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A mesoscopic Coulomb blockade system with two transport channels is studied in terms of full counting
statistics. It is found that the shot noise and skewness are crucially affected by the quantum mechanical
interference. In particular, the super-Poisson behavior can be induced as a consequence of constructive inter-
ference, and can be understood by the formation of effective fast-and-slow transport channels. Dephasing and
finite temperature effects are carried out together with physical interpretations.
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I. INTRODUCTION

Rather than average current, the current fluctuations in
mesoscopic transport can sometimes provide deep insight
into the nature of transport mechanisms.1 A fascinating the-
oretical approach, known as full counting statistics �FCS�
theory,2,3 can simultaneously yield all the statistical cumu-
lants of the number of transferred charges �i.e., all zero-
frequency current-correlation functions�. Experimentally, the
real-time counting statistics has been carried out in transport
through quantum dots,4 representing a crucial achievement
of being able to count individual electron tunnel events.

For charge transport at very low transmission, the uncor-
related transmission events are Poisson processes. However,
the Fermi-Dirac statistics together with the possible many-
body Coulomb interaction usually enhances correlation
among the transport electrons, and thereby results in sub-
Poisson noise.5 It is thus of interest to examine mechanisms
that can lead to super-Poisson-noise behavior, since the cur-
rent fluctuations can be used in reverse to gain insight into
the nature of unusual transport mechanisms. The mecha-
nisms proposed so far for the super-Poisson noise include
double electron charge transfer by Andreev reflection in
normal-superconductor junction,6,7 multiple electron charge
transfer by multiple Andreev reflections in superconductor-
normal-superconductor system,8–11 dynamical channel
blockade,12–14 dynamical spin blockade,15 bistability,16

cotunneling,17,18 electron-phonon interaction in shuttle
system,19 and decoherence in mesoscopic coherent popula-
tion trapping system.20

In this work we consider a relatively simple system, say,
electronic transport through a Coulomb blockade system
with two identical transport channels, which can be realized
experimentally by transport through two adjacent levels in
a single quantum dot �QD�,21 or through two QDs in
parallel.22,23 This type of setup itself is of particular interest,
since it is an analog of the optical double-slit interferometer.
In this context the underlying quantum interference and
phase accumulations through QDs have been the subjects of
intensive studies.24–26 Our present study will be placed at the
level of FCS, from which a number of interesting effects of
quantum interference on current fluctuations will be re-
vealed.

The paper is organized as follows. In Sec. II we present
the model description together with the underlying physical
considerations and assumptions. In Sec. III we outline the
main idea and procedures to obtain the particle-number re-
solved master equation and to relate it with the FCS formu-
lation. Since the separate details have been published
elsewhere,27–29 for the sake of saving space we would like to
omit the detailed derivation in this work and suggest to refer
to the previous publications. In Secs. IV and V we carry out
the main results of this work, including the average current,
the shot noise and the skewness, as well as the dephasing
effects on them. Interference effects, in particular, the inter-
ference induced super-Poisson behavior, will be highlighted
and explained. To optimally manifest the effects of interfer-
ence and dephasing on FCS, in these two sections we restrict
our study to zero temperature. In Sec. VI we extend the study
to finite temperatures, where the interplay between the
�quantum� fast-and-slow channel modulated stochastic pro-
cess and the thermal fluctuations is found to play an impor-
tant role in affecting the current noise and skewness. Finally,
in Sec. VII we summarize the work.

II. MODEL DESCRIPTION

The transport through a two-channel Coulomb blockade
system is governed by the Hamiltonian

H = HD + Hleads + HT,

HD = E1d1
†d1 + E2d2

†d2 + Un1n2, �1a�

Hleads = �
k

��LkcLk
† cLk + �RkcRk

† cRk� , �1b�

HT = �
jk

�� jLdj
†cLk + � jRdj

†cRk + H.c.� . �1c�

Here cLk,Rk
† �cLk,Rk� and dj

†�dj� are the electron creation �anni-
hilation� operators, for the electrode reservoirs and central
dot states, respectively. The two channels are characterized
by states with energy levels E1 and E2. Couplings of these

PHYSICAL REVIEW B 76, 125416 �2007�

1098-0121/2007/76�12�/125416�9� ©2007 The American Physical Society125416-1

http://dx.doi.org/10.1103/PhysRevB.76.125416


two dot states to the electrodes are described by � jL�R�, or
�L,R

j =2�gL,R�� jL,jR�2, for latter use. Here gL,R are the density
of states �DOS� of the electron reservoirs. To manifest maxi-
mally the quantum interference effect, we shall focus on two
identical transmission paths. This can be accomplished by
assuming equal and energy independent coupling strengths
of the two dot states with the left and right electrodes, i.e.,
��1L�R��= ��2L�R��=�L�R�, and �L�R�

1 =�L�R�
2 =�L�R�. To address

the quantum interference between transmissions through the
two channels, the relative phase difference is significant.
Physically, the phase difference contains the phase accumu-
lation of spatial motion from the electrode to dot, particularly
in the presence of magnetic vector potential �i.e., the
Aharanov-Bohm effect�, as well as the phase changes asso-
ciated with transmission through quantum dots.25,26 Never-
theless, in this work we would like to adopt a phenomeno-
logical way to account for all these phase accumulations, by
choosing �1L=�2L, and �=�1R /�2R. Here � can be re-
garded as a relative phase parameter. Note that the alternative
gauge, say, �1R=�2R and �=�1L /�2L, does not affect the
final results.21 In this paper, we also assumed �= ±1, i.e.,
only complete constructive and destructive interferences are
considered.

In the above Hamiltonian we omitted the spin indices,
thus did not explicitly write out the on-site Coulomb inter-
action terms, and only left Un1n2 to describe Coulomb inter-
action between electrons in the different dot states. In this
work, unless explicit specification, our study will be re-
stricted to the strong Coulomb blockade regime, which only
allows for three available occupation states, i.e., �0�, �1�, and
�2�, corresponding to, respectively, empty dot state, and states
with one electron on either E1 or E2.

III. FULL COUNTING STATISTICS FORMULATION

As pointed out in Ref. 29, the pioneering work2,3 and a
few other approaches developed later10,31,32 are largely re-
stricted to addressing the FCS of noninteracting electrons.
While Ref. 29 developed an elegant theory of FCS for me-
soscopic systems in strong Coulomb blockade limit, how-
ever, the system’s internal quantum coherence did not enter it
since the theory was constructed on the basis of classical
stochastic processes. It is thus advantageous to formulate an
approach of being able to account for both the internal quan-
tum coherence and the many-body Coulomb interaction on
equal footing. Although such type of approach has been de-
scribed and applied to coherent and interacting systems,33,34

we would like to reformulate it for the sake of completeness,
based on the particle-number-resolved master equation at fi-
nite temperatures.27,28

To relate with our earlier work,27,28 we rename HS�HD,
HB�Hleads, and reexpress H��HT as

H� = HT = �
j=1

2

�dj
†Fj + H.c.� , �2a�

Fj = �
k

� jLcLk + �
k

� jRcRk = fLj + fRj . �2b�

Regarding H� as perturbation, the second-order cumulant ex-
pansion leads to a formal master equation for the system’s
reduced density matrix as follows:27,28

�̇�t� = − iL��t� − 	
0

t

d�
L��t�G�t,��L����G†�t,�����t� .

�3�

Here the Liouvillian superoperators are defined as L�
= �HS ,��, L��= �H� ,��, and G�t ,���¯�=G�t ,���¯�G†�t ,��,
with G�t ,�� the usual propagator associated with system
Hamiltonian HS. The reduced density matrix ��t�
=TrB��T�t��, and 
¯�=TrB�¯�B� with �B the density matrix
of the electron reservoirs.

The trace in Eq. �3� is over all the electrode degrees of
freedom. To achieve the FCS of current fluctuations, we
would like to keep track of the records of electron numbers
emitted from the source lead �n1� and arrived at the drain
lead �n2�. We therefore classify the Hilbert space of the res-
ervoirs as follows: B�n1,n2�=BL

�n1�
� BR

�n2�. The entire Hilbert
space of electron reservoirs is thus decomposed as B=
�n1,n2

B�n1,n2�.
With this classification the average over states in the en-

tire bath Hilbert space in Eq. �3� is replaced with the average
over states in the subspace B�n1,n2�, leading to a conditional
master equation

�̇�n1,n2��t� = − iL��n1,n2��t� − 	
0

t

d� TrB�n1,n2�

	�L��t�G�t,��L����G†�t,���T�t�� . �4�

Here, ��n1,n2��t�=TrB�n1,n2���T�t�� is the reduced density matrix
of the central system conditioned by the electron numbers
emitted from the source lead �n1� and arrived at the drain
lead �n2� until time t.

To proceed, following Ref. 28, two physical consider-
ations are further implemented: �i� Instead of the conven-
tional Born approximation for the entire density matrix
�T�t����t� � �B, we propose the ansatz �T�t���n1,n2

��n1,n2�

	�t� � �B
�n1,n2�, where �B

�n1,n2��t� is the density operator of the
electron reservoirs associated with n1 electrons emitted from
the source and n2 electrons entered the drain. The orthogo-
nality between reservoirs states in different subspaces leads
to the term selection from the entire density operator �T. �ii�
Due to the closed nature of the transport circuit, the extra
electrons that entered the drain will flow back into the source
via the external circuit. Also the rapid relaxation processes in
the reservoirs will quickly bring the reservoirs to local ther-
mal equilibrium characterized by the chemical potentials. As
a consequence, after the state selection procedure, the elec-
tron reservoir density matrices ��n1,n2� should be replaced by
�B

�0�.
Further use of the Markov-Redfield approximation leads

Eq. �4� to an explicit form

�̇�n1,n2� = − iL��n1,n2� −
1

2
R1��n1,n2�, �5a�
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R1��n1,n2� = �
j

�dj
†Aj

�−���n1,n2� + ��n1,n2�Aj
�+�dj

† − ALj
�−���n1−1,n2�dj

†

− dj
†��n1+1,n2�ALj

�+� − ARj
�−���n1,n2−1�dj

†

− dj
†��n1,n2+1�ARj

�+�� + H.c. �5b�

Here A
j
�+�=�iC̃
ij

�+��+L�di, A
j
�−�=�iC̃
ji

�−��−L�di, and Aj
�±�

=�
=L,RA
j
�±�. The spectral functions are defined in terms of

the Fourier transform of the reservoir correlation functions,

i.e., C̃
ij
�±��±L�=�−�

� dtC
ij
�±��t�e±iLt. The reservoir correlators

read 
f
i
† �t�f
j����=C
ij

�+��t−��, and 
f
i�t�f
j
† ����=C
ij

�−��t−��.
Here 
¯� stands for TrB�¯�B

�0��, with the usual meaning
of thermal average. Obviously, 
Fi

†�t�Fj����=Cij
�+��t−��

=�
=L,RC
ij
�+��t−��, and 
Fi�t�Fj

†����=Cij
�−��t−��=�
=L,RC
ij

�−��t
−��. For the sake of brevity, the explicit expressions of the
reservoir correlation functions, the corresponding spectral
functions, and A
j

�±� are ignored here, and are presented alter-
natively in Appendix A.

At this stage, we would like to make a few remarks as
follows: �i� The above particle-number-resolved master
equation is applicable to finite temperatures, which is an ex-
tension of Gurvitz and Prager’s wave function approach.30 At
finite temperature and small bias voltage, the electrons can
jump back from the right reservoir to the central dots, and
from the central dots to the left reservoir. These processes are
described, respectively, by the ��n1+1� and ��n2+1� terms in the
above equations, whereas these terms are absent in Gurvitz
and Prager’s equations.30 �ii� The second-order cumulant ex-
pansion of H� restricts the applicability to the regime of se-
quential tunneling. However, generalization to higher order
expansion of H� �Refs. 35 and 36� and self-consistent
corrections37 are possible. The corresponding FCS version is
an interesting subject for future work. �iii� The above
�n1 ,n2�-resolved master equation generalizes the result in
Ref. 28, from counting at one junction to counting at two
junctions. Further generalization to multiterminal setup is
straightforward, following precisely the same treatment. �iv�
The connection of the particle-number-resolved density ma-
trix with the distribution function of FCS is obvious, i.e.,
P�n1 ,n2 , t�=Tr���t��n1,n2��, where the trace is over the central
system states. From this distribution function, all orders of
cumulants of transmission electrons can be calculated.

In practice, instead of obtaining the distribution function
from the solution of the particle-number-resolved master
equation, a more efficient method is the cumulant generating
function �CGF� technique. In the following study, we only
consider single counting statistics. That is, we only keep n2,
after making summation over n1. Multiple counting statistics
in multiterminal setup follows the same technique.

Mathematically, the CGF is introduced as29

e−F��� = �
n

P�n,t�ein�. �6�

Here � corresponds to the so-called counting field. Based on
the CGF, the kth cumulant reads Ck= �− �−i���kF�����=0. For
instance, the first two cumulants give rise to the mean value
of the transmitted electron numbers C1= n̄, and the variance

C2=n2− n̄2; the third cumulant �skewness�, C3= �n− n̄�3,
characterizes the asymmetry of the distribution. Here, �¯�
=�n�¯�P�n , t�. Moreover, the cumulants are straightfor-
wardly related to the transport characteristics, e.g., the aver-
age current by I=eC1 / t, and the zero-frequency shot noise
by S=2e2C2 / t. The Fano factor is defined as F=C2 /C1,
which represents the amplitude of current fluctuations, with
F
1 indicating a super-Poisson fluctuation, and F�1 a sub-
Poisson process.

The generating function can be calculated as follows: De-
fine S�� , t�=�n��n��t�ein�. Obviously, e−F���=Tr�S�� , t��. Let
us reexpress the particle-number-resolved master equation
formally as

�̇�n� = A��n� + C��n+1� + D��n−1�, �7�

then S�� , t� satisfies

Ṡ = AS + e−i�CS + ei�DS � L�S . �8�

The formal solution reads S�� , t�=eL�tS�� ,0�. In the low-
frequency limit, the counting time is much longer than
the time of tunneling through the system. One can
prove,20,29,33,34 that F���=−�1���t, where �1��� is the eigen-
value of L�, and satisfies the condition ��1�����→0→0.

The above FCS formalism based on Eq. �5� is an exten-
sion of Gurvitz and Prager’s approach34 from zero tempera-
ture to finite temperatures, and an extension of Ref. 29 to
include internal quantum coherence. In the following, we
apply this approach to the system described in Sec. II, first
restricting to zero temperature in order to more clearly reveal
the pure quantum-interference induced phenomena and
dephasing effect, then carrying out the results at finite tem-
peratures.

IV. FULL COUNTING STATISTICS ANALYSIS

For the specific model described in Sec. II, in the strong
Coulomb blockade regime and at zero temperature, the ma-
trix element form of Eq. �5� reads

�̇00
�n2� = − 2�L�00

�n2� + �R��11
�n2−1� + �22

�n2−1��

+ ��R��12
�n2−1� + �21

�n2−1�� , �9a�

�̇11
�n2� = �L�00

�n2� − �R�11
�n2� − �

�R

2
��12

�n2� + �21
�n2�� , �9b�

�̇22
�n2� = �L�00

�n2� − �R�22
�n2� − �

�R

2
��12

�n2� + �21
�n2�� , �9c�

�̇12
�n2� = i���12

�n2� + �L�00
�n2� − �R�12

�n2� − �
�R

2
��11

�n2� + �22
�n2�� .

�9d�

Here we have summed n1 and remained only n2, indicating
the mere study of FCS of the electrons that entered the drain
reservoir. For clarity, we have denoted the level spacing by
��=E2−E1, and choose the reference of zero energy such
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that E2=�� /2, and E1=−�� /2. In the derivation of Eqs. �9�,
we assumed that E1,2 are inside the window of bias voltage,
i.e., �L
E1,2
�R, and U is infinite. In Ref. 21 the same
Eqs. �9� were derived by using a wave function approach,
where the interference effects on current and frequency-
dependent noise spectrum were studied. In the following we
present a FCS study for this same system.

Performing a discrete Fourier transformation �n2
ein2� to

Eqs. �9�, we obtain

L� =

− 2�L �Rei� �Rei� ��Rei� ��Rei�

�L − �R 0 − �
�R

2
− �

�R

2

�L 0 − �R − �
�R

2
− �

�R

2

�L − �
�R

2
− �

�R

2
i�� − �R 0

�L − �
�R

2
− �

�R

2
0 − i�� − �R

� .

�10�

According to the definition of the cumulants we can express
�1��� as

�1��� =
1

t
�
k=1

�

Ck
�i��k

k!
. �11�

Then insert the above expansion into ��1���I−L��=0, and
expand this determinant in series of �i��k. Since the value of
i� is arbitrary, we can obtain Ck by setting the coefficients of
�i��k equal to zero and solving them sequentially.20 Analytic
expressions of the first two cumulants are accordingly ob-
tained as

C1 =
2�L�R��2

2�L„��2 − �� − 1��R
2
… + �R��2 , �12a�

C2 =
��4�R

2 + 4�L
2���4 + 2��2��R

2 + �� − 1�2�R
4�

�2�L„��2 − �� − 1��R
2
… + �R��2�3 2�L�R��2,

�12b�

while the higher order cumulants can be instead carried out
numerically, to avoid their lengthy expressions.

In Fig. 1 the first three cumulants of transport current are
displayed. It is of interest to note that in the Coulomb block-
ade regime a super-Poisson noise is developed by the con-
structive interference between the two paths �i.e., �= +1�.
This is clearly shown by the solid curve in Fig. 1�a�. With the
increase of the coupling asymmetry �i.e., 
=�R /�L�, the
super-Poisson feature will be more evident. In contrast, for
destructive interference ��=−1�, the current fluctuation is
sub-Poissonian, as plotted by the dashed curve in Fig. 1�a�.

Another intriguing finding is that the super- and sub-
Poisson characteristics are associated with different behav-
iors of the skewness C3 /C1, as shown in Fig. 1�b�. For de-
structive interference, the skewness is approximately zero,
meanwhile for constructive interference, transition of the
skewness from �small� positive to �large� negative values
takes place, by increasing the coupling asymmetry �
�. As is
well known for photon counting statistics in quantum optics,
the skewness �both its magnitude and sign� provides further
information for the counting statistics, beyond the second-
order cumulant. As a comparison, the results of noninteract-
ing system are plotted in Figs. 1�c� and 1�d�, where neither
the super-Poisson noise nor the negative skewness is found.

To understand better the above super-Poisson behavior,
below we present an analysis in terms of fast-and-slow trans-
port channels. Let us introduce an alternative representation
for the double-dot states, with the corresponding electronic
operators f1= ��Ld1+�Rd2� /��L

2 +�R
2 , and f2= ��Ld2

−�Rd1� /��L
2 +�R

2 , as well as the state energies E1/2

= ��� /2. In such representation the entire Hamiltonian is
reexpressed as

FIG. 1. First three cumulants of the
zero-frequency current fluctuations.
The solid and dashed curves display the
results for constructive ��=1� and de-
structive ��=−1� interferences, respec-
tively. The variable 
=�R /�L charac-
terizes the asymmetry of dot-state
couplings to the left and right elec-
trodes. �a� and �b� show the Fano factor
and skewness for strong Coulomb
blockade system, while �c� and �d� for
system allowing double occupancy, i.e.,
U=0.0, as a comparison. The inset of
�b� plots the average current I=eC1 / t,
with the convention e=1. In the calcu-
lation �L=1.0�� was assumed.
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H = Ẽ1f1
†f1 + Ẽ2f2

†f2 + ��f1
†f2 + f2

†f1� + �
k

��̃1Lf1
†aLk

+ �̃1Rf1
†aRk + H.c.� + �

k

��̃2Lf2
†aLk + �̃2Rf2

†aRk + H.c.� .

�13�

Note that the strong Coulomb blockade, rather than being
explicitly described in this Hamiltonian, is reflected alterna-
tively by the single occupation of the two dot states. For the
sake of brevity, explicit expressions for the coupling between
the new dot states, and their couplings to the electrodes are
presented in Appendix B.

In the new state representation, the formation of the fast-
and-slow transport channels is demonstrated in Fig. 2: �i� for
constructive interference ��= +1�, increasing 
=�R /�L can
lead to �1L
�2L, and �1R��2R; �ii� for destructive interfer-
ence ��=−1�, however, increasing 
=�R /�L leads to �1L


�2L, but �2R��1R. Obviously, in the former case, effective
fast-and-slow transport channels are evaluated, but cannot in
the second case. Such fast-and-slow transport channels will
lead to bunching behavior, and result in the super-Poisson
noise.12–15

V. DEPHASING EFFECT

Dephasing between the two interfering paths originated
from the random fluctuations of E1 and E2. This may be
caused in general by uncontrollable complex environments.
Alternatively, for the setup of transport through two quantum
dots in parallel, a controllable dephasing mechanism can be
implemented experimentally by performing the “which-way”
detection using a nearby quantum point contact �QPC�.24 As
a model description, the effect of which-way detection is
described by the following Lindblad-type terms34,38,39

L���n2�L�
† −

1

2
L�

† L���n2� −
1

2
��n2�L�

† L�, �14�

where the jump operator L�=��d�1�
1�. Explicitly, the
which-way detection induced dephasing rate can be carried

out as follows:38 �d= ��T−�T��2Vd /2�, where Vd is the bias
voltage across the QPC, and T and T� are the QPC-electron
transmission probabilities, depending on which dot the elec-
tron passes through in the double-dot interferometer. We
carry out the matrix elements of Eq. �14� in the state basis
��0�, �1�, �2��, and insert them into the right hand side of Eq.
�9�. The dephasing effects on the FCS can then be calculated
straightforwardly.

Figure 3 shows the dephasing effects on the first three
cumulants, where the solid and dashed curves correspond to
the constructive ��=1� and destructive ��=−1� interfer-
ences, respectively. Interestingly, for the constructively inter-
fering transport ��=1�, dephasing does not influence the
transport current, see the solid line in Fig. 3�a�. This is in
remarkable contrast with the result of double-slit optical in-
terference, where the constructively interfering intensity is
four times of the intensity of the individual path �slit�, while
the noninterfering intensity is simply two times of the single-
slit intensity. This essential difference originated from the
multiple forward-and-backward scattering between the dot
states and the electrodes in the case of electron transport.
However, also for �=1, the second and third cumulants �i.e.,
C2 and C3� sensitively depend on the dephasing strength. In
particular, dephasing would cause a transition from super-
Poisson to sub-Poisson processes, meanwhile the skewness
�C3� changes from negative value to zero. The present analy-
sis clearly shows that the super-Poisson current fluctuation is
a consequence of the constructive interference. For destruc-
tively interfering transport ��=−1�, the almost vanished
transport current will be restored by dephasing, whereas the
shot noise and skewness approximately do not change with
dephasing.

FIG. 2. Effective couplings of the dot states to the electrodes in
the transformed state representation. It is found that effective fast-
and-slow transport channels are evaluated for the constructive in-
terference ��=1�, which is contrasted remarkably with the destruc-
tive interference ��=−1�. Inset: effective coupling between the
transformed dot states. Parameters 
=�R /�L and �L=��=1.0.

FIG. 3. Dephasing effects on the first three cumulants, which
show a continuous transition from quantum interfering to classical
noninterfering transports. The solid and dashed curves display re-
sults for the constructive ��=1� and destructive ��=−1� interfer-
ences, respectively. Parameters 
=�R /�L=3.0 and �L=��=�.
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VI. FINITE TEMPERATURE EFFECT

At zero temperature, the Eqs. �9� we obtained on the basis
of quantum statistical mechanics coincides with the one de-
rived by Gurvitz and Prager based on a novel wave function
approach. However, our approach is rather naturally capable
of dealing with finite temperature effect. At finite tempera-
ture, calculating Eq. �5� in the state basis ��0�, �1�, �2�� results
in

�̇00
�n2� = − ��LnL

�+��E1� + �RnR
�+��E1� + �LnL

�+��E2� + �RnR
�+�

	�E2���00
�n2� + �LnL

�−��E1��11
�n2� + �RnR

�−��E1��11
�n2−1�

+ �LnL
�−��E2��22

�n2� + �RnR
�−��E2��22

�n2−1� +
1

2
�L�nL

�−��E2�

+ nL
�−��E1����12

�n2� + �21
�n2�� +

�

2
�R�nR

�−��E2� + nR
�−��E1��

	��12
�n2−1� + �21

�n2−1�� , �15a�

�̇11
�n2� = �LnL

�+��E1��00
�n2� + �RnR

�+��E1��00
�n2+1� − ��LnL

�−��E1�

+ �RnR
�−��E1���11

�n2� −
�L

2
nL

�−��E2���12
�n2� + �21

�n2��

− �
�R

2
nR

�−��E2���12
�n2� + �21

�n2�� , �15b�

�̇22
�n2� = �LnL

�+��E2��00
�n2� + �RnR

�+��E2��00
�n2+1� − ��LnL

�−��E2�

+ �RnR
�−��E2���22

�n2� −
�L

2
nL

�−��E1���12
�n2� + �21

�n2��

− �
�R

2
nR

�−��E1���12
�n2� + �21

�n2�� , �15c�

�̇12
�n2� = i���12

�n2� +
1

2
�L�nL

�+��E2� + nL
�+��E1���00

�n2� +
�

2
�R�nR

�+�

	�E2� + nR
�+��E1���00

�n2+1� −
�

2
�RnR

�−��E1��11
�n2� −

�

2
�RnR

�−�

	�E2��22
�n2� −

1

2
�L�nL

�−��E1��11
�n2� + nL

�−��E2��22
�n2��

−
1

2
��LnL

�−��E1� + �RnR
�−��E1� + �LnL

�−��E2� + �RnR
�−�

	�E2���12
�n2�. �15d�

Similarly to the case of zero temperature, we have summed
n1 and remained only n2, indicating the FCS of electrons
flowing into the drain reservoir. It would be of interest to
note that the structure of the above equations differs from the
one at zero temperature, i.e., Eq. �9�. At finite temperature
and small bias voltage, the electrons in the drain reservoir
can jump back into the central dots. This backward process is
described by the ��n2+1� terms in the above equations, while
these terms are absent in Eq. �9�.

Based on Eq. �15� and the FCS formalism described in
Sec. III, numerical results for finite temperature are plotted in

Fig. 4. Compared to the zero temperature results, a few fea-
tures are discussed as follows: �i� For the constructive inter-
ference ��=1� at small values of 
, the thermal noise will
enhance the Fano factor. This is because for small 
, the
effective fast-and-slow channels cannot be developed, thus
the thermal noise dominates the current fluctuations and
leads to a super-Poisson behavior. This reasoning is also ap-
plicable to the entirely enhanced Fano factor of the destruc-
tive interference ��=−1�, which is shown by the dashed
curve in Fig. 4�a�. �ii� However, in the case of constructive
interference ��=1� and for those 
 where the effective fast-
and-slow channels are well developed, it is found that the
thermal noise will reduce the Fano factor. In this regime, the
thermal occupations around the Fermi levels of the electron
reservoirs will degrade the effectiveness of the fast-and-slow
channel based super-Poisson mechanism. As a result, the
Fano factor is reduced. �iii� Owing to the involvement of
thermal noise, the behavior of skewness changes consider-
ably. The large negative skewness, which is accompanied
with the constructive super-Poisson noise at zero tempera-
ture, will change its sign to positive by increasing tempera-
ture. In contrast, no considerable changes with temperature
are observed for the skewness associated with the destructive
interference.

VII. CONCLUSION

To summarize, we have presented a FCS study for trans-
port through a mesoscopic Coulomb blockade system with
two symmetric channels. The FCS analysis showed that the
shot noise and skewness are more sensitive than the average
current to the quantum interference. For instance, in the sym-
metric case, the quantum constructive interference and the
classical noninterference will lead to the same transport cur-
rent, but different shot noise and skewness. Moreover, in the
regime of strong Coulomb blockade, the interesting super-
Poisson behavior was found as a consequence of quantum

FIG. 4. Fano factor and normalized skewness versus 

��R /�L at finite temperatures. The solid and dashed curves display
results for the constructive ��=1� and destructive ��=−1� interfer-
ences, respectively. Parameters: E2=−E1=0.5, �L=1.0, �L=−�R

=5.0, and ��1/kBT=0.15.
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constructive interference. By state-representation transforma-
tion, this phenomenon was understood as a result of the for-
mation of effective fast-and-slow transport channels. Other
results, such as the dephasing and the finite temperature ef-
fects, were also presented together with physical interpreta-
tions. Experiments within current technology can examine
the predictions of this work.

Finally, the FCS approach employed in this work, based
on the generalized particle-number-resolved master equation
�cf. Eq. �5��, can account for not only the many-body Cou-
lomb interaction29 but also the internal quantum coherence.
In sequential tunneling regime, the approach is applicable to
finite temperatures and small bias voltages. Further generali-
zation to higher order tunneling processes and strongly non-
Markovian regime is of great interest and a challenging sub-
ject for future work.
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APPENDIX A

In this appendix we present the explicit expressions of the
spectral functions in Eq. �5� in the main text. For noninter-
acting electrodes and under the wide-band approximation,
the reservoir correlation functions simply read

CLij
�±��t − �� = gL�L

2 	 d�Lke
±i�Lk�t−��nL

�±���Lk� , �A1a�

CRii
�±��t − �� = gR�R

2 	 d�Rke
±i�Rk�t−��nR

�±���Rk� , �A1b�

CR12
�±� �t − �� = �gR�R

2 	 d�Rke
±i�Rk�t−��nR

�±���Rk� = CR21
�±� �t − �� .

�A1c�

Here, the indices i and j denote the dot states �1� and �2�.
Since the two dot states are almost degenerate in energy and
are equally coupled to the electrodes, in the above we have
assumed that �i
� j


* =�i

* � j
=�


2 . Note that an exception is
�1R

* �2R=�2R
* �1R=��R

2 , where �= ±1 is the relative phase
factor. This is because we have attributed the phase differ-
ence to the coupling amplitudes with the right electrodes.
The electron and hole occupation functions are introduced,
respectively, as n


�+���
k�=n
��
k� and n

�−���
k�=1−n
��
k�,

with n
��
k� the Fermi function. Fourier transformation of
Eqs. �A1� gives the spectral functions

C̃Lij
�±���� = �LnL

�±����� , �A2a�

C̃Rii
�±���� = �RnR

�±����� , �A2b�

C̃R12
�±� ��� = C̃R21

�±� ��� = ��RnR
�±����� , �A2c�

where �
=2�g
�

2 .

Furthermore, using Ldj =−�Ej +Unj̄�dj, the operators A
j
�±�

in Eq. �5�, which is defined by A
j
�+�=�iC̃
ij

�+��+L�di, A
j
�−�

=�iC̃
ji
�−��−L�di, are accordingly obtained as

A
j
�+� = �

i

C̃
ij
�+��− �Ei + Unī��di, �A3a�

A
j
�−� = �

i

C̃
ji
�−��+ �Ei + Unī��di. �A3b�

Here the index ī simply means differing from i, i.e., ī=2 if
i=1, and vice versa.

APPENDIX B

Via the transformation of state representation as described
in the main text, the energy levels of the transformed dot
states and their effective coupling strength read

Ẽ1 =
��

2

�R
2 − �L

2

�L
2 + �R

2 ,

Ẽ2 =
��

2

�L
2 − �R

2

�L
2 + �R

2 ,

� = ��
�L�R

�L
2 + �R

2 . �B1�

Simple algebra also gives rise to the effective coupling
strengths of the dot states with the electrodes

�̃1L =
�1L

��L
2 + �R

2
��L + �R� ,

�̃1R =
�2R

��L
2 + �R

2
���L + �R� ,

�̃2L =
�1L

��L
2 + �R

2
��L − �R� ,

�̃2R =
�2R

��L
2 + �R

2
��L − ��R� . �B2�

More transparently, for �=1, the corresponding tunneling
rates read

�1L =
�L��L + �R + 2��L�R�

�L + �R
,

�1R =
�R��L + �R + 2��L�R�

�L + �R
,

�2L =
�L��L + �R − 2��L�R�

�L + �R
,
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�2R =
�R��L + �R − 2��L�R�

�L + �R
, �B3�

and for �=−1, they are

�1L =
�L��L + �R + 2��L�R�

�L + �R
,

�1R =
�R��L + �R − 2��L�R�

�L + �R
,

�2L =
�L��L + �R − 2��L�R�

�L + �R
,

�2R =
�R��L + �R + 2��L�R�

�L + �R
. �B4�
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