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Size-dependent effects on equilibrium stress and strain in nickel nanowires
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Using molecular static calculations with the quantum corrected Sutten-Chen-type many-body potential, we
have studied the stress and strain characteristics in nickel nanowires along [100], [110], and [111] crystallo-
graphic orientations under the equilibrium state. The main focus of this work is the size-dependent effects on
these characteristics above. We deduce from the common neighbor analysis that surface region approximately
consists of two layer atoms. Further, we extract the equilibrium characteristics in both surface and core regions
of nanowires. The results show that with increasing diameter, the equilibrium stress and strain which are
compressive decrease sharply in the core region, while the surface tensile stress starts to increase, and gradu-
ally trends to a nonzero constant. Due to much larger compressive stress and smaller modulus, the core of
[100] nanowire endures larger compressive strain than that of [110] and [111] nanowires.

DOI: 10.1103/PhysRevB.76.125423

I. INTRODUCTION

As one of the most important one-dimensional (1D) nano-
structures, nanowires (NWs) have attracted a great deal of
interests due to their pivotal role in future electronic, opto-
electronic, and nanoelectromechanical systems.l’2 With de-
creasing characteristic dimensions to nanoscale level, the
wires are formed by a reduced number of atoms and the
majority of them are located at the surface. This may lead to
different behaviors when compared to their macroscopic
counterpart and result in strong size effects.’”’

It is of vital importance for us to understand the mechani-
cal properties of nanowires for better control of their fabri-
cation and functionality. However, characterization of these
properties is a challenge to many existing testing and mea-
suring techniques because of the tiny dimension of nano-
wires making the manipulation rather difficult.® To date,
some experimental measurements, such as scanning electron
microscopy, transmission electron microscopy, and atomic
force microscopy focus on the bending tests to investigate
the mechanical responses of Ag, Pb, Au, Si, SiC, and ZnO
nanowires, which have been deduced to different
results.> %1011 For example, some experiments show that
nanowire’s Young’s moduli decrease dramatically with de-
creasing diameters,>* whereas others show an opposite
tendency.>® Especially for SiC and Au NWs, their Young’s
moduli are essentially independent of diameter.!®!" Atomis-
tic computer simulations, usually using semiempirical or em-
pirical approaches to describe interatomic interactions, are an
alternative way to understand the mechanical behavior of
nanowires.'>! These simulations show that size effects!4~16
and nonlinear effects!” play an important role in determining
their properties.

Although there have been many theoretical, experimental,
and computational studies dedicated to explore and explain
the mechanical response of nanowires, the stress and strain
characteristics of nanowires under the equilibrium state are
easily omitted by researchers. Generally, these characteristics
are essentially size dependent and crucial for understanding
the structural evolution and the mechanical behavior of
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nanowires. For example, the surface stress can drive the re-
orientation of nanowires, 829 and further affect their struc-
tural stability and properties.'*~?! So, in this paper, we will
employ molecular static simulations to investigate the equi-
librium stress and strain of nanowires, and address the size-
dependent effects on their characteristics. A brief description
of the computational methods is given in the following sec-
tion. We present the calculated results, discussion, and com-
parisons with other results in the third section. The main
conclusions are summarized in the fourth section.

II. COMPUTATIONAL METHODS

In molecular static calculations, we use the quantum cor-
rected Sutten-Chen (Q-SC)-type potentials modified by
Kimura et al.?? to describe interatomic interactions for metal
nanowires. These potentials represent many-body interac-
tions, and their parameters are optimized to describe the lat-
tice parameter, cohesive energy, bulk modulus, elastic con-
stants, phonon dispersion, vacancy formation energy, and
surface energy, leading to an accurate description of many
properties of metals and their alloys.>*?> For the SC-type
force field, the total potential energy for a system of atoms
can be written as

N

—
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Here V(R;;) is a pair interaction function defined by the fol-
lowing equation:

vmg:(i), 2)

accounting for the repulsion between the i and j atomic
cores; p; is a local electron density accounting for cohesion
associated with atom i defined by
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FIG. 1. Schematic illustration of the simulation cell used to
study the equilibrium characteristics of nanowires. The X axis is the
axial direction and is subjected to periodic boundary conditions,
while the surface is free. (b)—(d) illustrate the crystallographic di-
rections of nickel nanowires. L and R denote the length and radius
of the computational cell, respectively.
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In Egs. (1)=(3), R;; is the distance between atoms i and j, a is
a length parameter scaling all spacings (leading to dimen-
sionless V and p), and ¢ is a dimensionless parameter scaling
the attractive terms, € sets the overall energy scale, and n and
m are the integer parameters such that n>m. Given the ex-
ponents (n,m), ¢ is determined by the equilibrium lattice
parameter, and & is determined by the total cohesive energy.
For the Q-SC-type potential of Ni, the parameters are given
as follows: n=10, m=5, £€=7.3767 meV, ¢=84.745, and a
=3.5157 A.

Circle-cross-section Ni nanowires with diameter ranging
from 1.76 to 17.23 nm are constructed from a large cubic fcc
single crystal of nickel using certain cylindrical cutoff radii
centered at a cubic interstitial site, in which the crystallo-
graphic orientations are shown in Fig. 1. In the Y and Z
directions, the Ni nanowire spans a finite number of unit
cells, while in the X direction, an infinite wire was obtained
by applying the periodic boundary condition. Three types of
nanowires, i.e., [100], [110], and [111] nanowires, are con-
sidered in the present study.

We have performed molecular static simulations to relax
fully these nanowires to a local minimum energy state using
the conjugate gradient method.?® After the initial relaxation,
the nanowires are under the equilibrium state without any
external force so that the average stress over the cross section
is zero. The stress tensor in nanowire system can be defined?’
as

N N N

o

Tap=7, Elmlvlavlﬁ+EzF$Rg , 4)
=

i=1 j>i

where V and N are the volume and total atomic number of
the system, m; and v; are the mass and velocity of the ith
atom, and Fj;; and R;; are the force and distance between
atoms i and j. The first summation in Eq. (4) is zero at
absolute zero temperature. The normal stresses, usually cal-
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FIG. 2. (Color online) The contraction ratio of nanowire’s length
along the X direction after the initial relaxation for three nanowires.
(inset) The distribution of the normal stress (GPa) along the axial
direction in [100] nanowire with 4.56 nm diameter. The positive
indicates the tensile stress, while the negative the compressive
stress. Black point represents the position of atom in this nanowire.

culated from this equation under unstrained and strained
states, are substantially equivalent to that obtained from the
first-order derivative of the total energy with respect to strain
.2l The atomic-level stress sensor associated with the ith
atom is calculated?®?° by

1)1 &
Tp= 15 2 FiRG( (5)
PUO( 20iGey T

where (), is the local volume which can be identified with the
volume of the Voronoi polyhedra®® constructed by the per-
pendicular planes that bisect the lines between atom i and all
its neighbor atoms. However, this method of calculating (), is
time consuming, so Srolovitz et al.3' has obtained a sphere
whose volume is equal to the original Voronoi volume by the
following formulation:

2R
JFi

2> R

J#Fi

(6)
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where a; is the average radius of atom 7, and R;; is the dis-
tance between atoms i and its neighbor atom j. In this paper,
we also use this formulation to calculate the atomic volume.

III. RESULTS AND DISCUSSION

The results of our simulations will be presented here. Fig-
ure 2 shows the contraction ratio of length as a function of
the diameter ranging from 1.76 to 17.23 nm for [100], [110],
and [111] nanowires under the equilibrium state. For each of
three nanowires, the contraction ratio increases with decreas-
ing diameter. This trend is much more remarkable for [100]
nanowire than others. The contraction behavior indicates the
presence of surface tensile stress. In order to display the
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stress distribution in nanowire system, we calculate the nor-
mal stress along the axial direction in Y-Z cross section of
4.56 nm diameter [100] nanowire according to Eq. (5), and
then illustrate its distribution in Fig. 2 (see inset picture). It
can be seen that the stress is tensile in surface region while
compressive in interior region. The stress changes from
—3.5 GPa in the center to 13.4 GPa in the outermost layer,
but it is approximately uniform within a circular region of
1.8 nm radius. This kind of stress distribution is quite similar
to that in [110] and [111] nanowires. The nonzero stress in-
dicates that there are residual strains in nanowire after the
initial relaxation. That is to say, the surface endures the ten-
sile strain while the interior endures the compressive strain,
even if this nanowire is under the equilibrium state.

In order to investigate the size-dependent effects, it is nec-
essary to divide the cross section into interior and surface
regions. However, there is no absolute physical boundary
between these two regions because it is a gradual process
from center layer to outmost layer. For research convenience
and simplification of the problem, we use the common
neighbor analysis®?> (CNA) to analyze the local order in
nanowire and determine whether or not an atom belongs to
surface region. This analysis assigns four indices ijkl to each
pair of atoms, which have common neighbors, and provides
a description of the local environment of the pair.33* Firstly,
those pairs of atoms which are separated by less than a
physically reasonable cutoff distance are designated nearest
neighbors. We use the first minimum in the radial distribu-
tion function of the nanowire for the particular pair of atoms
as the cutoff distance. For those pairs of atoms which are
nearest neighbors i is assigned the value 1. For those pairs of
atoms which are not nearest neighbors but which have com-
mon neighbors i is assigned the value 2. The index j specifies
the number of neighbors common to both atoms. The index k
specifies the number of nearest-neighbor bonds between the
common neighbors. The index [ is needed to differentiate
between the cases when the first three indices are the same
but the bond geometries are different.

Because the different types of pairs are associated with
different types of the local order, the local crystal structure
can be determined by investigating the bonds between the
neighboring atoms to the atom under investigation. All
bonded pairs in the fcc crystal are of type 1421, while the
hep crystal has equal numbers of types 1421 and 1422. We
have calculated CNA indices in a number of atomic configu-
rations extracted from molecular static calculations. Consid-
ering that pairs beside types of 1421 and 1422 cannot reveal
some useful information for fcc metallic nanowire, we have
classified all atoms into three categories. Atoms in a local fcc
order are considered to be inside the nanowire; atoms in a
local hcp order are classified as stacking faults. Atoms in all
other local orders are considered to be part of surface. The
CNA methods have been successfully used to analyze the
structural evolution during the deformation and melting
process.?>-37

Figure 3 illustrates the dependence of the surface volume
to bulk ratio on the diameter for [100], [110], and [111]
nanowires. As expected, this ratio increases with decreasing
nanowire diameter. When the diameter of [100] nanowire is
reduced to 1.76 nm, this ratio rises up steeply to 0.449,
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FIG. 3. (Color online) The fraction of surface volume as a func-
tion of diameter after the initial relaxation for three nanowires. The
discrete points are calculated through the CNA methods; the curves
are fitted to these points using Eq. (7). (inset) Schematic illustration
of the core-surface composite NW model. R and ¢ are the radius
and surface thickness of nanowire, respectively.

which means that almost 44% of the atoms are situated in the
surface region. For [110] and [111] nanowires with the same
diameter, the surface volume ratios are 0.413 and 0.437, re-
spectively. The difference of this ratio among the three nano-
wires is small (below 0.036). If the surface thickness is con-
sidered to be a constant & (see inset picture of Fig. 3), the
surface volume ratio can be expressed as the formulation:
f(D)=45/D—-48/D? in terms of theory of continuum media
matter (D is the nanowire diameter). Due to the fact of a
nanowire consisting of many discrete atoms, the true relation
between surface volume ratio and diameter is somewhat de-
viated from this formulation. Approximately, we apply the
following expression:

f(d) = alD - bID? (7)

to fit the discrete points in Fig. 3 and show the fitted curves
in this figure. We get the fitted results as follows:

a=0.9260 nm and b =0.2348 nm?> for [100] nanowire,

a=0.9522 nm and b =0.4082 nm?> for [110] nanowire,

a=1.0249 nm and b = 0.4485 nm? for [111] nanowire.

We can roughly deduce from these results that the surface
thickness & is 0.66a,, 0.68a,, and 0.73a, for [100], [110],
and [111] nanowires (a is the lattice constant of bulk), re-
spectively. This is in general agreement with the prior simu-
lations on bicrystal® if we consider that the thickness of
bicrystal interface (i.e., 1.6a,) is about twice that of surface.
These results also imply that surface region approximately
consists of two layer atoms.

Once we define unambiguously the surface and core re-
gions, the average stress can be easily calculated under the
equilibrium state. The average normal stress along the axial
of nanowires can be defined as
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FIG. 4. (Color online) The normal stress along the axial direc-
tion as a function of nanowire diameter for (a) core region and (b)
surface region.
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For core region, M is the total atomic number of core region,
and the summation in the first parentheses is exactly the
volume of core region. Similarly, the average stress in sur-
face region can be obtained from Eq. (8) if M is defined as
the total atomic number of surface region, and the summed
atoms are located in surface region.

Figure 4 shows the average stress of core and surface in
nanowires after initial relaxation under the equilibrium state.
When the diameter is increased, it can be easily seen that the
core stress keeps compressive and decreases gradually to
zero, while the surface stress is always tensile and trends to a
nonzero constant. If the diameter is large enough to the mi-
crometer scale or above, the core region is essentially stress-
free, which is quite different to the case of the surface region.
Actually, the surface stress could trend to be a nonzero con-
stant because of the decreasing of coordination. In spite of
the nonzero value, the normal stress averaged over the whole
cross section is approximately zero.

When comparing the difference of the stress among the
three nanowires, we note that the magnitude of the normal
stress in both core and surface regions is always largest for
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[100] nanowire while the smallest for [111] nanowire. As we
know, the compressive stress of core resulted from the con-
traction of nanowire under surface tensile stress during the
initial relaxation. However, the surface stress is closely asso-
ciated with the number of atomic neighbors and interatomic
relative positions. As an example, we calculate the average
coordination of these three nanowires with 4.56 nm diam-
eter, and the values are 8.5, 8.64, and 8.73 for [100], [110],
and [111] nanowires, respectively. It seems that the lower
coordination number results in the higher stress. For these
nanowires, the coordination number of surface atoms is far
smaller than that of core atoms (i.e., 12), and the symmetri-
cal degree of surface atoms is also much lower than that of
core atoms. Due to the broken symmetry and low neighbor
number of surface atoms, the surface region presents consid-
erable tensile stress. Because of the contraction of lattice, the
average interatomic distance among neighbor atoms in core
region is smaller than that in bulk, even though the coordi-
nation number of those atoms is still 12. For instance, the
average distance of nearest neighbors in core region is
0.7036a,, which is evidently lower than 0.7071a, in bulk, so
that the core region generally displays the compressive
stress.

Further, we may estimate the equilibrium strain in nano-
wire. In order to deduce the resultant compressive strain in
core region, we self-consistently simulate the stress-strain
response for nickel bulk by eliminating the surfaces associ-
ated with the nanowires. A uniaxial compressive strain is
applied along the X axis in the range from 0.0 to —4.0% with
a —0.04% increment at each strain step. The periodic bound-
ary conditions are applied in the X, Y, and Z directions under
uniaxial loading process. The conjugate gradient method is
again employed to determine the energy minimum following
each strain step. For metals, it is possible to exhibit nonlinear
but elastic behavior, i.e., the stress is essentially nonlinear to
strain under the elastic limit.> In terms of theory of elastic-
ity, the stress can be approximated by Taylor series expan-
sion

o=0y+ce+de* +0() = ce + de?, (9)

where ¢ is the strain, and the stress oy is zero in unstrained
state. When the strain is small, the fourth term in Eq. (9) may
be omitted, so that the stress can be approximately expressed
as a quadratic function of strain. We adopt a quadratic-type
function to fit the stress-strain curves (see inset picture de-
picted in Fig. 5) with the framework of the least squares
method and present the fitted results as follows:

¢=100.42 GPa and d =479.7 GPa for [100] nanowire,
¢=173.70 GPa and d = — 2347.94 GPa for [110] nanowire,

¢=257.56 GPa and d =-403.92 GPa for [111] nanowire,

where ¢ is essentially equal to Young’s modulus under un-
strained state, and d describes the dependence of Young’s
modulus on the compressive strain. Evidently, Young’s
modulus along the [100] direction decreases with compres-
sive strain, while the opposite is true for the [110] and [111]
directions. This stress-strain response of bulk is in general
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FIG. 5. (Color online) The compressive strain of core as a func-
tion of nanowire diameter for three nanowires. (inset) The elastic
response of nickel bulk for uniaxial strain applied along [100],
[110], and [111] directions under the compressive loading.

agreement with previous ab initio or molecular static calcu-
lations on strained bulk copper.**-#!

According to the elastic response of nickel bulk, we ac-
quire the equilibrium strain of nanowire core (illustrated in
Fig. 5) by comparison its stress at equilibrium state with that
of the bulk strained along the same orientation to this nano-
wire. It can be seen that the compressive strain in core region
decreases with increasing diameter. This variation is gener-
ally consistent with that of the contraction ratio of nanowires
depicted in Fig. 2. Evidently, the core of [100] nanowire
endures a larger compressive strain than that of [110] and
[111] nanowires. This result is closely related to much larger
compressive stress of core and smaller modulus in the [100]
direction. It is worth noticing that we could not ascertain the
equilibrium strain of core for [100] nanowire with 1.76 nm
diameter, since the maximum of compressive stress deduced
from Eq. (9) is 5.26 GPa, which is remarkably smaller than
the compressive stress of core (i.e., 8.56 GPa) calculated
from molecular static simulations. However, we may acquire
compressive strain of 6.06% for [100] nanowire with
3.16 nm diameter (see Fig. 5) through extrapolating Eq. (9).
The compressive strain is lower than 3% for [110] and [111]
nanowires considered in our paper. Due to the larger modu-
lus and the smaller core stress (see Fig. 4), these two nano-
wires endure a much smaller magnitude of equilibrium strain
than [100] nanowire. When the diameter increases to
17.23 nm, the equilibrium strain reduces to 0.385% and
0.23% for [110] and [111] nanowires, respectively. This
small strain is in good agreement with the results of the
contraction ratio (see Fig. 2).

Although we have already obtained the equilibrium strain
of core region, it is still very difficult to estimate the corre-
sponding strain of surface region because we are unable to
obtain stress-strain response of surface with column area as
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presented in our nanowire model, in which surface atoms are
not situated in a certain plane, and each atom has different
atomic environment. There is no universal response to be
suitable for this cylindrical surface with different diameters,
whereas it is undoubted that the surface endures the tensile
strain according to the stress distribution of surface region
(see Fig. 4 and inset picture in Fig. 2). The mechanical be-
haviors, including the elastic and plastic behaviors, are af-
fected greatly by the presence of the equilibrium stress and
strain within the nanowire. For example, their existences in-
duce the variations of Young’s modulus of nanowires, which
have been proved by previous research.!” How these charac-
teristics under the equilibrium state affect the mechanical
behaviors of nanowires is an interesting and challenging
work, and requires our further studies.

IV. CONCLUSIONS

In summary, we have employed molecular static ap-
proaches with the quantum corrected Sutten-Chen-type
many-body force field to investigate the stress and strain
characteristics of nickel nanowires with [100], [110], and
[111] crystallographic orientations under the equilibrium
state. Our studies address the size-dependent effects on these
characteristics. We find that the surface tensile stress of the
nanowires causes them to contract along the length with re-
spect to bulk fcc lattice and induces the compressive stress in
the interior of the nanowires, which is in good agreement
with previous simulations on nanowires. With the framework
of common neighbor analysis, we divide the nanowire into
two regions, surface and core regions, and deduce that sur-
face region approximately consists of two layer atoms. For
three orientational nanowires, the surface stress first in-
creases and then trends to a nonzero constant with increasing
diameter. Due to the larger surface stress, the core of [100]
nanowire is subject to a larger compressive stress than that of
[110] and [111] nanowires. Based on the analysis of stress
characteristics, we estimate the equilibrium strain of nano-
wire core through self-consistent comparison with the elastic
response of bulk counterpart and show that it decreases with
increasing diameter. Owing to much larger compressive
stress and smaller modulus in the [100] direction, the core of
[100] nanowire endures a larger compressive strain than that
of [110] and [111] nanowires. To a certain extent, these size-
dependent equilibrium stress and strain could affect the
structural stability and some properties of nanowires. These
conclusions are summarized from the study of nickel nano-
wires, but they may be broadened further to other metallic
nanowires.
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