations are
driven by the exchange of atoms between the step and the
adjacent terrace and/or by motion of adatoms along the step
edge itself.3-8 It is well known that the position of the step
edge, as described by its temporal correlation function, has a
time dependence that scales as a power law with an exponent
characteristic of specific atomic processes driving the step
fluctuations, 4. In cases where mass transport at the step is
dominated by diffusion of atoms along the step edge, 8
=1/4. When mass transport proceeds via exchange of atoms
between the step edge and the terrace B=1/2. Careful ex-
periments allow a crossover from "4 to t!? scaling to be
observed as a function of the sample temperature.® Further,
experimental measurement of the correlation functions have
been used to determine thermodynamic properties of the
steps, such as the step stiffness.!?

In this paper we investigate how the scaling of the step-
edge fluctuations is changed by the presence of an electromi-
gration force'® acting upon atoms diffusing along the step
edges. The primary motivation for this study is the possibil-
ity of using measurements of these changes to obtain infor-
mation about the electromigration force itself. In conducting
materials, a surface electromigration force can be generated
by passing an electrical current through the sample.!'~?? In
terms of a simple discrete model, the presence of the elec-
tromigration force introduces a small bias in the diffusion of
atoms at the step edge, parallel to the current (and field). By
convention, this bias can be expressed as an energy differ-
ence between atoms diffusing parallel or antiparallel to the
current AU=Z"¢Ea , where E is the electric field applied to
the sample, 7" is the effective valence of adatoms, and a | is
the lattice spacing perpendicular to the step edge. A charac-
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teristic property of surface electromigration is that the elec-
tromigration bias, AU, is several orders of magnitude smaller
than the other energy scales in the problem, ya , where vy is
the step stiffness and the energy associated with thermal fluc-
tuations, kz7. This suggests that thermal fluctuations will
completely dominate the short-time behavior of the step fluc-
tuations with the effect of the electromigration bias emerging
only on much longer time scales. Nevertheless, such time
scales (of the order of seconds) are accessible to experiment
offering the possibility that the observation of step fluctua-
tions under electromigration conditions may allow us to ob-
tain quantitative information about the magnitude of the
force itself; a quantity that, to date, has been hidden from
experimental study.

This paper is organized as follows: In Sec. II we present a
continuum theory of step-edge fluctuations under electromi-
gration conditions. In Sec. III we test the fidelity of the
theory by showing the results of a Monte Carlo simulation of
the temporal evolution step correlation function. Concluding
remarks are contained in Sec. IV.

II. THEORY

In order to describe the dynamics of a step-edge evolving
under electromigration conditions we employ the usual
Langevin formalism where each degree of freedom diffuses
towards lower energy with a velocity that is proportional to
the energy gradient, subject to random thermal fluctuations.
The position of step edge is described by its edge profile
y(x,t) where the x axis is oriented parallel to the step edge.
y(x,1) is the position of the step edge at x and at time .

In this paper we consider the limiting case where the step
motion occurs most easily by adatom diffusion along the step
edge itself. Adatom exchange between the step edge and the
adjacent terraces, via attachment and detachment, is ne-
glected. It is well known that atomic diffusion along a step
edge is driven by the step curvature,?? which generates a flux

_ Doy

Je kT

Vik, (1)

where J. is the curvature-driven flux, Dszaﬁ/rh is the sur-
face diffusion constant, g is the atomic diameter, é;=a is
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the width of an atom perpendicular to the step, 7, is the
average time between hopping events, and 1y is the step stiff-
ness. V,k is the gradient of the curvature along the step edge.
Mass conservation determines the normal velocity of the step
edge,

—n=-0V;-]. (2)
ot
where () is the area of a single atom and 7 is normal to the
step edge.
The inclusion of a thermal noise term, 7 and linearization
of the above equation leads to the well-known equation of
motion for a step edge?

— t ,1), 3
(24522, G)
where we have defined
32
aya
== )
Th

We model the effects of electromigration by adding to this
equation of motion a term generated by a constant force, F
=Z"¢E, felt by atoms at the step edge, which arises from the
application of an electric field, E, to the material oriented
parallel to the y axis. Z" is the effective valence of an atom at
the step edge. The electromigration force generates an addi-
tional flux,

_ DsﬁsZ*eEH
Mt

_Dxé‘sZ*eE( Vi ) )

QkT \/1 +y)2c

where E; is component of the electric field along the step
edge. y, indicates an x derivative.

The energy of any step configuration, relative to the en-
ergy of the straight step, is determined by the step stiffness y
and the electromigration force, F, felt by atoms at the step
edge. If the force acts perpendicular to the step edge (i.e.,
when F>0, the force acts in the +y, or step down, direction)
then, for small fluctuations, one can linearize the stochastic
equation of motion for the step edge to obtain the following
Langevin equation for the step dynamics,

(Lmﬁ LF_ 7
ot kT ox*  kTaa, o

)Y(x 1) = nlx,1), (6)

where aq; and a, are the lattice parameters parallel and per-
pendicular to the step edge. The noise term, 7, describes the
thermal fluctuations and is correlated because, in our model,
the random hopping of atoms occurs only between adjacent
step-edge sites,

s
<77(x,t)77(X',t')>=2Fh5(t—t’)@5(x—X’)- (7

To first order, the electromigration force does not alter the
correlation properties of the noise so that in the single-jump
regime, Eq. (4), remains valid.

Before proceeding, for notational simplicity we rewrite
Eq. (6) as
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The parameter g. depends only on the magnitude of the elec-
tromigration force and in Eq. (6) the = denotes the force
acting in the step-down (+) or step-up (—) direction.

In the case where there is no random thermal noise (i.e.,
T—0), Eq. (6) predicts that the amplitude of a small sinu-
soidal fluctuation of the step-edge profile, with wave vector
q, evolves according to the following dispersion relation:

(‘9 ” ) (eut) = 7). (8)

where

iw=-aq (¢’ £ q;). (10)

This is the same dispersion relation as the one that describes
step flow under growth conditions.>*=2® If the electromigra-
tion force acts in the step-up (+) direction the step fluctua-
tions are linearly stable. For a force acting in the step-down
direction there exists a linear instability which initiates the
well-known phenomenon of electromigration-induced step
wandering for fluctuations with wave vector smaller than
q.. 2 The critical wavevector is an important parameter in
our Langevin model that, from Eq. (9), is determined by the
ratio of the electromigration force and the step stiffness.

In order to determine the statistical properties of the solu-
tions of Eq. (6) we take the usual approach and first derive
the Green’s function for the problem using standard Fourier
transform methods,

+00

Glx, —a( g3 (-1 k=) g (11)

e
TJ

In terms of the Green’s function, the displacement of the step
at time ¢ is

y(x, ") = y(x,t )+J f G, t"|x",0)m(x’ ,t")dx' dt.
(12)

We can now compute the time correlation function of the
step edge, G(1), after time t=1"—1" has elapsed,

g() =((x.1") = y(x,1)%). (13)

Substituting Eq. (11) into (12) and using the correlation
properties of the noise [Eq. (7)] we obtain, after some calcu-
lation,

r, A
gt(t)z 21/4 f (1

ma)_., (K +qc)

—2a(k4iq§k2)t)dk (14)

or, using substitution,

( ) t1/4< (kT)31"h> l/423/4f 1
0

Y ™ (u2 +Vatq) )
X(1- e_2”4e:2”2V’“4?’)du. (15)
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When there is no electromigration force (i.e., |F|=0, ¢,
=0), the integral in Eq. (15) is clearly time independent and
we recover the result derived by Bartelt ez al.,’ where g(1),
the step-edge fluctuation, evolves with the well-known ¢4
scaling law characteristic of the step-edge limited diffusion,

kT)L,\"™2 (3
tim gi<r>zgo(r>=z“4(%) ;F<Z>' (16)

It is helpful to reexpress Eq. (16) in terms of the average
time, 7y, that it takes for the mean-squared width of an ini-
tially straight step to reach a value equal to gj(7)=a’ (ie.,
one square lattice spacing),

[ 1/4

go(t)=aL<—) ) (17)
)
where
2 3 4

Ya, m
= . 18
0 Th(zm;) (2"41“(3/4)) (18)

When the electromigration force is finite (i.e., |F|>0), it
is apparent from Eq. (15) that this scaling behavior is modi-
fied by the appearance of an explicit time dependence in the
integral. This can be seen more clearly by defining a critical
time, 7, and a rescaled time, {=t/7, where

1 kT \*( va’
T=—4=2Th<—) (&> (19)
67 ¢ FaJ_ ZkTa”
Then, Eq. (15) can be rewritten as
1/4
t t
2:(1) =ai<—) 1i<—>, (20)
70 T

where

(1- 6_2"4612”2\2)6114

1 o1
R EYY Jo (u? =)
(21)

I, is a universal function of the rescaled time, £, and is nor-
malized such that I.(r— 0)=1. The integral appearing in Eq.
(21) is easily evaluated numerically and is shown in Fig. 1 in
which we display /. plotted as a function of the rescaled time
{ (i.e., time is expressed in units of 7). The solid curves show
I, obtained for F>0 (step-up), and F<O0 (step-down) elec-
tromigration forces [for F=0, I.({)=1].

From Fig. 1. it is apparent that g.(¢) [Eq. (20)] deviates
very significantly from the #'# scaling behavior of g,(z) [Eq.
(17)] as t approaches 7 ({—1). These deviations begin to
appear at earlier times, 1~ 0.17, when the effect of the force
on the evolution of the step fluctuations begins to be felt.
This can be seen more clearly in Fig. 2 which displays the
correlation function of a step plotted as a function of time for
7o=5s and 7=10*s. The values for these parameters were
chosen so that 7/ 7y~ 10, a ratio typical of accelerated elec-
tromigration experiments. As noted above, deviations from
14 scaling start to appear when ¢~ 0.17=100 s. The results
shown in Figs. 1 and 2 have a simple qualitative interpreta-
tion; the short time behavior of the step fluctuations (1< 7) is
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FIG. 1. The integral function /() [Eq. (21)] plotted as a func-
tion of the rescaled time {=¢/7 for no electromigration force (F
=0), the electromigration force in the step-down direction (F>0)
and in the step-up direction (F<0).

completely dominated by the thermal fluctuations and the
effect of the electromigration bias emerges only at later
times. Such behavior is typical of the dynamics of diffusion
driven by weak external forces.

It is instructive to perform a power series expansion of the
integral about {=0 such that Eq. (20) becomes

14 12 3
B A
7o T T T
(22)

The expansion coefficents can be obtained analytically,

T =0.3487 1201500, (23)
(11/2=—32= . N a1=%= . .
6r'(3)
Shown as the dashed lines in Fig. 1 are the results of this
series approximation for I.({) [Eq. (22)], evaluated up to,
and including the terms linear in time. Clearly, this truncated
expression is a reasonable approximation for r=<0.47.

III. SIMULATION

In order to test the predictions of the continuum Langevin
model described above, we developed a Monte Carlo simu-

10 ;
T =5s
0
81 1=10" F>0
F=0
6L ]
=, F<0
Nt
on
4L
2

0 2000 4000 6000 8000 10000 12000
t(s)

FIG. 2. The time corrleation function, g(z), of the step-edge
distribution predicted by the continuum Langevin model [Egs. (20)
and (21)], plotted as a function of time for 75=5 s and 7=10%s.
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FIG. 3. Results of the a kinetic Monte Carlo simulation where
the correlation function of an isolated step is plotted as a function of
the time (measured in Monte Carlo steps per step-edge site, the
lattice spacing is a=1). Shown is g(¢) obtained when the electromi-
gration force acts in the step-up and step-down directions and when
AU=0 (i.e., no electromigration force is acting at the step edge).
The curves shown were obtained by averaging the data from 200
randomly generated replicas after each was equilibrated for 103
Monte Carlo steps.

lation of step-edge fluctuations in the presence of an external
force. In this model, atomic diffusion was restricted to the
step edges with atoms jumping between adjacent step sites
only. Only nearest-neighbor interactions on a square lattice
were permitted (a | =gy=a=1) and were modeled by a single
bond energy e. In order to describe the electromigration
force, the atomic jump probabilities for motion parallel and
antiparallel to the force were biased by a small energy dif-
ferential AU. In terms of the electromigration force F, and
the lattice spacing perpendicular to the step edge a, we have
AU=+Fa.

Simulations were performed for steps of length €
=10 000q fluctuations on a square lattice. Periodic boundary
conditions were employed. The bond energy was set to €
=2.0kpT and the magnitude of the electromigration bias was
|AU|=0.01kzT, a factor of 10* smaller than the typical bind-
ing energy of an atom to the step edge. This value was cho-
sen to generate statistically significant deviations from the
(no-force) ¢!/ scaling within reasonable simulation times. If
€=0.1 eV, and it is assumed that a~ 1.5 A (typical of met-
als), then this bias corresponds to an electric field with a
magnitude of order 1000 V cm™' acting on an atom with
effective valence of Z"~ =10e. In actual accelerated elec-
tromigration experiments, a field of 0.1-1 V cm™! is typical.

Figure 3 shows the results of the simulation where the
correlation function of an isolated step is plotted as a func-
tion of the time measured in Monte Carlo steps (MCS) per
step-edge site. Shown is g(¢) obtained when the electromi-
gration force acts in the step-up and step-down directions
and when AU=0 (i.e., no electromigration force is acting at
the step edge). We define one Monte Carlo step to be equal to
the average time needed for every atom at the step edge to
attempt a hop. The results shown in Fig. 3 were obtained by
averaging the data from 100 randomly generated replicas af-
ter each was equilibrated for 10° Monte Carlo iterations per
site. Comparing the simulation results (Fig. 3) to the predic-
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FIG. 4. A log-log plot of the simulation data shown in Fig. 3.
The dashed line shows the best fit of a power law, (¢/7,)?, to the
no-force (F=0) data; B=0.25, 7,=5 MCS.

tions of the Langevin theory (Fig. 4) it is apparent that the
qualitative features of the continuum theory are reproduced
by the Monte Carlo simulation. These same data are pre-
sented in the form of a log-log plot in Fig. 4. In the absence
of the force (F=0, AU=0), a least-squares fit of the no-force
simulation data shows that g,(¢) is very well fit by a # power
law where 8=0.25+0.01. Therefore, when there is no elec-
tromigration force present in the simulation, the correlation
function of the step evolves according to the well-known ¢/#
scaling, as predicted by the Langevin analysis [Eq. (17)]. By
least-squares fitting the simulation results to Eq. (17) we ob-
tain a value of 7p=5 MCS.

We now consider the results of the simulation obtained for
a finite electromigration force, also shown in Figs. 3 and 4.
Equation (22) suggests that the value of 7 can be extracted
from the simulation results by considering the scaling of the
difference between the correlation functions for the force in
the up- and down-step directions,

_ 12 3/2
A(t)=g+ g_=2a1/2|:£} +0|:t:| Tt (24)

80 T

For the simulation results, this normalized difference is plot-
ted in Fig. 5. The behavior of this quantity is well fit by the
leading order term in Eq. (24) from which we obtain a value
of 7=(6.2+1.0) X 10* MCS.

For comparison with the fits to the continuum Langevin
model, we can estimate 7 from the microscopic parameters
employed in the discrete Monte Carlo model used to gener-
ate the simulation data. Combining Eq. (19) with the step
stiffness appropriate for our model,

2
ya €y

2kTaH 2kBTa||

we obtain an estimate of 7 in units of MCS,

kyT\*( €
= z<ﬂ><i> (—“L ) (26)
Tu AU ZkBTa”
The ratio of the hopping time in the Langevin model 7, to the

time between hopping attempts in the Monte Carlo simula-
tion 7, can be obtained by monitoring the success rate of
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FIG. 5. For the simulation results shown in Figs. 3 and 4; a
log-log plot of the normalized difference [Eq. (24)] plotted as a
function of time (MCS). The behavior of this quantity is well fit by
the leading order term in Eq. (24) (¢!/2, dashed curve) from which
we obtain a value of 7=(6.2+1.0) X 10* MCS.

hops between adjacent lattice sites in the simulation. We find
that 7,/7,=3.6+0.1. Thus our estimate for the value of 7
in the Monte Carlo simulations, used to generate the data
shown in Figs. 3-5, is 7=(6.2+1.0) X 10* MCS. Clearly,
the agreement between the continuum Langevin theory
(r=7.1x10* MCS) and the microscopic model [7
=(6.2+1.0) X 10* MCS] is reasonable. Finally we note that
in the high temperature limit (kzT> €), the ratio of the elec-
tromigration bias to the binding energy at a step edge e, is
related directly to 7 that would be obtained from experiment,

T 1[{ €

2
?5(5) ’ @n

where 7, can be determined from Eq. (18), if the step stiff-
ness is known.
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IV. CONCLUSIONS

The temporal evolution of step-edge fluctuations under
electromigration conditions has been analyzed using a con-
tinuum Langevin model for the case where diffusion is lim-
ited by mass transport along the step edge. We find that the
presence of the electromigration force, felt by atoms at the
step edge, causes deviations from the usual #'/# scaling of the
terrace-width distribution driven by thermal fluctuations
alone. We have identified a critical time 7 that is a function
of the three energy scales in the problem: kzT, the step stiff-
ness, 7y, and the bias associated with adatom hopping under
the influence of an electromigration force, +AU. For (1<7),
the correlation function evolves, to a good approximation, as
a superposition of #'# and *’* power laws. For all 7 a closed
form expression was derived. This behavior was confirmed
by a Monte Carlo simulation using a discrete model of the
step dynamics. Finally we propose that the magnitude of the
electromigration force acting upon an atom at a step-edge
could be determined directly by careful measurement and
analysis of the statistical properties of step-edge fluctuations
on the appropriate time scale.
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