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We have theoretically investigated the electron and hole energy spectra and light absorption in the three-
dimensionally ordered quantum dots superlattices (QDS) made of the direct band-gap semiconductors. The
calculations were performed for QDS of the rhombic symmetry with a substantial electron (hole) wave-
function overlap using a one-band Hamiltonian for the electrons and six-band Hamiltonian for the holes. The
obtained results were compared with the predictions of the simplified models for the uncoupled heavy, light,
and split-off holes. It has been shown that the energy spectra of the electrons and holes in the ordered QDS are
distinctively different from those in the single quantum dots (QD) or conventional quantum-well superlattices.
The charge-carrier dispersion and localization are very sensitive to the quasicrystallographic directions defined
by the dots, which play a role of the atoms in such QD supracrystal. We found that in the ordered QDS the
oscillator strength for the interband optical transitions can be high for a relatively wide range of the photon
energies. The obtained results are important for the proposed applications of QDS in solar cells, photodetectors,

and thermoelectrics.

DOL: 10.1103/PhysRevB.76.125417

I. INTRODUCTION

Nanostructures, such as multiple arrays of quantum dots
(QD), have recently attracted significant attention owing to
their unusual physical properties and proposed applications
in photovoltaic solar cells,'? photodetectors,>> thermoelec-
tric elements®® as well as electronic circuits based on the
alternative state variables.”!? Some of these applications can
be implemented with the arrays of the uncoupled (or weakly
coupled) and randomly distributed quantum dots—others re-
quire the long-range ordering of the quantum dots or precise
control of the quantum dot position. While the properties of
the single quantum dots made of different material systems
have been extensively investigated theoretically,!""'? only a
limited number of studies addressed the ensemble properties
of the multiple arrays of quantum dots with a significant
electron (or hole) wave-function overlap.'314

Three-dimensional (3D) ordering of the closely spaced
QD in the quantum dot superlattices (QDS) results in the
formation of the carrier minibands. The latter was demon-
strated experimentally in a range of systems.'>!® Lazaren-
kova and Balandin'?® reported a theoretical study where they
calculated the electron states in the Kronig-Penny-type ap-
proach using a model confining potential, which led to the
wave-function separation. Although their model is conve-
nient for a simple calculation of the electronic states, it is
hard to predict how closely the model potential replicates the
realistic band offsets, particularly for the higher-energy mini-
bands. In this paper we propose a rigorous approach for de-
termining the electron and hole states in 3D ordered QDS
and calculating the oscillator strength for the optical transi-
tions in such structures. The proposed theoretical model and
calculation procedure can be used for the prediction of the
carrier transport and light absorption in the ordered QDS
made of the direct band-gap semiconductors. There is a
strong practical need in such a model taking into account the
large scale of the experimental efforts focused on applica-
tions of QDS in photovoltaic cells, lasers, photodetectors,
and thermoelectric elements.
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The calculations, presented in this work, are carried out
for InAs QD in a InGaAs host matrix. The selected material
system is particularly interesting for a theoretical study be-
cause it was in the focus of many recent experimental
investigations.!”% In the next section we present our theo-
retical formalism for determining the electron and hole en-
ergy dispersion in the ordered QDS. The hole states are
treated using the six-band Hamiltonian, which allows us to
take into account the interactions among the heavy, light, and
spin-off hole bands. In Sec. III we report a comparison of our
results with the prediction of the Lazarenkova and
Balandin'® model for the electron states in QDS with the
special wave-function separable potential. The calculation
of the oscillator strength of the optical transitions in 3D or-
dered QDS are reported in Sec. IV. We give our conclusions
in Sec. V.

II. ELECTRON AND HOLE STATES IN THE ORDERED
QUANTUM DOT SUPERLATTICES

We consider a generic QDS with the dots ordered in all
three dimensions. Although a fabrication of such 3D ordered
QDS is still a major technological challenge, there have been
a number of reports of achieving a nearly perfect 3D order-
ing in QDS.%0 It is expected that further progress in the self-
assemble growth will result in a greater availability of the
ordered QDS structures. Since we are mostly interested in
the ensemble properties of QDS and the features, which
originate from the dot-dot interaction (through the wave-
function penetration), we assume the simplest orthorhombic
symmetry for the dots with a corresponding rectangular
prism unit cell (see the schematic in Fig. 1). The space sym-
metry group of such lattice is D%;t. In this structure, InAs
QDs are located in the nodal points of the lattice filled with
Ga, 5Iny sAs, which acts as the barrier material. The dimen-
sions of the QD sides are denoted by [, I, I; (where indices
1, 2, and 3 indicate axis X, Y, and Z of the Cartesian coor-
dinate system, respectively). The interdot distances (thick-
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FIG. 1. (Color online) Schematic of the three-dimensionally or-
dered quantum dot superlattice showing notations for the quantum
dot sizes and interdot spacing.

ness of the barriers) are denoted by &y, h,, and h3. The trans-
lation periods of the lattice are d;=1;+h;(i=1,2,3) with the
lattice basis vectors a,(a;,0,0), a,(0,a,,0), and a;(0,0,as),
where a,=d; (i=1,2,3).

The basis vectors of the reciprocal lattice, required for the
construction of the quasi Brillouin zone (QBZ), are
b((b,,0,0), by(0,b,,0), and b5(0,0,b3), where b;=27/d; (i
=1,2,3). QBZ in QDS supracrystal, i.e., 3D ordered QDS, is
analogous to the conventional Brillouin zone for crystal sol-
ids, which is defined as a Wigner-Seitz cell of the reciprocal
lattice. In the QDS supracrystal, the quantum dots play a role
of the atoms. In the atomic crystal lattices the exact wave
functions of the charge carriers cannot be obtained due to the
difficulties of finding the actual periodical lattice potentials.
In QDS the periodic potential is well defined and the solu-
tions of the Schrodinger equation can be presented explicitly.
In our analysis we consider the electron and hole states sepa-
rately due to a sufficiently large energy gap between the
electron and hole states in QD, which is increased by the size
quantization and reaches a value ~0.64 eV for the consid-
ered dimensions. Owing to the translational symmetry in the
ordered QDS, the electron (hole) envelope wave functions,
defined as in the effective mass approximation, obeys the
relation

Wr(F 4+ @) = WP, (1)

Here £ is the quasicontinuous wave vector of the electron
(hole), n is the quantum number of the size-quantized elec-
tron (hole) states, a=N,a,+N,a,+Nsas is the lattice vector,
where N, N,, and N5 are the arbitrary integer numbers. The
maximum value of  is restricted by the QBZ boundaries.

The one-band Schrodinger equation for an electron in
QDS can be written as

ﬁ2
G?Vwm

V+ VE(F))‘I’Z(f) =EW,(r), 2)

where V¢(7) is the potential energy, m¢(7) is the electron ef-
fective mass, and 7 is the Plank constant. The potential en-
ergy V4()=0 and the electron mass m*(r)=m¢(InAs)
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FIG. 2. Electron dispersion in InAs/Gag sIny sAs QDS (a) along
the (1,0,0) quasicrystallographic direction with the QDS dimensions
[,=5.0 nm, [,=5.5nm, ,=6.0 nm, and h,=h,=h,=2.0 nm; (b)
along (1,1,0) with the dimensions /,=/,=5.0 nm, /,=6.0 nm, and
hy=hy=h,=2.0 nm; (c) along (1,1,1) with the dimensions /,=1,=1,
=5.0 nm and h,=hy,=h,=2.0 nm. The electron energies are mea-
sured from the conduction band bottom. The values of the potential
barrier are shown in all figures by the straight line.

=0.026m, inside the QD boundaries defined as |x;,—(a);]|

Sg (the coordinate origin is chosen in the center of QD).
Outside of the QD boundaries (inside the barrier layers) de-
fined as gS|x,~—(5)i , the following values of the potential
and mass are assumed: V¢(r)=Vg=const and m*(r)
=m°(Gay 5Iny sAs)=0.0435 m,, where m, is the electron
mass in vacuum. Eq. (2) with the periodic boundary condi-
tions given by Eq. (1) was solved numerically using the finite
difference method.

The electron energy dispersions, calculated for three dif-
ferent QDS along three quasicrystallographic directions, are
presented in Fig. 2. The results are shown for /,=5 nm, /,
=5.5 nm, /,=6 nm, and k=(k,0,0) [panel (a)]; /,=5 nm, I8
=5 nm, /.=6 nm, and k=(k,k,0) [panel (b)]; and [,=5 nm,
l,=5 nm, [,=5 nm, and k=(k,k,k) [panel (c)]. The barrier
thicknesses are h,=h,=h,=2 nm for all of the considered
QDS. The maximum values of the electron wave vector
k used for normalization in Fig. 2 are ky(1,0,0)
=0.448 nm~!, kp,(1,1,0)=0.663 nm~!, and kp,(1,1,1)
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=0.776 nm~'. The electron energies are counted from the
bottom of the potential well.

One can see from Fig. 2 that the common features for all
considered QDS include the strong size quantization of the
electron energy spectra and appearance of the relatively wide
minibands for all n. The width of the lowest miniband is on
the order of 6.5kzT at room temperature, where kjy is the
Boltzman constant and 7 is an absolute temperature. This is
a large value, which implies that the electrons move rather
freely though the miniband. Another observation is that only
the lowest (ground-state) miniband energies are below the
potential barrier level, i.e., (k) <V (with the exception of
the very large electron wave vectors k). The value of the
potential  barrier for the chosen system is Vj
=0.83[E,(Gay sIng sAs)-E,(GaAs)|=0.347 eV.>" The ener-
gies of all excited minibands are larger than the potential
barrier height V5. The electron energy dispersion for the ex-
cited minibands differs strongly from the free-electron en-
ergy dispersion or the near-parabolic dispersion in the con-
duction band of bulk GaAs crystal. All dispersion branches
are double degenerate except for the first excited level shown
in Fig. 2(c), which is fourfold degenerate. The energy disper-
sion in the ground state miniband is near parabolic for a wide
interval of k in the considered directions, i.e., (1,0,0), (1,1,0),
and (1,1,1). For comparison, in Fig. 2(c) we also show with
the dashed lines the energy dispersion for the ground mini-

7 7 iJ. :J_
) 8; - kxﬂlkx - kx IBth

Hyy (1)) = 2mg |~ 3(koysky + kyViko) gl — k,Bik, — ky By,

- 3(12,0/512Z + IQZ yg'l;x)

0 —-i O 0 0 1
i 0 O 0 0 -
. A(F)|0 0O 0 -1 i 0
Hgo(7y) = — 00 -1 0 i o (6)
0O 0 -i -i 0 O
1 i 0 0O 0 O

In Egs. (4)—(6), we define &/ =g,~8/3, k=—iV, k- =k

X,¥,2
—lzx,y,z; A(r,)=1h28(r,) 1 (2m) is the spin-orbit splittings of
the valence band, E,(7,) =%’e,(r,)/ (2m,) is the energy of the
valence band maximum, and

Bi=Biry) = vi(7) + 47 (7).
By= Bh(;h) = 7’1(;;1) - 2’)’2(;;1),

7§= 7’;(7;,) = y3(ry) = x(73),

PHYSICAL REVIEW B 76, 125417 (2007)

band in ordered QDS with the cubic QD(l,=/,=[.=5 nm)
along (1,0,0) and (1,1,0) quasicrystallographic directions. It
is clear from this figure that the equal-energy surfaces in k
space are nearly isotropic. Note that the lowest levels play a
major role in the kinetic processes at low and medium tem-
peratures and moderate electron concentrations (character-
ized by the Fermi energy smaller than 0.5 eV). The non-
monotonic behavior of the dispersion curves for all exited
minibands leads to a strong dependence of the electron ve-
locity on the value of the electron wave vector k as well as
appearance of the electron states with the negative velocities,
which correspond to the region of the dispersion curves with
negative slopes.

The hole energies E” and wave functions W"(7) were ob-
tained from the numerical solution of the Schrodinger equa-
tion with the six-band Hamiltonian, which takes into account
the interactions among the heavy, light, and spin-off hole
bands. The Hamiltonian is written as?%2

HW" = Elh, (3)
where

5 I:IXYZ('j ) 0

th A . +I:ISO(;h)? (4)
0 Hyy(r3)
- 3(]2{)/;]2,\) + ]gy 'yg];x) - 3(]€x7§]€z + ]gz ’yglgx)
— 3(kyVik. + k. v3ky) | &)
=3k, vk + kviky) ! —k Bk, -k Bk
[
x(7y) =[272(73) + 3y3(r) = 7 (7)1/3. (7)

Inside the QD, the Luttinger parameters v;(r,)=;(InAs)
(i=1,2,3), A(r,)=A(InAs), and E,(7,)=E,(InAs), while
outside the QD (inside the barrier materials)
(7)) = ¥{GagsIng sAs), A(r,)=A(GaysIngsAs), and E,(7)
=FE,(GaysIngsAs). The material parameters required for
the calculation of the hole energy spectra were taken from
Ref. 30.

The energy dispersion for the holes in the ordered QDS
(with the same dimensions as those in Figs. 2) along the
quasicrystallographic directions (1,0,0), (1,1,0), and (1,1,1)
are shown in Figs. 3(a)-3(c), respectively. The energy is
counted from the bottom of the valence band. Comparing
Figs. 2 and 3, one can see that the quantization of the hole-
energy spectra is weaker than that of the electron spectra.
The ground state minibands in all considered cases have en-
ergies smaller than 0.05 eV. The spin-orbit interaction splits
the multifold degenerate hole-energy levels into the branches
with the similar energies in the narrow region of a few meV.
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FIG. 3. Hole dispersion obtained within the six-band model in
InAs/Gay sIng sAs QDS (a) along the (1,0,0) quasicrystallographic
direction with the QDS dimensions /,=5.0 nm, ly=5.5 nm, [,
=6.0 nm, and i, =h,=h,=2.0 nm; (b) along (1,1,0) with the dimen-
sions /,=1,=5.0 nm, /,=6.0 nm, and /,=h,=h,=2.0 nm; (c) along
(1,1,1) with the dimensions [,=l,=[,=5.0 nm and h,=h,=h,
=2.0 nm. (d) The dispersion of heavy (solid lines), light (dotted
lines), and spin-off (dashed lines) holes along (1,0,0) with the same
dimensions as in (a). The hole energies are measured from the top
of the valence band and shown with the positive sign.

Along the (1,0,0) quasicrystallographic direction the hole en-
ergies of the lowest branch are smaller than the valence band
barrier energy E.=0.086 eV for all values of the hole wave
vector k. Thus, the hole wave function of the split ground-
state miniband is mostly located in the potential well. Along
the (1,1,0) and (1,1,1) directions the hole energy rapidly in-
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creases with increasing k and the holes become weakly lo-
calized or nearly free states. Along the (1,0,0) and (1,1,0)
directions the dispersion curves have the minimum and
maximum values whereas along the (1,1,1) direction the hole
energy increases monotonically with increasing of k (as in
bulk crystals). The revealed differences among the dispersion
curves along various directions are expected to manifest
themselves in the spatial anisotropy of the kinetic coeffi-
cients in QDS.

Figure 3(d) demonstrates the strength of the hole state
intermixing by depicting the difference between the hole en-
ergy spectra obtained using the six-band Hamiltonian, which
takes into account the interactions between the hole bands,
and the one-band Hamiltonians for the independent heavy,
light, and spin-off holes. The heavy holes (indicated by solid
lines) manifest small size-quantization (around 10 meV for
the exited states) and weak dispersion while the light and
spin-off holes show large size quantization and strong disper-
sion. All energy levels of these holes are twofold degenerate.
Only the energies of the ground states of the heavy and those
of the interacting “six-band” holes are similar. The indepen-
dent systems of the weakly dispersive heavy holes and
strongly dispersive light and spin-off holes transform, in the
case of interacting “six-band” holes, into a system of the four
weakly dispersive lowest levels and strongly dispersive
higher levels with n>4. Thus, the properties of the light,
spin-off, and heavy holes manifest themselves in each dis-
persion curve of the interacting “six-band” holes for n>4.

III. COMPARISON WITH THE SEMIANALYTICAL
MODEL FOR THE QUANTUM DOT SUPERLATTICE

It is illustrative to compare the electronic dispersion ob-
tained for the ordered QDS calculated using the approach
outlined in Sec. II with the prediction of the semianalytical
model,’? based on the approximate confining potential,
which allows for the electron wave-function separation along
the three coordinates. The model has been applied for the
calculation of the minibands in QDS-based solar cells.! In
order to perform the comparison, one must assume that the
confining potential is written as a sum of three independent
periodic functions of coordinates x, y, and z (with periods of
d,, dy, and d,), i.e., V(r)=V,(x)+V,(y)+V,(z), where each
component is given as

o if &= ndd =LyJ2,
Vg(g)_{vo if |&- pdy] > L2

Here 7; are the integer numbers and subscript § denotes a
particular coordinate axis. This choice of potential results in
nonuniform barrier height (larger potentials in the corner) but
allows one to separate the carrier motion along three coordi-
nate axes. As shown in Ref. 13, the solution of the
Schrodinger equation for the QDS with the potential of Eq.
(8) has the Kronig-Penny-type form and can be written as

(8)

1 KBmy,  kYm,
cos(qedy) = cos(kngg)cos(k?Hg) - _<_§_W + j-?)

2\kfmy  kimy,

X sin(k‘g/Lg) sin(k?Hg) if E; =V, (9a)

125417-4



CHARGE-CARRIER STATES AND LIGHT ABSORPTION IN...

o -
© o

Electron Energy (eV)
o
>

0.4

02 F _

" 1 " 1 " 1 " 1 "

0.0 0.2 0.4 0.6 0.8 1.0
k/k_ (1,0,0)

max

FIG. 4. Electron dispersion obtained within the semianalytical
model which assumes that the confining potential can be presented
as V(r)=V,(x)+V,(y)+V_.(z). The results are shown for QDS with
the same dimensions as in Fig. 3(a).

kBgm;, . kW§ m;)

1
cos =cos(kY'L,)cosh(kBH,) - —(— - .
(Q.gdg) ( & g) ( & .g) k?/mé kgmw

2
xsin(k'Lg)sinh(k{H,) if 0 < E;<V,, (9b)
where

B = 2mlEe=Vo| -y \N2my|E (10)

& h L
Here m; and m;, are the effective masses inside the barrier
and quantum dot, correspondingly. One can calculate the
electron dispersion in the ordered QDS with this simplifying
potential as E(q)=E(q,)+E,(q,)+E(q.).

Figure 4 shows the electron dispersion relation obtained
with the model potential of Eq. (8). The results are obtained
for the ordered QDS with the same structure and material
parameters as those depicted in Fig. 2(a). A direct compari-
son of the dispersion relations in Fig. 4 and Fig. 2(a) indi-
cates that the results agree well for the small energies (lowest
minibands) but start to deviate for the above-the-barrier
states. The width of the lowest miniband is 5.8kzT at room
temperature. This value is in good agreement with our cal-
culations with an actual equal-height potential. Thus, it is
safe to use the model potential and the Kronig-Penny-type
solution for the below-the-barrier states in the conduction
band of the ordered QDS.

IV. ANALYSIS OF THE ELECTRONIC STATES
IN THE ORDERED QUANTUM DOT SUPERLATTICES

In order to understand the nature of the electron and hole
states in the ordered QDS and their differences from those in
conventional quantum-well superlattices and bulk crystals,
we calculated the electron (hole) density distributions in the
ordered QDS. The knowledge of the charge-carrier density
distributions can help to elucidate the specifics of the charge-
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FIG. 5. (Color online) Constant surface of the electron density
function |‘Iffl=1|2=m in the ordered QDS with the dimensions
ly=1,=1.=5 nm and h,=h,=h,=2 nm for (a) c=1.0 and the electron
wave vector k=0.0; and (b) ¢=0.5 (outside) and ¢=2.0 (toroidal

surface) for k=kp,(1,0,0).

carrier transport and light absorption by such artificial su-
pracrystals. The electron density functions in the ordered
QDS with the QD dimensions /,=/,={,=5 nm and the barrier
thicknesses h,=h,=h.=2 nm are shown in Figs. 5(a), 5(b),
6(a), and 6(b) for k=0 and k=k,,, for the quasicrystallo-
graphic directions (1,0,0), (1,1,0), and (1,1,1).

Figure 5(a) shows the constant surface of the electron
function |W;,_;|*=-, where Vy=d,d,d; is the volume of the
unit cell of the ordered QDS and c=1.0. The cube plotted in
Fig. 5(a) represents the unit cell with the sides d;=d,=d;
=7 nm. The potential quantum well with the sides [, =[,=I,
=5 lies inside the cube. The surface |W¢_,(7,k=0)[>=const is
the invariant function of the QDS symmetry group. The re-
gions of the high density of the electron wave function are
represented by the spherical surfaces, while the regions of
the lower density are represented by the channel-like sur-
faces joined with the cube faces. The latter indicates that the
electron wave functions penetrate through the barriers in the
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FIG. 6. (Color online) Constant surface of the electron density
function for (a) ¢=0.7 (outside surface) and c¢=2.2 (inside surface)
for the electron wave vector k=k,,(1,0,0); and for (b) ¢=0.2 (out-
side surface) and ¢=3.0 (inside surface) for k=ky,(1,1,1). The
QDS dimensions are the same as in Fig. 5.

middle of the dot and periodically repeat themselves in all
unit cells. The electron density function for k=k,,,,(1,0,0) is
presented in Fig. 5(b) for ¢=0.5 and ¢=2.0. A comparison of
Figs. 5(a) and 5(b) indicate that the electron density distribu-
tion in QDS strongly depends on the value of the electron
wave vector k. The high-density core of the electron function
|Wwe_|* is spherical for k=0 while it is ellipsoidal for k
=k (1,0,0). The channel-like surfaces along three direc-
tions (at k=0) transform into the channel-like surfaces along
two directions (0,1,0) and (0,0,1). The shape of the equal-
density surfaces reflect the symmetry reduction introduced
by the nonzero wave vector k. At k=k,,, (1,0,0) the electron
density is equal to zero in the middle of the barrier on
the (Y,Z) plane and the electron energy reaches maximum
value while the electron velocity becomes zero, i.e.,
vk= (de(k)) [ (B k)| =0.

The dependence of the electron density function on k
along the (1,1,0) quasicrystallographic direction is somewhat
analogous. In this case, the electron density is compressed in
two directions (1,0,0) and (0,1,0) while the linkage channel-
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FIG. 7. (Color online) Constant surface of the hole density func-
tion |\Iff§:12|2=m in the ordered QDS with the dimensions I,
=l,=0,=5nm and h,=h,=h,=2 nm for (a) ¢=2.0 and the hole
wave vector k=0; and (b) c=1.7 for k=ky,, (1,1,1)/2.

like region remains in the (0,0,1) quasicrystallographic direc-
tion as shown in Fig. 6(a) for ¢=0.7 and ¢=2.2. If K,y is
chosen along the (1,1,1) direction the electron density func-
tion is compressed in all three directions [depicted in Fig.
6(b) for ¢=0.2 and ¢=3.0]. It is interesting to note that for
the same value of the electron wave vector k, the electron
localization is stronger when k is along the (1,1,1) direction.
Although not shown in the figures, the electron density func-
tions of the exited states have more complicated shapes than
those of the ground states. The equal density surfaces for the
excited states do not form closed contours inside the unit cell
cubes, which indicate that the electrons are completely delo-
calized and occupy the whole QDS.

The constant surfaces of the hole density functions |‘If2|2
:“,—"0 for different exited states are shown in Figs. 7(a) and
7(b). Figure 7(a) shows the surface with ¢=2.0 for n,=12
and k=0 for the quasicrystallographic direction (1,1,1). The
equal density surfaces in this case are connected in many
points. The holes with the densities indicated in the plots (or
higher densities) are localized inside of the unit cell of QDS.
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the two lowest electron minibands (n=1, 2); and (b) several hole
minibands (m=1, 6, 11, 16, 17) in InAs/Gag 5sIny sAs QDS with the
dimensions /,=/,=1.=5 nm and h,=h,=h,=2 nm.

Figure 7(b) presents the hole density function surface, which
corresponds to the density |\I’f’l|22% at k=ky,(1,1,1)/2.
One can see from this figure that the “open channels” for the
hole transport through the ordered QDS do exist.

In order to quantitatively characterize the wave-function
penetration in the neighboring unit cells of the ordered QDS
cells we calculated the dependence of the “delocalization”
functions g“"(k)=[ o, | Wk (7)|dr on the wave vector k for
the electrons [Fig. 8(a)] and holes [Fig. 8(b)]. The values of
the normalized functions g’ "(k) are given in percent. The
integration in g’ (k) is performed over the whole barrier
volume () between the QD. It follows from Fig. 8(a) that
the function g¢ for the ground electron miniband reaches its
maximum value at k=0, and decreases with increasing k for
all directions of the electron motion. The electron wave func-
tion for k=k,,(1,1,1) practically does not penetrate the bar-
rier material and the electron is localized inside the QD. A
different situation is observed for the excited miniband n
=3. For both quasicrystallographic directions (1,0,0) and
(1,1,0) the confinement weakens with increasing wave vector
k. For the (1,1,1) direction only the confinement enhances
slightly for the wave vector k close to k,,,.. The “delocaliza-
tion” functions g"(k=0) for the hole states are smaller than
those for the electrons states, and generally decrease with
increasing k. The stronger hole localization is explained by
the larger effective masses of the holes as compared to those
of the electrons. The described properties of the electron and
hole wave functions in QDS strongly influence the matrix
elements of the electron (hole) interaction with photons and
phonons.
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V. OSCILLATOR STRENGTH OF THE OPTICAL
TRANSITIONS IN THE QUANTUM DOT SUPERLATTICES

The efficiency of the light absorption ability of a nano-
structure can be illustrated, to some degree, by the oscillator
strength of the optical transitions. For the calculation of the
oscillator strength of the band-to-band (hole-electron) transi-
tions we assumed that the electron momentum is equal to the
hole momentum in absolute value and have the opposite di-
rection, i.e., k,=—k,. The latter is a valid assumption due to
the small value of the photon momentum. The oscillator
strength of the transition induced by the light polarized along
the X axis, which leads to the generation of the electron-hole
pair, is given by

flng,n,) = ET%' E ‘f [‘I’ﬁei(f)‘l'?’ﬁé,h(?)

2
S RGN G

Im,e

WS (Wi (9
\%4

2
>, (11

where E, is the Kane energy, Ej;¢" is the energy of the
electron-hole pair with the quantum numbers n,, n;,, W& r)
and Wy (r) are the real and imaginary parts of the electron
wave function in the state with the quantum number n,,
Wi (r) and Wikq,(r) are the real and imaginary parts of
the hole wave-function component W)t #(r) in the state with
the quantum number 7,,a is the index of degeneracy. We
derived Eq. (11) using the formalism described in Ref. 32.

The dependence of the oscillator strengths on the photon
energy is shown in Figs. 9(a)-9(c) for the different param-
eters of the quantum dots and various QDS quasicrystallo-
graphic orientations: (1,0,0), (1,1,0), and (1,1,1). Figure 9
shows the oscillator strength in QDS with the dimensions
l,=5nm, [,=55nm, [,=6 nm, and h,=h,=h,=2 nm for
(1 0,0) orientation of QDS The solid lines i 1n th1s plot corre-
spond to the transitions involving the twofold degenerate
ground electron state and 20 hole levels. The energy of the
higher electron states are considerably larger than the elec-
tron ground-state energy and, therefore, do not affect the
oscillator strength. The higher hole levels (7>20) do not
influence the oscillator strength owing to the strong oscilla-
tory nature of their wave functions. Figures 9(b) and 9(c)
present the oscillator strength for two other orientations of
QDS. The electron-momentum independent oscillator
strength can be obtained by averaging of the dependencies
presented in Figs. 9(a)-9(c) over all directions. Since the
general trends for the oscillator strength are similar for all
three quasicrystallographic directions, the averaged oscillator
strength is expected to be very close to those depicted in
Figs. 9(a)-9(c).

The dashed lines in Figs. 9(a)-9(c) correspond to the os-
cillator strength for the transitions between the ground-state
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FIG. 9. Oscillator strength of the electron-hole optical transi-
tions as a function of the photon energy in InAs/Ga 5Iny sAs QDS
with the dimensions (a) [,=5 nm, /,=5.5 nm, [,=6 nm, and h,=h,
=h,=2 nm for the (1,0,0) orientation; (b) /,=5 nm, l[,=5 nm, [,
=6 nm, and h,=hy,=h,=2 nm for (1,1,0); and (c) /,=/,=1,=5 nm,
[,=6 nm, and h,=h,=h,=2 nm for (1,1,1).

electrons and the eight lowest hole levels while the dotted
lines correspond to the transitions between the ground-state
electrons and the 12 hole levels with the quantum numbers
n,=9-20. It is interesting to see from these plots that the
higher hole levels begin to participate in the transitions as the
energy exceeds ~0.74 eV while the oscillator strength for
the transitions involving eight lower levels decrease to zero
for the energy Aw>0.75 eV. Both the dashed and dotted
curves manifest a maximum value, i.e., the dashed curves
attain it at the photon energy of Aw=0.65 eV while the dot-
ted curves reach it at about Aw=0.75 eV. The resulting os-
cillator strength dependence on photon energy manifests a
general monotonic decrease but remains rather high in a rela-
tively wide interval pertinent to the infrared and visible light
absorption. The latter suggest that such nanostructures can be

PHYSICAL REVIEW B 76, 125417 (2007)

particularly efficient for the infrared photodetector applica-
tions.

Another important application of QDS, which can greatly
benefit from the formation of the minibands and increased
oscillator strength is QD-based lasers. The Auger recombina-
tion is the main reason for the decrease of the inverse charge
population in QD. The population inversion is a required
condition for generating the laser radiation.>® The higher
density of QD density and formation of the minibands rein-
force the effect of the stimulated emission and reduces the
radiation relaxation time of the electron-hole pairs. This al-
lows one to obtain strong laser radiation at the lower pump
levels.>* The miniband formation leads to the higher carrier
mobility, lower critical current density for electrical injection
and improved monochromaticity of the radiated light.

VI. CONCLUSIONS

We calculated the energy dispersion for the electrons and
holes in the ordered quantum dot superlattices for the case of
InAs/Gag sIny sAs material system. From the obtained dis-
persion we determined the oscillator strength of the optical
transitions in such nanostructures. It has been shown that the
energy dispersion for the ground electron and hole states in
the quantum dot superlattices are nearly parabolic. The en-
ergy of the electron excited states at zone center k=0 (size-
quantized levels) is significantly larger than the potential bar-
rier for the electrons and practically do not play any role in
the optical and kinetic processes. The energy spectra of the
hole states obtained within the framework of the six-band
Hamiltonian possess the features of the hybrid “heavy,”
“light,” and “split-off” hole bands. The lowest energy levels
manifest the weak energy dispersions similar to the “heavy
holes” while the exited states display the strong dispersions
as the “light” and “split-off” holes. It has been established
that in the considered ordered QDS, with the selected geo-
metrical parameters, heights of the potential barriers and val-
ues of effective masses, both electrons and holes penetrate
though the entire barrier layer thicknesses. Specifically, it has
been found via averaging of the charge densities that in the
barriers there are approximately 25% of the total electron
and 18% of the total hole charge. The relevance of the de-
veloped model for optimization of QDS for applications in
solar cells, photodetectors, and lasers was also discussed.
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