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Dissipation in graphene and nanotube resonators
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Different damping mechanisms in graphene nanoresonators are studied: charges in the substrate, ohmic
losses in the substrate and the graphene sheet, breaking and healing of surface bonds (Velcro effect), two level
systems, attachment losses, and thermoelastic losses. We find that, for realistic structures and contrary to
semiconductor resonators, dissipation is dominated by ohmic losses in the graphene layer and metallic gate. An
extension of this study to carbon nanotube-based resonators is presented.
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I. INTRODUCTION

Nanoelectromechanical devices' (NEMS) have attracted
a great deal of attention, as they are a problem of fundamen-
tal interest, and also because of their potential applications.

Recently, NEMs made from graphene sheets have been
studied,? following work on NEMs based on carbon
nanotubes.>® These devices show unique characteristics, as
graphene sheet stacks have a high elastic modulus and very
small total mass thanks to the low number of atomic planes
(sometimes just even one) composing the bridge or cantile-
ver, allowing for higher resonating frequencies than other
materials of similar dimensions and increased potential sen-
sitivity.

Graphene itself has attracted a great deal of attention,’
because of its unique features. Graphene samples can be
made one carbon layer thick, and doped by an external elec-
tric field. The lattice dynamics of these thin samples have not
been studied in detail yet. Two dimensional systems have, in
addition to acoustic modes, transverse flexural modes,?
which are the ones explored in the experiments considered in
this paper. The quadratic dispersion of these modes lead to a
constant density of states at low energy. Experimental obser-
vations show that free standing graphene is not flat,’~'! but
corrugated. These ripples imply the existence of flexural de-
formations, and can lead to charge inhomogeneities in single
layer graphene at low dopings.'?!3 Most graphene samples
stand on SiO, substrates,'# and the interaction between the
graphene layers and the substrate is not well known. The
experiments discussed in this paper can provide information
on this issue.

The potential sensitivity of a resonator-based detector
may be in practice strongly reduced by dissipative processes
affecting the vibrational mode used for detection, due to the
associated widening of the resonance, which masks the fre-
quency shifts used to determine the presence of external spe-
cies adsorbed or close to the detector. Hence it is of funda-
mental importance to gain knowledge about those damping
mechanisms, to establish their relative importance and de-
pendence on resonator parameters (dimensions, elastic con-
stants, temperature, etc.), which may help to optimize perfor-
mances and determine where efforts should be put, not only
to use them as detectors, but also as tools for the study of
more fundamental questions like the quantum to classical
crossover with increasing system sizes.>!?
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In common resonating structures made of semiconduc-
tors, the prevailing dissipative mechanism with decreasing
size and temperature are surface-related losses: the presence
of the imperfect surface, with its roughness, structural de-
fects, impurities, and dangling bonds, can be modeled by a
distribution of effective two-level systems which couple to
the vibrational eigenmodes of the device.'~'® Many other
processes contribute to a lower extent to the damping of
vibrations in these devices. Some of them are common to all
experimental setups, like attachment losses'®?° or ther-
moelastic damping.?!>3 Others depend on the actuation
scheme: for example, in the magnetomotive actuation
scheme,?* a layer of metal is deposited on top of the vibrat-
ing semiconducting structure to control its motion with the
Lorentz force actuating on the electron current that passes
through the top layer in presence of an applied magnetic
field. This metallic layer increases dissipation in two differ-
ent ways: (i) increasing the local temperature due to electron-
phonon interactions, thus “feeding” other mechanisms whose
effect tends to grow with T; (ii) absorbing energy through the
excitation of electron-hole pairs in the metallic layer due to
the presence of fixed charges in the substrate supporting the
oscillating structure, which create a potential on the electrons
moving within the mobile structure that is time dependent, as
perceived by the latter.

This last mechanism has been ignored until now in the
literature, perhaps due to the small amount of fixed charges
in typical substrates like single-crystal Si or GaAs. But in the
case of graphene or carbon-nanotube based resonators it
must be considered, as it plays a much more significant role.
This is due to the fact that graphene is conducting, and in
some actuation setups, the control over the graphene layer’s
motion is through the establishment of a capacitive coupling
between two charged layers, namely the oscillating graphene
and a doped Si backgate. The number of carriers in both can
be controlled by an external gate.'* The coupling between
the charges of both layers, apart from enabling the control of
the resonator’s motion, causes energy losses which will
dominate at high temperatures. There will be also fixed
charges in the supporting structure, mainly in the SiO, layer
located between the graphene and the doped Si backgate,
absorbing energy too from the resonators motion. In this pa-
per we give will give full account of these processes.

In the following, we start analyzing different dissipative
processes which may be present in devices based on
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TABLE I. Parameters used in the calculations presented in the
main text, adapted to the systems studied in Ref. 4. Bulk data taken
from Ref. 25.

System properties

Dimensions

Thickness ¢ 10X 107 m

Width w 10°°m

Length L 10°% m

Height above substrate d 300X 107 m

Frequency f, 100 MHz

Amplitude A 0.5 nm

Carrier density pc 10'2 cm™2
Properties of graphite

Mass density pS, 2200 kg/m?

Elastic constants

E 10'2 Pa

v 0.16

Debye temperature 6, ~570 K

Specific heat C,, 700 J/Kg K

Thermal conductivity & 390 W/m K

graphene. Our calculations should give reasonable order of
magnitude estimates of the strengths of these mechanisms. In
Secs. II and III we model the absorption of mechanical en-
ergy due to the charge present in the oscillating graphene
sheet, the SiO, substrate, and the Si backgate. In Sec. IV we
discuss the role as attenuation source played in these peculiar
devices by the breaking and healing of bonds gluing the
graphene sheet to the SiO, substrate, a possibility also miss-
ing in current semiconducting resonators. Whereas for the
latter surface-related losses prevail, we show in Sec. V that
for graphene resonators this friction mechanism is highly
suppressed thanks to their high degree of crystallinity. For
completeness, we apply previous results of other works to
estimate the effect of two more friction sources present in all
setups, namely attachment losses and thermoelastic losses, in
Sec. VI. Once these mechanisms have been studied, an ex-
tension of the results to carbon nanotube resonators is pre-
sented in Sec. VIIL.

To make numerical estimates we focus on the devices
studied in Ref. 4. The parameters which characterize the av-
erage oscillator studied there are given in Table I. A sketch of
the system is shown in Fig. 1.

II. STATIC CHARGES AT THE AMORPHOUS
SiO, SUBSTRATE

The graphene sheet can couple electrostatically to static
charges. These charges give rise to a time-dependent poten-
tial acting on the electrons of the vibrating graphene. The
energy is dissipated by creating electron-hole excitations in
the graphene layer. Static charges have been proposed as a
source of scattering by the carriers in the graphene.?6?’

The time-dependent component of the unscreened poten-
tial induced by a charge separated by a distance d in the

PHYSICAL REVIEW B 76, 125427 (2007)

FIG. 1. (Color online) Sketch of the system considered in the
text. v represents the Coulomb interaction between the charged
graphene layer and the Si gate.

vertical direction from the graphene layer, acting on an elec-
tron at position F in the graphene layer, is given, approxi-
mately, by

eZdAelet

V(F,1) = —(|f~|2+d2)3’2’

(1)

where A is the amplitude of the flexural mode, and w is its
frequency. The dissipation depends on the screening by the
graphene layer.?® A calculation of the damping is given in
Appendix A. We find that, for a single graphene layer, a
single charge gives a contribution to the inverse quality fac-
tor of

. kl::d M(J)()dz F (2)
Q= 2hwyd ’
o kpd < 1
F

where M is the mass of the oscillating sheet, kg= 7T\//p_c, and
pc is the density of carriers in the graphene sheet. Typical
values of this quantity are in the range p-~ 10'> cm™, so
that kgd ~ 10>~10°>> 1. Equation (2) can be generalized to a
graphene sheet with N layers:

1 2h

-1 =
\/I\J_dewod2

3)

The suppression with the number of layers is due to the
increased screening in this system.

The total contribution to the inverse quality factor is ob-
tained by multiplying Egs. (2) and (3) by the total number of
charges N,. An upper bound to the density of local charges,
deduced from some models for the electric conductivity of
graphene,”®?’ is p.,~10'> cm™2. Using the parameters in
Table I, we find N~ 10* and Q7' ~ 107! at low tempera-
tures.

This mechanism leads to ohmic dissipation, as the energy
is dissipated into electron-hole pairs in the metallic graphene
layer. Hence the temperature dependence of this mechanism
is given by Q7(T) ~Q7'(0) X (kT/#hw,), and Q™' ~107° at
300 K.
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III. OHMIC LOSSES AT THE GRAPHENE SHEET
AND THE METALLIC GATE

The electrons in the vibrating graphene layer induce a
time-dependent potential on the metallic gate which is some-
times part of the experimental setup. The energy is trans-
ferred to electron-hole pairs created at the gate or at the
graphene layer. These processes contribute to the energy loss
and decoherence of electrons in metallic conductors near
gates.??30

The coupling between charge fluctuations in the two me-
tallic systems is due to long range electrostatic interactions.
The corresponding Hamiltonian is

H=l{f vscr(z,F,t)pC(z,f',t)+f vscr(o’f'/’t)pG(F/)}
2(Jc G
3 2 2
o Pl LE(Z0) (26P]
c2pyw 2 12 [\a2) T\ gy?

where the indices G and C stand for the gate and graphene
layer, respectively. p,, is the mass density of the graphene
sheet, and ¢, w, E its thickness, width, and Young modulus,
whereas @(r,r) represents the vibrating amplitude field of

bending modes and I1=dL/d¢ is its conjugate momentum (L
is the Lagrangian). The self-consistent screened potentials
Vo2, T,1), vy, (0,F,1) are calculated as a function of the
bare potentials v((z,F,?), vy(0,F,7) in Appendix B.

As in the case of Eq. (1), the time-dependent part of the
bare potentials couples the electronic degrees of freedom and
the mechanical ones through the charge p(r) and amplitude
of the vibrational mode Ag and would give rise to a term in
the quantized Hamiltonian of the form

+
oGk H.c.], (5)

H,, o p(F)Ag o (bl +bg) 2 [c
kK’
where Ag and p(F) have been expressed in terms of creation
and annihilation operators of phonons ((i,w;l) and electrons
of a 2D Fermi gas, respectively.

But a realistic model requires taking into account the
screening of the potential associated to these charge fluctua-
tions. In terms of the screened potentials, the induced broad-
ening of the mode (q, wg) of the graphene layer can be writ-
golden rule,” as 2°

9. 66

ten, using Fermi’s

Twy)= > | dF f d*F'{ReVZ,(F, w;)
a=G,C
X ReVe,(F', wg) X Imy“[F — ', wgl}. (6)

The static screening properties, limz_oRex*(q,0), of the
graphene layer and the gate are determined by their elec-
tronic compressibilities, 1€ and 19, respectively. We will as-
sume that the distance between the graphene and the gate is
much larger than the electronic elastic mean free path in
either material, so that their polarizability is well approxi-
mated by
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. VaDa| ('i|2

Qo)~——7—, 7)
A (
where D*=vgl is the diffusion constant, and [ is the elastic
mean free path. The two dimensional conductivity is g¢
=kgl®.

We assume the gate to be quasi-two-dimensional. This
approximation is justified when the distance between the
gate and the graphene layer is much larger than the width of
the gate. In this situation, the broadening of the mode, Eq.

(6), can be expressed as
I'wg) = f kv, (d K, wg)[PImx© + |vscr(0,l—i,wa)|zlme.

(8)

The screened potentials for a graphene layer oscillating in
an eigenmode (q,wg) of amplitude Ag, have in a first ap-
proximation only one momentum component, vw(lﬁ(,w;l)

=0,.,(q, wz) (k—q), and these components are (see Appen-
dix B)

. alx (" + e71") = 2x%e""|pcAge™
seld-G ) = XX = 2%
|GI[= (e + 1) + 205 pyAge ™

2069(1 — e7249)

>

USCV(()?(_i’ (1)(]) =

)

where g=|q| and p¢ is the charge density in the graphene
layer. The results for I'(wg) and Q“(w;]) can be formulated
in terms of the total charge in the graphene layer, Q.
=[d’*pc=~LXwX p.

In the limit of short separation between the layers, d <L,
which is the situation present in current experimental setups,
one has

F(wo) = VC

wA20%| 1 O\ 1
4dZCLCDc+( )VGDG]' (10)

The limit D|q[*>> o for the imaginary part of the suscepti-
bility of a dirty metal, Imy(q, w) = wv/D|q|* has been used.
The first term in the summation describes losses at the
graphene sheet, and the second at the gate. The associated
inverse quality factor, according to Eq. (A6), is given by

hQ> 1 <VG>2 1 ]

-1 C

~—C — .11
0 (@) 2Mwod2[vCDc+ ) 19D ()

To make numerical estimates, we use the parameters in Table
I, with v°(E) = E/2mh*v%, vy~ 10° m/s for a single layer of
graphene, and v°(E)=(Nv)/v for a stack of N layers.>' Car-
riers in graphene stacks have large mobilities,'* and we take
D1~ 10%. Typical charge densities for the graphene layer
are pc~ 10'> cm™2, leading to a total charge Qr~ 10*. For
these parameters, the contribution of the graphene sheet is
Q7' ~1078. The relative contribution from the gate depends
on the distance to the graphene sheet. For a Si layer with
DY1S=10 and at short distances, the contribution to the

125427-3



SEOANEZ, GUINEA, AND CASTRO NETO

damping from the gate is of the same order as that of the
graphene sheet.

Damping is associated to the creation of e-i pairs in a
metal, which implies that this mechanism is ohmic. The in-
verse quality factor should increase linearly with tempera-
ture, leading to Q‘1 ~ 1072 at 300 K.

IV. BREAKING AND HEALING OF SURFACE BONDS:
VELCRO EFFECT

In the fabrication process of the device, the graphene flake
is deposited on the SiO, substrate, and becomes linked to it
through hydrogen bonds created by the silanol groups
(SiOH) present at the substrate’s surface. When the flake is
set into motion, some of these bonds may repeatedly break
and heal (the Velcro effect’?), causing dissipation of the en-
ergy stored in the vibration. Numerical estimates are difficult
to make, but nevertheless two qualitative arguments showing
that its role in the damping is probably negligible can be
presented:

(i) This mechanism is expected to be temperature inde-
pendent, in contrast with the strong decrease of friction ob-
served as temperature is lowered.*

(ii) The elastic energy stored in a typical graphene oscil-
lator of lateral dimensions w~1 um is about 10 eV, when
the amplitude is ~1 nm. This means about ~107 eV per
nm?. On the other hand, the energy per hydrogen bond is
about 107! eV, and typical radical densities at SiO, surfaces
are®> ~1 nm~2. Hence the elastic energy available on aver-
age for each hydrogen bond is much less than the energy
stored in the bond. Only rare fluctuations, where a significant
amount of energy is concentrated in a small area will be able
to break bonds, and to induce energy dissipation. Note, how-
ever, that this argument ceases to be valid for very large
amplitudes =30 nm. For higher amplitudes, this mechanism
can induce significant losses.

V. DISSIPATION DUE TO TWO-LEVEL SYSTEMS

This is the typical mechanism for the damping of sound
waves in insulating amorphous materials.>*—*% An atom or a
few atoms can have two nearly degenerate configurations. A
vibration modifies the energy difference between these situ-
ations. This mechanism leads to the damping of acoustic
phonons in amorphous SiO,.% It is also expected to domi-
nate friction in many NEMs.?* We expect the graphene sheet
to show a high degree of crystallinity, and we will only con-
sider two-level systems (TLSs) in the rest of the structure.

The TLSs can only dissipate energy if they are coupled to
the vibrating graphene sheet. A possible mechanism is the
existence of charge impurities associated to these defects
(fluctuating charges), which are electrostatically coupled to
the conducting electrons in the graphene.

We expect this mechanism to be less effective in the de-
vice considered here than in NEMs made of semiconducting
materials, as now the TLSs reside in the SiO, substrate, not
in the vibrating structure. The coupling, arising from long
range forces, will be in comparison accordingly suppressed,
by a factor of order (a/d)", where a is a length comparable to
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the interatomic separation, and n describes the decay of the
coupling (n=1 for the Coulomb potential between charged
systems).

The temperature dependence of the contribution of TLSs
to Q7! is determined by the density of states of the modes
coupled to the TLSs and the distribution of TLSs in terms of
their parameters (tunneling amplitude A and bias AY).! The
Hamiltonian describing the coupling of the effective TLS’s
and the oscillating graphene sheet is given by!'®

Ap N N
H= €0, + 'y_O(TZE )\k(bk + blk) + 2 ﬁwk(bll(bk + H.C.),
€ x k

(12)

where €=/(Aj)*+(Af)%, vy is the coupling constant, which
will be strongly suppressed in these devices as compared to
attenuation of acoustic waves in amorphous materials, y
~1eVX(ald)", b]t represents the phonon creation operators
associated to the different vibrational modes of a sheet, and
Ek)\k(bk+bjk) represents the coupling to the strain tensor u;;.
There are two types: compression modes (longitudinal
waves) and bending modes. The damping is due to the initial
transfer of energy from the vibrational mode studied by the
experimentalists to the TLSs, which in a second step transfer
this energy to the rest of the modes. The properties of
the spin-boson model, Eq. (12), are fully determined by
the power law s of the spectral function,”” J(w)
=3 AL €S w-w) ~ aw! wf, where w, is the fre-
quency of mode k, « is an adimensional constant, and w,,, is
the upper cutoff of the phonon bath. For this system, com-
pression modes gives rise to a superohmic, s=2, bath, while
the bending modes constitute an ohmic bath, s=1, and thus
will prevail as a source of dissipation at low temperatures.’’
We will therefore restrict our analysis to the dissipation
caused by the ohmic component of the vibrational spectrum.

Applying the method in Ref. 16 to the two-dimensional
(2D) bending modes of the graphene sheet, one arrives at
J(w)=aw, with

az4( AX)Z p/2(1+v)3/2(1 )1/2
RPEY[9 4 3v/(1 = 2v)]°

(13)

Here v is the Poisson ratio of graphene. Choosing fairly sym-
metrical TLSs, Ay/e~ 1, for the parameters in Table I, «
~107 X (a/d)®", very small. In Ref. 35 an expression is
given for the inverse quality factor of a vibration damped by
TLSs in amorphous insulators,

1 max
0 (o,1)= Eka f du- _c(wT) (14)

where u=A,/€, €,,~5 K, and (u\s“ 1 —uz)‘l comes from the
probability density of TLS’s in an amorphous solid, like
Si0,. 07! (w,T) is a function of C(w,T), the Fourier trans-
form of the correlation function C(#,T)={0.(r)0.(0))s. For
biased TLSs and a<1 an extensive analysis of C(w,T) is
performed in Ref. 38, where several expressions are provided
in different limits. Using them, the estimate for Q~'(w,7)
follows:
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Py |4 T
0 N w,T) = ﬁi{ ?Traemm + ?asz} , kT > €,,,
Py adm
N, T) =~ ———kT, kT <
(15)

In the range of temperatures of current experiments (5
< T<300 K), the dependence of dissipation with T is weak,
and Q7' ~107%X (a/d)* ~107%2. The main uncertainty of the
calculation has been the use of the TLSs’ distribution as-
sumed for amorphous solids,*® but due to the small value of
a a weak dissipation is expected also with a modified distri-
bution. Thus the conclusion is that the relative importance of
TLSs damping is much smaller for graphene than for other
NEMs devices.>340

VI. OTHER FRICTION MECHANISMS
A. Attachment losses

The energy is transferred from the resonator mode to
acoustic modes at the contacts and beyond.!%?0

The main expressions needed are given in Ref. 20 When
d>t, and d is much smaller than the wavelength of the
radiated elastic waves in the SiO, substrate, the contribution
to the inverse quality factor is given by

o= (1) JEED =]
L\d pyEC

where the superscript O applies to the silicon oxide, and v
stands for Poisson’s ratio. The range of values of the quality
factor varies from Q~!~5X107° for a graphene monolayer
to Q7 '=5x% 1073 for a stack with 30 layers and =10 nm.
These quantities probably overestimate the attachment
losses, as they do not include the impedance at the
Si0,-graphene interface. This damping process due to energy
irradiated away from the resonator should not depend on
temperature.

(16)

B. Thermoelastic effects

When the phonon mean free path of the acoustic phonons
is shorter than the wavelength of the mode under study, the
acoustic phonons can be considered a dissipative environ-
ment coupled to the mode by anharmonic terms in the ionic
potential.>!~23 These anharmonic effects are described by the
expansion coefficient a and the thermal conductivity k. We
follow the analysis in Ref. 41. For a rectangular beam vibrat-
ing at a frequency w the inverse quality factor is

E&*T

G

wTZ
1+ (w7y)?’

0;'(1) = (17)
where E is the Young modulus, C, is the specific heat at a
constant pressure, and 7, is the thermal relaxation time asso-
ciated with the mode, which in the case of a flexural vibra-
tion is given by 7,=r2C,/(7«). This estimate assumes that
the graphene sheet is weakly deformed, and that the typical
relaxation time is associated to the diffusion of phonons over
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TABLE II. Contribution of the mechanisms considered in the
text to the inverse quality factor Q~!(T) of the systems studied in
Ref. 4.

Temperature

0~(T=300 K) dependence
Charges in the SiO, 1077-107° T
Charges in graphene sheet 1072 T
and metallic gate
Velcro effect absent 7°
Two-level systems 10722 A+BT
Attachment losses 1076-107° 7°
Thermoelastic losses 1077 T

distances comparable to the thickness of the sheet.

Although better approximations are available in the
literature,> Eq. (17) is enough for an estimate of the order of
magnitude of Q~'. Using the parameters from Table I, for ¢
=10 nm and f~ 100 MHz, we find that w7,< 1, and

Ed*Twt?

0, (T=300 K) = = ~5x%x107. (18)

VII. EXTENSION TO NANOTUBE OSCILLATORS

The analysis presented here can be extended, in a straight-
forward way, to systems where the oscillating part is a nano-
tube. We expect in these devices a larger impedance between
the modes of the nanotube and those of the substrate, so that
attachment losses will be suppressed with respect to the es-
timate presented here for graphene.

The damping mechanisms which require long range
forces between the moving charges in the nanotube and de-
grees of freedom of the substrate (fluctuating and static
charges) will not be significantly changed. A nanotube of
length L at distance d from the substrate will interact with a
substrate area of order (L+d) Xd. A similar estimate for a
graphene sheet of length L and width w gives an area ~(L
+d) X (w+d). As L~w~d~1 um, the two areas are com-
parable.

On the other hand, ohmic losses induced in the nanotube
will be reduced with respect to the two-dimensional
graphene sheet, as the number of carriers is lower in the
nanotube. Finally, we expect a longer phonon mean free path
in the nanotube, which implies that thermoelastic effects will
be reduced.

VIII. CONCLUSIONS

We have considered six possible dissipation mechanisms
which may lead to damping in a graphene mesoscopic oscil-
lator. The main results are summarized in Table II. We expect
that the calculations give the correct order of magnitude and
dependence on external parameters.

We find that at high temperatures the leading damping
mechanism is the ohmic losses in the metallic gate and the
graphene sheet. This effect depends quadratically with the
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total charge at the graphene sheet, which can be controlled
by the gate voltage.

At low temperatures attachment losses limit the quality of
the vibration. If the resonator is strongly driven, a new
damping mechanism may come into play, the Velcro effect,
which may limit substantially the quality factor as compared
with the slightly driven case. The high crystallinity of the
resonators eliminates the main source of dissipation in semi-
conducting resonators, namely surface-related effective TLSs
coupled to the local strain field. These conclusions apply
with only slight modifications to carbon nanotube-based
resonators.
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APPENDIX A: COUPLING TO FIXED CHARGES
IN THE SiO, SUBSTRATE

The Fourier transform of the potential in Eq. (1) is

V(q, w) =2me*Ae™ 8w — wy). (A1)

This potential is screened by the polarizability of the
graphene layer,?® so that ¢? has to be replaced by

“ e lq|

L+ e|d[Relxo(dl. @] Re[xo(d

)]’
(A2)

where x, is the susceptibility of the graphene layer. At low
energy and momenta its value tends to the compressibility of
the electrons in the layer:

k
£ N=1
. - Ur
. lt)m ORe[XO(|q ,w)]= Ny . (A3)
q*) L, W—
— N#1
Uf

where N is the number of layers and v is the interlayer hop-
ping element. For a stack with N layers, we have used the
model with one interlayer hopping element,>' which gives
rise to 2N low energy bands, most of which show a quadratic
dispersion.

Using Fermi’s golden rule, we finally find for width of the
graphene mode [v(q, w)=v(-q,w)]:

th*fd2ﬁ|v(ﬁ)|21mXo(ﬁ,wo), (A4)

where
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i, vilg| -
ImXO(q’wO) =~ |w|y2N3/2 s (AS)
BTl N # 1
vEldVp

where, for N# 1, p is the total carrier density. This last ex-
pressions are valid for lengths bigger than the mean free
path, I>1,,5,.

The energy absorbed per cycle of oscillation and unit vol-
ume will be AE=(Q2m/ wp)hwol'y,/twL=27hD,/twL, and

the inverse quality factor Q;ﬁ(wo) will correspond to

LA ATy 1
2mE, twL 1
SPOA®

_ 241,
Ma)(z)A2 '

O () = (A6)

where E; is the elastic energy stored in the vibration, M is
the total mass of the resonator, and A is the amplitude of
vibration. Substituting Eqs. (A1)-(A3) and (A5) in Eq. (A4),
and inserting Eq. (A4) in Eq. (A6), one arrives at Egs. (2)
and (3) for the dissipation due to a single charge in the sub-
strate. The analysis presented here does not consider addi-
tional screening due to the presence of a metallic gate. In that
case, one needs to add to the potential from a static charge,
Eq. (1) in the main text, a contribution from the image
charge induced by the gate. This effect will reduce the cou-
pling between the graphene layer and charges in the vicinity
of the gate.

APPENDIX B: SCREENING OF THE POTENTIALS
AT THE GRAPHENE SHEET AND Si GATE

The equations for the self-consistent potentials v, (z,TF
—T', ) as a function of the bare potentials v}(z,F—F’, w) are
given by

> >y _.C > >y G > oy
Verd,F =T, 0) =05 (d,F -1, 0) + v5(d,F - ', w)
+ J di:lf di:zvcoul(d,i: - i:l’ (,L))XC
c c
X(F| = Fp, @)V, (d, Ty — T/, )

+ f df3f di:4vcou1(d,i: - i:3,(l)))(G
G G

X (i:?a - i:4’w)vxcr(0,i:4 - i:’, (1)) s

> >y _ .G > >, C > >y
V0, F =T, 0) =05 (0,r — ', @) + v;(0,F - 7', w)

+ f di:lf df'zvcoul(o,f - i:l,(l))XG
G G

X(F) = T, )0, (0,1, — T/, @)

+f df'3f dT 40 cou(0,F = T3, ) X©
c c

X(i:3 _i:47w)vscr(d’f'4_i:,’w), (Bl)

125427-6



DISSIPATION IN GRAPHENE AND NANOTUBE RESONATORS

where, for example, in the first equation vg (d,r-7',w) rep-
resents the bare potential experienced by a point charge e in
the graphene layer due to the presence of charges in that
same layer, while v§(d,F—¥', w) is the bare potential expe-

chr(d» ﬁ’ w) = Ug(d5 ('i’w)eqd + Uy (d’ q’w) + UqXC(q’ w)vvcr(d q, w) +v e ~ad G(q’w)vvcr(o q,w
V30,4, ) =6 (0,4, @) + v (d.q, )e? + v, "X (4, )v,,,(d, G, ®) + VX (G, )V, (0, q,w)

where v, =2me?/|q| is the Fourier transform of the Coulomb
potent1a1 in two dimensions, and where vO 0, q,o) and
v ¢(d,q,®) have been expressed in terms of v %(d,q,w) and

v5(0,4,0). Now we can calculate v, (d,q,w) and
U,.,(0,q,w) in terms of the rest of the variables,
(vscr(d) ) ( 1- UqXC - vqe_quG >_1
Uscr(()) C\- qu—quC - UqXG
e 1 )(voc (0) )
X . B3
( 1 ad vg (d) (B3)

The dependence on q and w has been omitted for the sake
of clarity. Now, if we are interested only in the long wave-
length limit quC,vq)(G>> 1, the last equation simplifies to

(vscr(d) ) _ 1
Uscr(o) - U2XCXG(] —-e€
" (U (XC —qd _ XGeqd)
vy (= X+ x°)

vS(O))
><(vff(d) '

Values of v§(0,4,®) and v§(d,q,w)

—qu)

va(= X%+ X9 )
(XGe qd _ Xceqd)

(B4)

Now we will calculate the parts of these terms which will
give rise to a coupling to the vibration. When the graphene
layer is set into motion with a bending mode of wave vector
q and amplitude Ag, the potential of a point charge e in the Si
plane due to the charge in the graphene layer, v$(0,F,7), is

PHYSICAL REVIEW B 76, 125427 (2007)

rienced by a point charge e in the graphene layer due to the
presence of charges in the Si plane. vy, is the two-
dimensional bare Coulomb potential. These equations sim-
plify considerably in the q space:

(B2)
|
vg(0.F,1) = f dr v (F =¥ ,2")p(F',2',1)
B _f 2 2me’py
VE = F)2+ (d+ Age @ o))
_ _f ” 2me’p,
2)c NE-F)+d?
1 . 27TezpoA;le"(‘iE"“’«i’)d
+o| A
2J¢ [(F=F")"+d"]
= f(F) + me*poA e e Tl (BS)

where in the second line an expansion for small A has been
performed. The Fourier transform for w # 0 is

v§(0.K, ") = wepoAae_dqﬁ(E -q) 8w - wy), |G =1/L.
(B6)

Similarly, the potential of a point charge in the oscillating
graphene sheet due to the charge in the Si plane vg (d) is

. 1 ., 2me’py
Uoc(d,r,t) = _J dr' —= 2 i(@r-wg)2
2); \/(r—r) +(d+ Age" )
~ f(r) + wepoAﬁei(‘iF_w(l')

leading to the same expression as Eq. (B6) but without the
factor =94,

(B7)

vg(d,lz,w’) =y €0,k 0")e?. (B8)

Substituting Eqs. (B6) and (B8) in Eq. (B4), one obtains
Eq. (9).
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